/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Topology.hpp"
#include "PacketDecoder.hpp"
#include "Switch.hpp"
#include "Peer.hpp"
#include "NodeConfig.hpp"
#include "Filter.hpp"
#include "Service.hpp"
/*
* The big picture:
*
* tryDecode() gets called for a given fully-assembled packet until it returns
* true or the packet's time to live has been exceeded. The state machine must
* therefore be re-entrant if it ever returns false. Take care here!
*
* Stylistic note:
*
* There's a lot of unnecessary if nesting. It's mostly to allow TRACE to
* print informative messages on every possible reason something gets
* rejected or fails.
*/
namespace ZeroTier {
bool PacketDecoder::tryDecode(const RuntimeEnvironment *_r)
throw(std::out_of_range,std::runtime_error)
{
if ((!encrypted())&&(verb() == Packet::VERB_HELLO)) {
// Unencrypted HELLOs are handled here since they are used to
// populate our identity cache in the first place. Thus we might get
// a HELLO for someone for whom we don't have a Peer record.
TRACE("HELLO from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str());
return _doHELLO(_r);
}
SharedPtr peer = _r->topology->getPeer(source());
if (peer) {
// Resume saved state?
if (_step == DECODE_WAITING_FOR_MULTICAST_FRAME_ORIGINAL_SENDER_LOOKUP) {
// In this state we have already authenticated and decrypted the
// packet and are waiting for the lookup of the original sender
// for a multicast frame. So check to see if we've got it.
return _doMULTICAST_FRAME(_r,peer);
}
// No saved state? Verify MAC before we proceed.
if (!hmacVerify(peer->macKey())) {
TRACE("dropped packet from %s(%s), HMAC authentication failed (size: %u)",source().toString().c_str(),_remoteAddress.toString().c_str(),size());
return true;
}
// If MAC authentication passed, decrypt and uncompress
if (encrypted()) {
decrypt(peer->cryptKey());
} else {
// Unencrypted is tolerated in case we want to run this on
// devices where squeezing out cycles matters. HMAC is
// what's really important. But log it in debug to catch any
// packets being mistakenly sent in the clear.
TRACE("ODD: %s from %s(%s) wasn't encrypted",Packet::verbString(verb()),source().toString().c_str(),_remoteAddress.toString().c_str());
}
if (!uncompress()) {
TRACE("dropped packet from %s(%s), compressed data invalid",source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
Packet::Verb v = verb();
// Once a packet is determined to be basically valid, it can be used
// to passively learn a new network path to the sending peer. It
// also results in statistics updates.
peer->onReceive(_r,_localPort,_remoteAddress,hops(),v,Utils::now());
switch(v) {
case Packet::VERB_NOP:
TRACE("NOP from %s(%s)",source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
case Packet::VERB_HELLO:
return _doHELLO(_r);
case Packet::VERB_ERROR:
return _doERROR(_r,peer);
case Packet::VERB_OK:
return _doOK(_r,peer);
case Packet::VERB_WHOIS:
return _doWHOIS(_r,peer);
case Packet::VERB_RENDEZVOUS:
return _doRENDEZVOUS(_r,peer);
case Packet::VERB_FRAME:
return _doFRAME(_r,peer);
case Packet::VERB_MULTICAST_LIKE:
return _doMULTICAST_LIKE(_r,peer);
case Packet::VERB_MULTICAST_FRAME:
return _doMULTICAST_FRAME(_r,peer);
case Packet::VERB_NETWORK_MEMBERSHIP_CERTIFICATE:
return _doNETWORK_MEMBERSHIP_CERTIFICATE(_r,peer);
case Packet::VERB_NETWORK_CONFIG_REQUEST:
return _doNETWORK_CONFIG_REQUEST(_r,peer);
case Packet::VERB_NETWORK_CONFIG_REFRESH:
return _doNETWORK_CONFIG_REFRESH(_r,peer);
default:
// This might be something from a new or old version of the protocol.
// Technically it passed HMAC so the packet is still valid, but we
// ignore it.
TRACE("ignored unrecognized verb %.2x from %s(%s)",(unsigned int)v,source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
} else {
_step = DECODE_WAITING_FOR_SENDER_LOOKUP; // should already be this...
