/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wrestrict" #endif #include "../node/Constants.hpp" #ifdef __LINUX__ #include "../node/Utils.hpp" #include "../node/Mutex.hpp" #include "../node/Dictionary.hpp" #include "OSUtils.hpp" #include "LinuxEthernetTap.hpp" #include "LinuxNetLink.hpp" #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <signal.h> #include <fcntl.h> #include <errno.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/ioctl.h> #include <sys/wait.h> #include <sys/select.h> #include <netinet/in.h> #include <net/if_arp.h> #include <arpa/inet.h> #include <linux/if.h> #include <linux/if_tun.h> #include <linux/if_addr.h> #include <linux/if_ether.h> #include <ifaddrs.h> #include <algorithm> #include <utility> #include <string> #ifndef IFNAMSIZ #define IFNAMSIZ 16 #endif #define ZT_TAP_BUF_SIZE 16384 // ff:ff:ff:ff:ff:ff with no ADI static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff),0); namespace ZeroTier { static const char _base32_chars[32] = { 'a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','2','3','4','5','6','7' }; static void _base32_5_to_8(const uint8_t *in,char *out) { out[0] = _base32_chars[(in[0]) >> 3]; out[1] = _base32_chars[(in[0] & 0x07) << 2 | (in[1] & 0xc0) >> 6]; out[2] = _base32_chars[(in[1] & 0x3e) >> 1]; out[3] = _base32_chars[(in[1] & 0x01) << 4 | (in[2] & 0xf0) >> 4]; out[4] = _base32_chars[(in[2] & 0x0f) << 1 | (in[3] & 0x80) >> 7]; out[5] = _base32_chars[(in[3] & 0x7c) >> 2]; out[6] = _base32_chars[(in[3] & 0x03) << 3 | (in[4] & 0xe0) >> 5]; out[7] = _base32_chars[(in[4] & 0x1f)]; } LinuxEthernetTap::LinuxEthernetTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int), void *arg) : _handler(handler), _arg(arg), _nwid(nwid), _mac(mac), _homePath(homePath), _mtu(mtu), _fd(0), _enabled(true), _run(true) { static std::mutex s_tapCreateLock; char procpath[128],nwids[32]; struct stat sbuf; // Create only one tap at a time globally. std::lock_guard<std::mutex> tapCreateLock(s_tapCreateLock); // Make sure Linux netlink is initialized. (void)LinuxNetLink::getInstance(); OSUtils::ztsnprintf(nwids,sizeof(nwids),"%.16llx",nwid); _fd = ::open("/dev/net/tun",O_RDWR); if (_fd <= 0) { _fd = ::open("/dev/tun",O_RDWR); if (_fd <= 0) throw std::runtime_error(std::string("could not open TUN/TAP device: ") + strerror(errno)); } struct ifreq ifr; memset(&ifr,0,sizeof(ifr)); // Restore device names from legacy devicemap, but for new devices we use a base32-based // canonical device name. std::map<std::string,std::string> globalDeviceMap; FILE *devmapf = fopen((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(),"r"); if (devmapf) { char buf[256]; while (fgets(buf,sizeof(buf),devmapf)) { char *x = (char *)0; char *y = (char *)0; char *saveptr = (char *)0; for(char *f=Utils::stok(buf,"\r\n=",&saveptr);(f);f=Utils::stok((char *)0,"\r\n=",&saveptr)) { if (!x) x = f; else if (!y) y = f; else break; } if ((x)&&(y)&&(x[0])&&(y[0])) globalDeviceMap[x] = y; } fclose(devmapf); } bool recalledDevice = false; std::map<std::string,std::string>::const_iterator gdmEntry = globalDeviceMap.find(nwids); if (gdmEntry != globalDeviceMap.end()) { Utils::scopy(ifr.ifr_name,sizeof(ifr.ifr_name),gdmEntry->second.c_str()); OSUtils::ztsnprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name); recalledDevice = (stat(procpath,&sbuf) != 0); } if (!recalledDevice) { #ifdef __SYNOLOGY__ int devno = 50; do { OSUtils::ztsnprintf(ifr.ifr_name,sizeof(ifr.ifr_name),"eth%d",devno++); OSUtils::ztsnprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name); } while (stat(procpath,&sbuf) == 0); // try zt#++ until we find one that does not exist #else uint64_t trial = 0; // incremented in the very unlikely event of a name collision with another network do { const uint64_t nwid40 = (nwid ^ (nwid >> 24)) + trial++; uint8_t tmp2[5]; char tmp3[11]; tmp2[0] = (uint8_t)((nwid40 >> 32) & 0xff); tmp2[1] = (uint8_t)((nwid40 >> 24) & 0xff); tmp2[2] = (uint8_t)((nwid40 >> 16) & 0xff); tmp2[3] = (uint8_t)((nwid40 >> 8) & 0xff); tmp2[4] = (uint8_t)(nwid40 & 0xff); tmp3[0] = 'z'; tmp3[1] = 't'; _base32_5_to_8(tmp2,tmp3 + 2); tmp3[10] = (char)0; memcpy(ifr.ifr_name,tmp3,11); OSUtils::ztsnprintf(procpath,sizeof(procpath),"/proc/sys/net/ipv4/conf/%s",ifr.ifr_name); } while (stat(procpath,&sbuf) == 0); #endif } ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(_fd,TUNSETIFF,(void *)&ifr) < 0) { ::close(_fd); throw std::runtime_error("unable to configure TUN/TAP device for TAP operation"); } ::ioctl(_fd,TUNSETPERSIST,0); // valgrind may generate a false alarm here _dev = ifr.ifr_name; ::fcntl(_fd,F_SETFD,fcntl(_fd,F_GETFD) | FD_CLOEXEC); (void)::pipe(_shutdownSignalPipe); _tapReaderThread = std::thread([this]{ uint8_t b[ZT_TAP_BUF_SIZE]; fd_set readfds,nullfds; int n,nfds,r; std::vector<void *> buffers; struct ifreq ifr; memset(&ifr,0,sizeof(ifr)); strcpy(ifr.ifr_name,_dev.c_str()); const int sock = socket(AF_INET,SOCK_DGRAM,0); if (sock <= 0) return; if (ioctl(sock,SIOCGIFFLAGS,(void *)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (bring interface up)\n"); return; } ifr.ifr_ifru.ifru_hwaddr.sa_family = ARPHRD_ETHER; _mac.copyTo(ifr.ifr_ifru.ifru_hwaddr.sa_data,6); if (ioctl(sock,SIOCSIFHWADDR,(void *)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (set MAC)\n"); return; } ifr.ifr_flags |= IFF_UP; if (ioctl(sock,SIOCSIFFLAGS,(void *)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (bring interface up)\n"); return; } // Some kernel versions seem to require you to yield while the device comes up // before they will accept MTU and MAC. For others it doesn't matter, but is // harmless. This was moved to the worker thread though so as not to block the // main ZeroTier loop. usleep(500000); ifr.ifr_ifru.ifru_mtu = (int)_mtu; if (ioctl(sock,SIOCSIFMTU,(void *)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (set MTU)\n"); return; } fcntl(_fd,F_SETFL,O_NONBLOCK); ::close(sock); if (!