/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #include #include #include #include #include "Constants.hpp" #include "../version.h" #include "Network.hpp" #include "RuntimeEnvironment.hpp" #include "MAC.hpp" #include "Address.hpp" #include "InetAddress.hpp" #include "Switch.hpp" #include "Buffer.hpp" #include "Packet.hpp" #include "NetworkController.hpp" #include "Node.hpp" #include "Peer.hpp" // Uncomment to make the rules engine dump trace info to stdout //#define ZT_RULES_ENGINE_DEBUGGING 1 namespace ZeroTier { namespace { #ifdef ZT_RULES_ENGINE_DEBUGGING #define FILTER_TRACE(f,...) { Utils::ztsnprintf(dpbuf,sizeof(dpbuf),f,##__VA_ARGS__); dlog.push_back(std::string(dpbuf)); } static const char *_rtn(const ZT_VirtualNetworkRuleType rt) { switch(rt) { case ZT_NETWORK_RULE_ACTION_DROP: return "ACTION_DROP"; case ZT_NETWORK_RULE_ACTION_ACCEPT: return "ACTION_ACCEPT"; case ZT_NETWORK_RULE_ACTION_TEE: return "ACTION_TEE"; case ZT_NETWORK_RULE_ACTION_WATCH: return "ACTION_WATCH"; case ZT_NETWORK_RULE_ACTION_REDIRECT: return "ACTION_REDIRECT"; case ZT_NETWORK_RULE_ACTION_BREAK: return "ACTION_BREAK"; case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: return "MATCH_SOURCE_ZEROTIER_ADDRESS"; case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: return "MATCH_DEST_ZEROTIER_ADDRESS"; case ZT_NETWORK_RULE_MATCH_VLAN_ID: return "MATCH_VLAN_ID"; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: return "MATCH_VLAN_PCP"; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: return "MATCH_VLAN_DEI"; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: return "MATCH_MAC_SOURCE"; case ZT_NETWORK_RULE_MATCH_MAC_DEST: return "MATCH_MAC_DEST"; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: return "MATCH_IPV4_SOURCE"; case ZT_NETWORK_RULE_MATCH_IPV4_DEST: return "MATCH_IPV4_DEST"; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: return "MATCH_IPV6_SOURCE"; case ZT_NETWORK_RULE_MATCH_IPV6_DEST: return "MATCH_IPV6_DEST"; case ZT_NETWORK_RULE_MATCH_IP_TOS: return "MATCH_IP_TOS"; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: return "MATCH_IP_PROTOCOL"; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: return "MATCH_ETHERTYPE"; case ZT_NETWORK_RULE_MATCH_ICMP: return "MATCH_ICMP"; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: return "MATCH_IP_SOURCE_PORT_RANGE"; case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: return "MATCH_IP_DEST_PORT_RANGE"; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: return "MATCH_CHARACTERISTICS"; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: return "MATCH_FRAME_SIZE_RANGE"; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: return "MATCH_TAGS_DIFFERENCE"; case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: return "MATCH_TAGS_BITWISE_AND"; case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: return "MATCH_TAGS_BITWISE_OR"; case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: return "MATCH_TAGS_BITWISE_XOR"; default: return "???"; } } static const void _dumpFilterTrace(const char *ruleName,uint8_t thisSetMatches,bool inbound,const Address &ztSource,const Address &ztDest,const MAC &macSource,const MAC &macDest,const std::vector &dlog,unsigned int frameLen,unsigned int etherType,const char *msg) { static volatile unsigned long cnt = 0; printf("%.6lu %c %s %s frameLen=%u etherType=%u" ZT_EOL_S, cnt++, ((thisSetMatches) ? 'Y' : '.'), ruleName, ((inbound) ? "INBOUND" : "OUTBOUND"), frameLen, etherType ); for(std::vector::const_iterator m(dlog.begin());m!=dlog.end();++m) printf(" | %s" ZT_EOL_S,m->c_str()); printf(" + %c %s->%s %.2x:%.2x:%.2x:%.2x:%.2x:%.2x->%.2x:%.2x:%.2x:%.2x:%.2x:%.2x" ZT_EOL_S, ((thisSetMatches) ? 'Y' : '.'), ztSource.toString().c_str(), ztDest.toString().c_str(), (unsigned int)macSource[0], (unsigned int)macSource[1], (unsigned int)macSource[2], (unsigned int)macSource[3], (unsigned int)macSource[4], (unsigned int)macSource[5], (unsigned int)macDest[0], (unsigned int)macDest[1], (unsigned int)macDest[2], (unsigned int)macDest[3], (unsigned int)macDest[4], (unsigned int)macDest[5] ); if (msg) printf(" + (%s)" ZT_EOL_S,msg); fflush(stdout); } #else #define FILTER_TRACE(f,...) {} #endif // ZT_RULES_ENGINE_DEBUGGING // Returns true if packet appears valid; pos and proto will be set static bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int &pos,unsigned int &proto) { if (frameLen < 40) return false; pos = 40; proto = frameData[6]; while (pos <= frameLen) { switch(proto) { case 0: // hop-by-hop options case 43: // routing case 60: // destination options case 135: // mobility options if ((pos + 8) > frameLen) return false; // invalid! proto = frameData[pos]; pos += ((unsigned int)frameData[pos + 1] * 