_r->sw->requestWhois(source());
return false;
}
}
void PacketDecoder::_CBaddPeerFromHello(void *arg,const SharedPtr &p,Topology::PeerVerifyResult result)
{
_CBaddPeerFromHello_Data *req = (_CBaddPeerFromHello_Data *)arg;
const RuntimeEnvironment *_r = req->renv;
try {
switch(result) {
case Topology::PEER_VERIFY_ACCEPTED_NEW:
case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE:
case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS: {
_r->sw->doAnythingWaitingForPeer(p);
Packet outp(req->source,_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(req->helloPacketId);
outp.append(req->helloTimestamp);
outp.encrypt(p->cryptKey());
outp.hmacSet(p->macKey());
_r->demarc->send(req->localPort,req->remoteAddress,outp.data(),outp.size(),-1);
} break;
case Topology::PEER_VERIFY_REJECTED_INVALID_IDENTITY: {
Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(req->helloPacketId);
outp.append((unsigned char)Packet::ERROR_IDENTITY_INVALID);
outp.encrypt(p->cryptKey());
outp.hmacSet(p->macKey());
_r->demarc->send(req->localPort,req->remoteAddress,outp.data(),outp.size(),-1);
} break;
case Topology::PEER_VERIFY_REJECTED_DUPLICATE:
case Topology::PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED: {
Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(req->helloPacketId);
outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION);
outp.encrypt(p->cryptKey());
outp.hmacSet(p->macKey());
_r->demarc->send(req->localPort,req->remoteAddress,outp.data(),outp.size(),-1);
} break;
}
} catch ( ... ) {
TRACE("unexpected exception in addPeer() result callback for peer received via HELLO");
}
delete req;
}
void PacketDecoder::_CBaddPeerFromWhois(void *arg,const SharedPtr &p,Topology::PeerVerifyResult result)
{
const RuntimeEnvironment *_r = (const RuntimeEnvironment *)arg;
try {
switch(result) {
case Topology::PEER_VERIFY_ACCEPTED_NEW:
case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE:
case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS:
_r->sw->doAnythingWaitingForPeer(p);
break;
default:
break;
}
} catch ( ... ) {
TRACE("unexpected exception in addPeer() result callback for peer received via OK(WHOIS)");
}
}
bool PacketDecoder::_doERROR(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
#ifdef ZT_TRACE
Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
TRACE("ERROR %s from %s(%s) in-re %s",Packet::errorString(errorCode),source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
#endif
// TODO (sorta):
// The fact is that the protocol works fine without error handling.
// The only error that really needs to be handled here is duplicate
// identity collision, which if it comes from a supernode should cause
// us to restart and regenerate a new identity.
} catch (std::exception &ex) {
TRACE("dropped ERROR from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped ERROR from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doHELLO(const RuntimeEnvironment *_r)
{
try {
//unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
unsigned int vRevision = at(ZT_PROTO_VERB_HELLO_IDX_REVISION);
uint64_t timestamp = at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
Identity id(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
// Initial sniff test for valid addressing and that this is indeed the
// submitter's identity.
if ((id.address().isReserved())||(id.address() != source())) {
#ifdef ZT_TRACE
if (id.address().isReserved()) {
TRACE("dropped HELLO from %s(%s): identity has reserved address",source().toString().c_str(),_remoteAddress.toString().c_str());
} else {
TRACE("dropped HELLO from %s(%s): identity is not for sender of packet (HELLO is a self-announcement)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
#endif
return true;
}
// Is this a HELLO for a peer we already know? If so just update its
// packet receive stats and send an OK.
SharedPtr existingPeer(_r->topology->getPeer(id.address()));
if ((existingPeer)&&(existingPeer->identity() == id)) {
existingPeer->onReceive(_r,_localPort,_remoteAddress,hops(),Packet::VERB_HELLO,Utils::now());
existingPeer->setRemoteVersion(vMajor,vMinor,vRevision);
Packet outp(source(),_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(packetId());
outp.append(timestamp);
outp.encrypt(existingPeer->cryptKey());
outp.hmacSet(existingPeer->macKey());
_r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1);
return true;
}
SharedPtr candidate(new Peer(_r->identity,id));
candidate->setPathAddress(_remoteAddress,false);
_CBaddPeerFromHello_Data *arg = new _CBaddPeerFromHello_Data;
arg->renv = _r;
arg->source = source();
arg->remoteAddress = _remoteAddress;
arg->localPort = _localPort;
arg->vMajor = vMajor;
arg->vMinor = vMinor;
arg->vRevision = vRevision;
arg->helloPacketId = packetId();
arg->helloTimestamp = timestamp;
_r->topology->addPeer(candidate,&PacketDecoder::_CBaddPeerFromHello,arg);
} catch (std::exception &ex) {
TRACE("dropped HELLO from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped HELLO from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doOK(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
switch(inReVerb) {
case Packet::VERB_HELLO: {
// OK from HELLO permits computation of latency.
unsigned int latency = std::min((unsigned int)(Utils::now() - at(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff);
TRACE("%s(%s): OK(HELLO), latency: %u",source().toString().c_str(),_remoteAddress.toString().c_str(),latency);
peer->setLatency(_remoteAddress,latency);
} break;
case Packet::VERB_WHOIS: {
TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
if (_r->topology->isSupernode(source())) {
// Right now, only supernodes are queried for WHOIS so we only
// accept OK(WHOIS) from supernodes. Otherwise peers could
// potentially cache-poison.