_run) return; FD_ZERO(&readfds); FD_ZERO(&nullfds); nfds = (int)std::max(_shutdownSignalPipe[0],_fd) + 1; r = 0; for(;;) { FD_SET(_shutdownSignalPipe[0],&readfds); FD_SET(_fd,&readfds); select(nfds,&readfds,&nullfds,&nullfds,(struct timeval *)0); if (FD_ISSET(_shutdownSignalPipe[0],&readfds)) break; if (FD_ISSET(_fd,&readfds)) { for(;;) { // read until there are no more packets, then return to outer select() loop n = (int)::read(_fd,b + r,ZT_TAP_BUF_SIZE - r); if (n > 0) { // Some tap drivers like to send the ethernet frame and the // payload in two chunks, so handle that by accumulating // data until we have at least a frame. r += n; if (r > 14) { if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms r = _mtu + 14; if (_enabled) { //_tapq.post(std::pair<void *,int>(buf,r)); //buf = nullptr; MAC to(b, 6),from(b + 6, 6); unsigned int etherType = Utils::ntoh(((const uint16_t *)b)[6]); _handler(_arg, nullptr, _nwid, from, to, etherType, 0, (const void *)(b + 14),(unsigned int)(r - 14)); } r = 0; } } else { r = 0; break; } } } } }); } LinuxEthernetTap::~LinuxEthernetTap() { _run = false; (void)::write(_shutdownSignalPipe[1],"\0",1); _tapReaderThread.join(); ::close(_fd); ::close(_shutdownSignalPipe[0]); ::close(_shutdownSignalPipe[1]); } void LinuxEthernetTap::setEnabled(bool en) { _enabled = en; } bool LinuxEthernetTap::enabled() const { return _enabled; } static bool ___removeIp(const std::string &_dev,const InetAddress &ip) { LinuxNetLink::getInstance().removeAddress(ip, _dev.c_str()); return true; } bool LinuxEthernetTap::addIps(std::vector<InetAddress> ips) { #ifdef __SYNOLOGY__ std::string filepath = "/etc/sysconfig/network-scripts/ifcfg-"+_dev; std::string cfg_contents = "DEVICE="+_dev+"\nBOOTPROTO=static"; int ip4=0,ip6=0,ip4_tot=0,ip6_tot=0; for(int i=0; i<(int)ips.size(); i++) { if (ips[i].isV4()) ip4_tot++; else ip6_tot++; } // Assemble and write contents of ifcfg-dev file for(int i=0; i<(int)ips.size(); i++) { if (ips[i].isV4()) { char iptmp[64],iptmp2[64]; std::string numstr4 = ip4_tot > 1 ? std::to_string(ip4) : ""; cfg_contents += "\nIPADDR"+numstr4+"="+ips[i].toIpString(iptmp) + "\nNETMASK"+numstr4+"="+ips[i].netmask().toIpString(iptmp2)+"\n"; ip4++; } else { char iptmp[64],iptmp2[64]; std::string numstr6 = ip6_tot > 1 ? std::to_string(ip6) : ""; cfg_contents += "\nIPV6ADDR"+numstr6+"="+ips[i].toIpString(iptmp) + "\nNETMASK"+numstr6+"="+ips[i].netmask().toIpString(iptmp2)+"\n"; ip6++; } } OSUtils::writeFile(filepath.c_str(), cfg_contents.c_str(), cfg_contents.length()); // Finally, add IPs for(int i=0; i<(int)ips.size(); i++){ LinuxNetLink::getInstance().addAddress(ips[i], _dev.c_str()); } return true; #endif // __SYNOLOGY__ return false; } bool LinuxEthernetTap::addIp(const InetAddress &ip) { if (!ip) return false; std::vector<InetAddress> allIps(ips()); if (std::binary_search(allIps.begin(),allIps.end(),ip)) return true; // Remove and reconfigure if address is the same but netmask is different for(std::vector<InetAddress>::iterator i(allIps.begin());i!