8) + 8; break; //case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway //case 50: //case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff default: return true; } } return false; // overflow == invalid } enum _doZtFilterResult { DOZTFILTER_NO_MATCH, DOZTFILTER_DROP, DOZTFILTER_REDIRECT, DOZTFILTER_ACCEPT, DOZTFILTER_SUPER_ACCEPT }; static _doZtFilterResult _doZtFilter( const RuntimeEnvironment *RR, const NetworkConfig &nconf, const Membership *membership, // can be NULL const bool inbound, const Address &ztSource, Address &ztDest, // MUTABLE -- is changed on REDIRECT actions const MAC &macSource, const MAC &macDest, const uint8_t *const frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId, const ZT_VirtualNetworkRule *rules, // cannot be NULL const unsigned int ruleCount, Address &cc, // MUTABLE -- set to TEE destination if TEE action is taken or left alone otherwise unsigned int &ccLength, // MUTABLE -- set to length of packet payload to TEE bool &ccWatch) // MUTABLE -- set to true for WATCH target as opposed to normal TEE { #ifdef ZT_RULES_ENGINE_DEBUGGING char dpbuf[1024]; // used by FILTER_TRACE macro std::vector dlog; #endif // ZT_RULES_ENGINE_DEBUGGING // Set to true if we are a TEE/REDIRECT/WATCH target bool superAccept = false; // The default match state for each set of entries starts as 'true' since an // ACTION with no MATCH entries preceding it is always taken. uint8_t thisSetMatches = 1; for(unsigned int rn=0;rnidentity.address()) { if (inbound) { #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace(_rtn(rt),thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,"interpreted as super-ACCEPT on inbound since we are target"); #endif // ZT_RULES_ENGINE_DEBUGGING return DOZTFILTER_SUPER_ACCEPT; } else { #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace(_rtn(rt),thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,"skipped as no-op on outbound since we are target"); dlog.clear(); #endif // ZT_RULES_ENGINE_DEBUGGING } } else if (fwdAddr == ztDest) { #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace(_rtn(rt),thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,"skipped as no-op because destination is already target"); dlog.clear(); #endif // ZT_RULES_ENGINE_DEBUGGING } else { if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) { #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace("ACTION_REDIRECT",thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(const char *)0); #endif // ZT_RULES_ENGINE_DEBUGGING ztDest = fwdAddr; return DOZTFILTER_REDIRECT; } else { #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace(_rtn(rt),thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(const char *)0); dlog.clear(); #endif // ZT_RULES_ENGINE_DEBUGGING cc = fwdAddr; ccLength = (rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen; ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH); } } } continue; case ZT_NETWORK_RULE_ACTION_BREAK: #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace("ACTION_BREAK",thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(const char *)0); dlog.clear(); #endif // ZT_RULES_ENGINE_DEBUGGING return DOZTFILTER_NO_MATCH; // Unrecognized ACTIONs are ignored as no-ops default: #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace(_rtn(rt),thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(const char *)0); dlog.clear(); #endif // ZT_RULES_ENGINE_DEBUGGING continue; } } else { // If this is an incoming packet and we are a TEE or REDIRECT target, we should // super-accept if we accept at all. This will cause us to accept redirected or // tee'd packets in spite of MAC and ZT addressing checks. if (inbound) { switch(rt) { case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: if (RR->identity.address() == rules[rn].v.fwd.address) superAccept = true; break; default: break; } } #ifdef ZT_RULES_ENGINE_DEBUGGING _dumpFilterTrace(_rtn(rt),thisSetMatches,inbound,ztSource,ztDest,macSource,macDest,dlog,frameLen,etherType,(const char *)0); dlog.clear(); #endif // ZT_RULES_ENGINE_DEBUGGING thisSetMatches = 1; // reset to default true for next batch of entries continue; } } // Circuit breaker: no need to evaluate an AND if the set's match state // is currently false since anything AND false is false. if ((!thisSetMatches)&&(!