_r->topology->addPeer(SharedPtr(new Peer(_r->identity,Identity(*this,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY))),&PacketDecoder::_CBaddPeerFromWhois,const_cast((const void *)_r));
}
} break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: {
SharedPtr nw(_r->nc->network(at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_NETWORK_ID)));
if ((nw)&&(nw->controller() == source())) {
// OK(NETWORK_CONFIG_REQUEST) is only accepted from a network's
// controller.
unsigned int dictlen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT_LEN);
std::string dict((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,dictlen),dictlen);
if (dict.length()) {
Network::Config netconf(dict);
if ((netconf.networkId() == nw->id())&&(netconf.peerAddress() == _r->identity.address())) { // sanity check
LOG("got network configuration for network %.16llx from %s",(unsigned long long)nw->id(),source().toString().c_str());
nw->setConfiguration(netconf);
}
}
}
} break;
default:
//TRACE("%s(%s): OK(%s)",source().toString().c_str(),_remoteAddress.toString().c_str(),Packet::verbString(inReVerb));
break;
}
} catch (std::exception &ex) {
TRACE("dropped OK from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped OK from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doWHOIS(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
if (payloadLength() == ZT_ADDRESS_LENGTH) {
SharedPtr p(_r->topology->getPeer(Address(payload(),ZT_ADDRESS_LENGTH)));
if (p) {
Packet outp(source(),_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packetId());
p->identity().serialize(outp,false);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1);
TRACE("sent WHOIS response to %s for %s",source().toString().c_str(),Address(payload(),ZT_ADDRESS_LENGTH).toString().c_str());
} else {
Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packetId());
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
outp.append(payload(),ZT_ADDRESS_LENGTH);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1);
TRACE("sent WHOIS ERROR to %s for %s (not found)",source().toString().c_str(),Address(payload(),ZT_ADDRESS_LENGTH).toString().c_str());
}
} else {
TRACE("dropped WHOIS from %s(%s): missing or invalid address",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doRENDEZVOUS(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
/*
* At the moment, we only obey RENDEZVOUS if it comes from a designated
* supernode. If relay offloading is implemented to scale the net, this
* will need reconsideration.
*
* The reason is that RENDEZVOUS could technically be used to cause a
* peer to send a weird encrypted UDP packet to an arbitrary IP:port.
* The sender of RENDEZVOUS has no control over the content of this
* packet, but it's still maybe something we want to not allow just
* anyone to order due to possible DDOS or network forensic implications.
* So if we diversify relays, we'll need some way of deciding whether the
* sender is someone we should trust with a RENDEZVOUS hint.