=allIps.end();++i) { if (i->ipsEqual(ip)) ___removeIp(_dev,*i); } LinuxNetLink::getInstance().addAddress(ip, _dev.c_str()); return true; } bool LinuxEthernetTap::removeIp(const InetAddress &ip) { if (!ip) return true; std::vector<InetAddress> allIps(ips()); if (std::find(allIps.begin(),allIps.end(),ip) != allIps.end()) { if (___removeIp(_dev,ip)) return true; } return false; } std::vector<InetAddress> LinuxEthernetTap::ips() const { struct ifaddrs *ifa = (struct ifaddrs *)0; if (getifaddrs(&ifa)) return std::vector<InetAddress>(); std::vector<InetAddress> r; struct ifaddrs *p = ifa; while (p) { if ((!strcmp(p->ifa_name,_dev.c_str()))&&(p->ifa_addr)&&(p->ifa_netmask)&&(p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) { switch(p->ifa_addr->sa_family) { case AF_INET: { struct sockaddr_in *sin = (struct sockaddr_in *)p->ifa_addr; struct sockaddr_in *nm = (struct sockaddr_in *)p->ifa_netmask; r.push_back(InetAddress(&(sin->sin_addr.s_addr),4,Utils::countBits((uint32_t)nm->sin_addr.s_addr))); } break; case AF_INET6: { struct sockaddr_in6 *sin = (struct sockaddr_in6 *)p->ifa_addr; struct sockaddr_in6 *nm = (struct sockaddr_in6 *)p->ifa_netmask; uint32_t b[4]; memcpy(b,nm->sin6_addr.s6_addr,sizeof(b)); r.push_back(InetAddress(sin->sin6_addr.s6_addr,16,Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3]))); } break; } } p = p->ifa_next; } if (ifa) freeifaddrs(ifa); std::sort(r.begin(),r.end()); r.erase(std::unique(r.begin(),r.end()),r.end()); return r; } void LinuxEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { char putBuf[ZT_MAX_MTU + 64]; if ((_fd > 0)&&(len <= _mtu)&&(_enabled)) { to.copyTo(putBuf,6); from.copyTo(putBuf + 6,6); *((uint16_t *)(putBuf + 12)) = htons((uint16_t)etherType); memcpy(putBuf + 14,data,len); len += 14; (void)::write(_fd,putBuf,len); } } std::string LinuxEthernetTap::deviceName() const { return _dev; } void LinuxEthernetTap::setFriendlyName(const char *friendlyName) { } void LinuxEthernetTap::scanMulticastGroups(std::vector<MulticastGroup> &added,std::vector<MulticastGroup> &removed) { char *ptr,*ptr2; unsigned char mac[6]; std::vector<MulticastGroup> newGroups; int fd = ::open("/proc/net/dev_mcast",O_RDONLY); if (fd > 0) { char buf[131072]; int n = (int)::read(fd,buf,sizeof(buf)); if ((n > 0)&&(n < (int)sizeof(buf))) { buf[n] = (char)0; for(char *l=strtok_r(buf,"\r\n",&ptr);(l);l=strtok_r((char *)0,"\r\n",&ptr)) { int fno = 0; char *devname = (char *)0; char *mcastmac = (char *)0; for(char *f=strtok_r(l," \t",&ptr2);(f);f=strtok_r((char *)0," \t",&ptr2)) { if (fno == 1) devname = f; else if (fno == 4) mcastmac = f; ++fno; } if ((devname)&&(!strcmp(devname,_dev.c_str()))&&(mcastmac)&&(Utils::unhex(mcastmac,mac,6) == 6)) newGroups.push_back(MulticastGroup(MAC(mac,6),0)); } } ::close(fd); } std::vector<InetAddress> allIps(ips()); for(std::vector<InetAddress>::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); newGroups.erase(std::unique(newGroups.begin(),newGroups.end()),newGroups.end()); for(std::vector<MulticastGroup>::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector<MulticastGroup>::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void LinuxEthernetTap::setMtu(unsigned int mtu) { if (_mtu != mtu) { _mtu = mtu; int sock = socket(AF_INET,SOCK_DGRAM,0); if (sock > 0) { struct ifreq ifr; memset(&ifr,0,sizeof(ifr)); ifr.ifr_ifru.ifru_mtu = (int)mtu; ioctl(sock,SIOCSIFMTU,(void *)&ifr); close(sock); } } } } // namespace ZeroTier #endif // __LINUX__