(rules[rn].t & 0x40))) continue; // If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result]) uint8_t thisRuleMatches = 0; uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed switch(rt) { case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt()); FILTER_TRACE("%u %s %c %.10llx==%.10llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.zt,ztSource.toInt(),(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt()); FILTER_TRACE("%u %s %c %.10llx==%.10llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.zt,ztDest.toInt(),(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId); FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.vlanId,(unsigned int)vlanId,(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: // NOT SUPPORTED YET thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0); FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.vlanPcp,0,(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: // NOT SUPPORTED YET thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0); FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.vlanDei,0,(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac,6) == macSource); FILTER_TRACE("%u %s %c %.12llx=%.12llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.mac,macSource.toInt(),(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_MAC_DEST: thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac,6) == macDest); FILTER_TRACE("%u %s %c %.12llx=%.12llx -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),rules[rn].v.mac,macDest.toInt(),(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12),4,0))); FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).toString().c_str(),InetAddress((const void *)(frameData + 12),4,0).toIpString().c_str(),(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IPv4] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_IPV4_DEST: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16),4,0))); FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).toString().c_str(),InetAddress((const void *)(frameData + 16),4,0).toIpString().c_str(),(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IPv4] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8),16,0))); FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).toString().c_str(),InetAddress((const void *)(frameData + 8),16,0).toIpString().c_str(),(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_IPV6_DEST: if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24),16,0))); FILTER_TRACE("%u %s %c %s contains %s -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).toString().c_str(),InetAddress((const void *)(frameData + 24),16,0).toIpString().c_str(),(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_IP_TOS: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { //thisRuleMatches = (uint8_t)(rules[rn].v.ipTos == ((frameData[1] & 0xfc) >> 2)); const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask; thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1])); FILTER_TRACE("%u %s %c (IPv4) %u&%u==%u-%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)tosMasked,(unsigned int)rules[rn].v.ipTos.mask,(unsigned int)rules[rn].v.ipTos.value[0],(unsigned int)rules[rn].v.ipTos.value[1],(unsigned int)thisRuleMatches); } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { const uint8_t tosMasked = (((frameData[0] << 4) & 0xf0) | ((frameData[1] >> 4) & 0x0f)) & rules[rn].v.ipTos.mask; thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1])); FILTER_TRACE("%u %s %c (IPv4) %u&%u==%u-%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)tosMasked,(unsigned int)rules[rn].v.ipTos.mask,(unsigned int)rules[rn].v.ipTos.value[0],(unsigned int)rules[rn].v.ipTos.value[1],(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]); FILTER_TRACE("%u %s %c (IPv4) %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.ipProtocol,(unsigned int)frameData[9],(unsigned int)thisRuleMatches); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto); FILTER_TRACE("%u %s %c (IPv6) %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.ipProtocol,proto,(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [invalid IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType); FILTER_TRACE("%u %s %c %u==%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.etherType,etherType,(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_ICMP: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if (frameData[9] == 0x01) { // IP protocol == ICMP const unsigned int ihl = (frameData[0] & 0xf) * 4; if (frameLen >= (ihl + 2)) { if (rules[rn].v.icmp.type == frameData[ihl]) { if ((rules[rn].v.icmp.flags & 0x01) != 0) { thisRuleMatches = (uint8_t)(frameData[ihl+1] == rules[rn].v.icmp.code); } else { thisRuleMatches = 1; } } else { thisRuleMatches = 0; } FILTER_TRACE("%u %s %c (IPv4) icmp-type:%d==%d icmp-code:%d==%d -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(int)frameData[ihl],(int)rules[rn].v.icmp.type,(int)frameData[ihl+1],(((rules[rn].v.icmp.flags & 0x01) != 0) ? (int)rules[rn].v.icmp.code : -1),(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [IPv4 frame