*/
if (_r->topology->isSupernode(source())) {
Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
SharedPtr withPeer(_r->topology->getPeer(with));
if (withPeer) {
unsigned int port = at(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
TRACE("RENDEZVOUS from %s says %s might be at %s, starting NAT-t",source().toString().c_str(),with.toString().c_str(),atAddr.toString().c_str());
_r->sw->contact(withPeer,atAddr);
} else {
TRACE("dropped corrupt RENDEZVOUS from %s(%s) (bad address or port)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
} else {
TRACE("ignored RENDEZVOUS from %s(%s) to meet unknown peer %s",source().toString().c_str(),_remoteAddress.toString().c_str(),with.toString().c_str());
}
} else {
TRACE("ignored RENDEZVOUS from %s(%s): source not supernode",source().toString().c_str(),_remoteAddress.toString().c_str());
}
} catch (std::exception &ex) {
TRACE("dropped RENDEZVOUS from %s(%s): %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped RENDEZVOUS from %s(%s): unexpected exception",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doFRAME(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
SharedPtr network(_r->nc->network(at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)));
if (network) {
if (network->isAllowed(source())) {
unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) {
TRACE("dropped FRAME from %s: unsupported ethertype",source().toString().c_str());
} else if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
network->tap().put(source().toMAC(),network->tap().mac(),etherType,data() + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD,size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD);
}
} else {
TRACE("dropped FRAME from %s(%s): not a member of closed network %llu",source().toString().c_str(),_remoteAddress.toString().c_str(),network->id());
}
} else {
TRACE("dropped FRAME from %s(%s): network %llu unknown",source().toString().c_str(),_remoteAddress.toString().c_str(),at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
}
} catch (std::exception &ex) {
TRACE("dropped FRAME from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped FRAME from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doMULTICAST_LIKE(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
unsigned int numAccepted = 0;
uint64_t now = Utils::now();
// Iterate through 18-byte network,MAC,ADI tuples:
while ((ptr + 18) <= size()) {
uint64_t nwid = at(ptr); ptr += 8;
SharedPtr network(_r->nc->network(nwid));
if ((network)&&(network->isAllowed(source()))) {
MAC mac(field(ptr,6)); ptr += 6;
uint32_t adi = at(ptr); ptr += 4;
//TRACE("peer %s likes multicast group %s:%.8lx on network %llu",source().toString().c_str(),mac.toString().c_str(),(unsigned long)adi,nwid);
_r->multicaster->likesMulticastGroup(nwid,MulticastGroup(mac,adi),source(),now);
++numAccepted;
} else ptr += 10;
}
Packet outp(source(),_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_LIKE);
outp.append(packetId());
outp.append((uint16_t)numAccepted);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1);
} catch (std::exception &ex) {
TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped MULTICAST_LIKE from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doMULTICAST_FRAME(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
SharedPtr network(_r->nc->network(at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID)));
if ((network)&&(network->isAllowed(source()))) {
Address originalSubmitterAddress(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SUBMITTER_ADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
if (originalSubmitterAddress.isReserved()) {
TRACE("dropped MULTICAST_FRAME from original submitter %s, received from %s(%s): invalid original submitter address",originalSubmitterAddress.toString().c_str(),source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
if (originalSubmitterAddress == _r->identity.address()) {
TRACE("dropped MULTICAST_FRAME from original submitter %s, received from %s(%s): boomerang!",originalSubmitterAddress.toString().c_str(),source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
SharedPtr originalSubmitter(_r->topology->getPeer(originalSubmitterAddress));
if (!originalSubmitter) {
TRACE("requesting WHOIS on original multicast frame submitter %s",originalSubmitterAddress.toString().c_str());
_r->sw->requestWhois(originalSubmitterAddress);
_step = DECODE_WAITING_FOR_MULTICAST_FRAME_ORIGINAL_SENDER_LOOKUP;
return false; // try again if/when we get OK(WHOIS)
}
MAC fromMac(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC,6));
MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DESTINATION_MAC,6)),at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI));
unsigned int hops = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOP_COUNT];
unsigned int etherType = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE);
unsigned int datalen = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD_LENGTH);
unsigned int signaturelen = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SIGNATURE_LENGTH);
unsigned char *dataAndSignature = field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,datalen + signaturelen);
if (!Multicaster::verifyMulticastPacket(originalSubmitter->identity(),network->id(),fromMac,mg,etherType,dataAndSignature,datalen,dataAndSignature + datalen,signaturelen)) {
LOG("dropped MULTICAST_FRAME from original submitter %s, received from %s(%s): FAILED SIGNATURE CHECK (spoofed original submitter?)",originalSubmitterAddress.toString().c_str(),source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
if (++hops >= ZT_MULTICAST_PROPAGATION_DEPTH) {
TRACE("dropped MULTICAST_FRAME from original submitter %s, received from %s(%s): max depth reached",originalSubmitterAddress.toString().c_str(),source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