invalid] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not ICMP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if ((proto == 0x3a)&&(frameLen >= (pos+2))) { if (rules[rn].v.icmp.type == frameData[pos]) { if ((rules[rn].v.icmp.flags & 0x01) != 0) { thisRuleMatches = (uint8_t)(frameData[pos+1] == rules[rn].v.icmp.code); } else { thisRuleMatches = 1; } } else { thisRuleMatches = 0; } FILTER_TRACE("%u %s %c (IPv6) icmp-type:%d==%d icmp-code:%d==%d -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(int)frameData[pos],(int)rules[rn].v.icmp.type,(int)frameData[pos+1],(((rules[rn].v.icmp.flags & 0x01) != 0) ? (int)rules[rn].v.icmp.code : -1),(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not ICMPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [invalid IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { const unsigned int headerLen = 4 * (frameData[0] & 0xf); int p = -1; switch(frameData[9]) { // IP protocol number // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (headerLen + 4)) { unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0); p = (int)frameData[pos++] << 8; p |= (int)frameData[pos]; } break; } thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0; FILTER_TRACE("%u %s %c (IPv4) %d in %d-%d -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),p,(int)rules[rn].v.port[0],(int)rules[rn].v.port[1],(unsigned int)thisRuleMatches); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { int p = -1; switch(proto) { // IP protocol number // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (pos + 4)) { if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) pos += 2; p = (int)frameData[pos++] << 8; p |= (int)frameData[pos]; } break; } thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0; FILTER_TRACE("%u %s %c (IPv6) %d in %d-%d -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),p,(int)rules[rn].v.port[0],(int)rules[rn].v.port[1],(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [invalid IPv6] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c [frame not IP] -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: { uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL; if (macDest.isMulticast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST; if (macDest.isBroadcast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST; if (ownershipVerificationMask == 1) { ownershipVerificationMask = 0; InetAddress src; if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { src.set((const void *)(frameData + 12),4,0); } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { // IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local. if ( (frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87)||(frameData[40] == 0x88)) ) { if (frameData[40] == 0x87) { // Neighbor solicitations contain no reliable source address, so we implement a small // hack by considering them authenticated. Otherwise you would pretty much have to do // this manually in the rule set for IPv6 to work at all. ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; } else { // Neighbor advertisements on the other hand can absolutely be authenticated. src.set((const void *)(frameData + 40 + 8),16,0); } } else { // Other IPv6 packets can be handled normally src.set((const void *)(frameData + 8),16,0); } } else if ((etherType == ZT_ETHERTYPE_ARP)&&(frameLen >= 28)) { src.set((const void *)(frameData + 14),4,0); } if (inbound) { if (membership) { if ((src)&&(membership->hasCertificateOfOwnershipFor(nconf,src))) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; if (membership->hasCertificateOfOwnershipFor(nconf,macSource)) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED; } } else { for(unsigned int i=0;i= 20)&&(frameData[9] == 0x06)) { const unsigned int headerLen = 4 * (frameData[0] & 0xf); cf |= (uint64_t)frameData[headerLen + 13]; cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0f)) << 8); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0,proto = 0; if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if ((proto == 0x06)&&(frameLen > (pos + 14))) { cf |= (uint64_t)frameData[pos + 13]; cf |= (((uint64_t)(frameData[pos + 12] & 0x0f)) << 8); } } } thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0); FILTER_TRACE("%u %s %c (%.16llx | %.16llx)!=0 -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),cf,rules[rn].v.characteristics,(unsigned int)thisRuleMatches); } break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0])&&(frameLen <= (unsigned int)rules[rn].v.frameSize[1])); FILTER_TRACE("%u %s %c %u in %u-%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),frameLen,(unsigned int)rules[rn].v.frameSize[0],(unsigned int)rules[rn].v.frameSize[1],(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_RANDOM: thisRuleMatches = (uint8_t)((uint32_t)(RR->node->prng() & 0xffffffffULL) <= rules[rn].v.randomProbability); FILTER_TRACE("%u %s %c -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)thisRuleMatches); break; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: { const Tag *const localTag = std::lower_bound(&(nconf.tags[0]),&(nconf.tags[nconf.tagCount]),rules[rn].v.tag.id,Tag::IdComparePredicate()); if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) { const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0); if (remoteTag) { const uint32_t ltv = localTag->value(); const uint32_t rtv = remoteTag->value(); if (rt == ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE) { const uint32_t diff = (ltv > rtv) ? (ltv - rtv) : (rtv - ltv); thisRuleMatches = (uint8_t)(diff <= rules[rn].v.tag.value); FILTER_TRACE("%u %s %c TAG %u local:%u remote:%u difference:%u<=%u -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,ltv,rtv,diff,(unsigned int)rules[rn].v.tag.value,thisRuleMatches); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) { thisRuleMatches = (uint8_t)((ltv & rtv) == rules[rn].v.tag.value); FILTER_TRACE("%u %s %c TAG %u local:%.8x & remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,ltv,rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) { thisRuleMatches = (uint8_t)((ltv | rtv) == rules[rn].v.tag.value); FILTER_TRACE("%u %s %c TAG %u local:%.8x | remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,ltv,rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) { thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value); FILTER_TRACE("%u %s %c TAG %u local:%.8x ^ remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,ltv,rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) { thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value)&&(rtv == rules[rn].v.tag.value)); FILTER_TRACE("%u %s %c TAG %u local:%.8x and remote:%.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,ltv,rtv,(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches); } else { // sanity check, can't really happen thisRuleMatches = 0; } } else { if ((inbound)&&(!superAccept)) { thisRuleMatches = 0; FILTER_TRACE("%u %s %c remote tag %u not found -> 0 (inbound side is strict)",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id); } else { // Outbound side is not strict since if we have to match both tags and // we are sending a first packet to a recipient, we probably do not know // about their tags yet. They will filter on inbound and we will filter // once we get their tag. If we are a tee/redirect target we are also // not strict since we likely do not have these tags. thisRuleMatches = 1; FILTER_TRACE("%u %s %c remote tag %u not found -> 1 (outbound side and TEE/REDIRECT targets are not strict)",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id); } } } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c local tag %u not found -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id); } } break; case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: { if (superAccept) { thisRuleMatches = 1; FILTER_TRACE("%u %s %c we are a TEE/REDIRECT target -> 1",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '=')); } else if ( ((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER)&&(inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER)&&(!inbound)) ) { const Tag *const remoteTag = ((membership) ? membership->getTag(nconf,rules[rn].v.tag.id) : (const Tag *)0); if (remoteTag) { thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value); FILTER_TRACE("%u %s %c TAG %u %.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,remoteTag->value(),(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches); } else { if (rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) { // If we are checking the receiver and this is an outbound packet, we // can't be strict since we may not yet know the receiver's tag. thisRuleMatches = 1; FILTER_TRACE("%u %s %c (inbound) remote tag %u not found -> 1 (outbound receiver match is not strict)",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c (inbound) remote tag %u not found -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id); } } } else { // sender and outbound or receiver and inbound const Tag *const localTag = std::lower_bound(&(nconf.tags[0]),&(nconf.tags[nconf.tagCount]),rules[rn].v.tag.id,Tag::IdComparePredicate()); if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) { thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value); FILTER_TRACE("%u %s %c TAG %u %.8x == %.8x -> %u",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id,localTag->value(),(unsigned int)rules[rn].v.tag.value,(unsigned