}
uint64_t mccrc = Multicaster::computeMulticastDedupCrc(network->id(),fromMac,mg,etherType,dataAndSignature,datalen);
uint64_t now = Utils::now();
bool isDuplicate = _r->multicaster->checkDuplicate(mccrc,now);
if (!isDuplicate) {
//if (network->multicastRateGate(originalSubmitterAddress,datalen)) {
network->tap().put(fromMac,mg.mac(),etherType,dataAndSignature,datalen);
//} else {
// TRACE("dropped MULTICAST_FRAME from original submitter %s, received from %s(%s): sender rate limit exceeded",originalSubmitterAddress.toString().c_str(),source().toString().c_str(),_remoteAddress.toString().c_str());
// return true;
//}
/* It's important that we do this *after* rate limit checking,
* otherwise supernodes could be used to execute a flood by
* first bouncing a multicast off a supernode and then flooding
* it with retransmits. */
_r->multicaster->addToDedupHistory(mccrc,now);
}
Address upstream(source()); // save this since we might mangle it below
Multicaster::MulticastBloomFilter bloom(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM_FILTER,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES));
SharedPtr propPeers[ZT_MULTICAST_PROPAGATION_BREADTH];
unsigned int np = 0;
if (_r->topology->amSupernode()) {
/* Supernodes behave differently here from ordinary nodes, as their
* role in the network is to bridge gaps between unconnected islands
* in a multicast propagation graph. Instead of using the ordinary
* multicast peer picker, supernodes propagate to random unvisited
* peers. They will also repeatedly propagate duplicate multicasts to
* new peers, while regular nodes simply discard them. This allows
* such gaps to be bridged more than once by ping-ponging off the
* same supernode -- a simple way to implement this without requiring
* that supernodes maintain a lot of state at the cost of a small
* amount of bandwidth. */
np = _r->multicaster->pickRandomPropagationPeers(
*(_r->prng),
*(_r->topology),
network->id(),
mg,
originalSubmitterAddress,
upstream,
bloom,
ZT_MULTICAST_PROPAGATION_BREADTH,
propPeers,
now);
} else if (isDuplicate) {
TRACE("dropped MULTICAST_FRAME from original submitter %s, received from %s(%s): duplicate",originalSubmitterAddress.toString().c_str(),source().toString().c_str(),_remoteAddress.toString().c_str());
return true;
} else {
/* Regular peers only propagate non-duplicate packets, and do so
* according to ordinary propagation priority rules. */
np = _r->multicaster->pickSocialPropagationPeers(
*(_r->prng),
*(_r->topology),
network->id(),
mg,
originalSubmitterAddress,
upstream,
bloom,
ZT_MULTICAST_PROPAGATION_BREADTH,
propPeers,
now);
}
/* Re-use *this* packet to repeat it to our propagation
* recipients, which invalidates its current contents and
* state. */
if (np) {
setSource(_r->identity.address());
(*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOP_COUNT] = hops;
memcpy(field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM_FILTER,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES),bloom.data(),ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE_BYTES);
compress();
for(unsigned int i=0;iaddress());
_r->sw->send(*this,true);
}
}
/* Just to be safe, return true here to terminate processing as we
* have thoroughly destroyed our state by doing the above. */
return true;
} else {
TRACE("dropped MULTICAST_FRAME from %s(%s): network %.16llx unknown or sender not allowed",source().toString().c_str(),_remoteAddress.toString().c_str(),(unsigned long long)network->id());
}
} catch (std::exception &ex) {
TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped MULTICAST_FRAME from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doNETWORK_MEMBERSHIP_CERTIFICATE(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
// TODO: not implemented yet, will be needed for private networks.
return true;
}
bool PacketDecoder::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
#ifndef __WINDOWS__
if (_r->netconfService) {
char tmp[128];
unsigned int dictLen = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN);
Dictionary request;
if (dictLen)
request["meta"] = std::string((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,dictLen),dictLen);
request["type"] = "netconf-request";
request["peerId"] = peer->identity().toString(false);
sprintf(tmp,"%llx",(unsigned long long)nwid);
request["nwid"] = tmp;
sprintf(tmp,"%llx",(unsigned long long)packetId());
request["requestId"] = tmp;
//TRACE("to netconf:\n%s",request.toString().c_str());
_r->netconfService->send(request);
} else {
#endif // !__WINDOWS__
Packet outp(source(),_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(packetId());
outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION);
outp.append(nwid);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(_localPort,_remoteAddress,outp.data(),outp.size(),-1);
#ifndef __WINDOWS__
}
#endif // !__WINDOWS__
} catch (std::exception &exc) {
TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what());
} catch ( ... ) {
TRACE("dropped NETWORK_CONFIG_REQUEST from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
bool PacketDecoder::_doNETWORK_CONFIG_REFRESH(const RuntimeEnvironment *_r,const SharedPtr &peer)
{
try {
uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REFRESH_IDX_NETWORK_ID);
SharedPtr nw(_r->nc->network(nwid));
if ((nw)&&(source() == nw->controller())) // only respond to requests from controller
nw->requestConfiguration();
} catch (std::exception &exc) {
TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception: %s",source().toString().c_str(),_remoteAddress.toString().c_str(),exc.what());
} catch ( ... ) {
TRACE("dropped NETWORK_CONFIG_REFRESH from %s(%s): unexpected exception: (unknown)",source().toString().c_str(),_remoteAddress.toString().c_str());
}
return true;
}
} // namespace ZeroTier