int)thisRuleMatches); } else { thisRuleMatches = 0; FILTER_TRACE("%u %s %c local tag %u not found -> 0",rn,_rtn(rt),(((rules[rn].t & 0x80) != 0) ? '!' : '='),(unsigned int)rules[rn].v.tag.id); } } } break; // The result of an unsupported MATCH is configurable at the network // level via a flag. default: thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0); break; } if ((rules[rn].t & 0x40)) thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1)); else thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7) & 1)); } return DOZTFILTER_NO_MATCH; } } // anonymous namespace const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL),0); Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,void *uptr,const NetworkConfig *nconf) : RR(renv), _uPtr(uptr), _id(nwid), _lastAnnouncedMulticastGroupsUpstream(0), _mac(renv->identity.address(),nwid), _portInitialized(false), _lastConfigUpdate(0), _destroyed(false), _netconfFailure(NETCONF_FAILURE_NONE), _portError(0) { for(int i=0;isetConfiguration(tPtr,*nconf,false); _lastConfigUpdate = 0; // still want to re-request since it's likely outdated } else { bool got = false; Dictionary *dict = new Dictionary(); try { int n = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,nwid,dict->unsafeData(),ZT_NETWORKCONFIG_DICT_CAPACITY - 1); if (n > 1) { NetworkConfig *nconf = new NetworkConfig(); try { if (nconf->fromDictionary(*dict)) { this->setConfiguration(tPtr,*nconf,false); _lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated got = true; } } catch ( ... ) {} delete nconf; } } catch ( ... ) {} delete dict; if (!got) RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,nwid,"\n",1); } if (!_portInitialized) { ZT_VirtualNetworkConfig ctmp; _externalConfig(&ctmp); _portError = RR->node->configureVirtualNetworkPort(tPtr,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP,&ctmp); _portInitialized = true; } } Network::~Network() { ZT_VirtualNetworkConfig ctmp; _externalConfig(&ctmp); if (_destroyed) { // This is done in Node::leave() so we can pass tPtr properly //RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp); } else { RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN,&ctmp); } } bool Network::filterOutgoingPacket( void *tPtr, const bool noTee, const Address &ztSource, const Address &ztDest, const MAC &macSource, const MAC &macDest, const uint8_t *frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId) { const uint64_t now = RR->node->now(); Address ztFinalDest(ztDest); int localCapabilityIndex = -1; bool accept = false; Mutex::Lock _l(_lock); Membership *const membership = (ztDest) ? _memberships.get(ztDest) : (Membership *)0; Address cc; unsigned int ccLength = 0; bool ccWatch = false; switch(_doZtFilter(RR,_config,membership,false,ztSource,ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.rules,_config.ruleCount,cc,ccLength,ccWatch)) { case DOZTFILTER_NO_MATCH: for(unsigned int c=0;c<_config.capabilityCount;++c) { ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match Address cc2; unsigned int ccLength2 = 0; bool ccWatch2 = false; switch (_doZtFilter(RR,_config,membership,false,ztSource,ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.capabilities[c].rules(),_config.capabilities[c].ruleCount(),cc2,ccLength2,ccWatch2)) { case DOZTFILTER_NO_MATCH: case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern break; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side localCapabilityIndex = (int)c; accept = true; if ((!noTee)&&(cc2)) { Membership &m2 = _membership(cc2); m2.pushCredentials(RR,tPtr,now,cc2,_config,localCapabilityIndex,false); Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch2 ? 0x16 : 0x02)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength2); outp.compress(); RR->sw->send(tPtr,outp,true); } break; } if (accept) break; } break; case DOZTFILTER_DROP: return false; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side accept = true; break; } if (accept) { if (membership) membership->pushCredentials(RR,tPtr,now,ztDest,_config,localCapabilityIndex,false); if ((!noTee)&&(cc)) { Membership &m2 = _membership(cc); m2.pushCredentials(RR,tPtr,now,cc,_config,localCapabilityIndex,false); Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch ? 0x16 : 0x02)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength); outp.compress(); RR->sw->send(tPtr,outp,true); } if ((ztDest != ztFinalDest)&&(ztFinalDest)) { Membership &m2 = _membership(ztFinalDest); m2.pushCredentials(RR,tPtr,now,ztFinalDest,_config,localCapabilityIndex,false); Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)0x04); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,frameLen); outp.compress(); RR->sw->send(tPtr,outp,true); return false; // DROP locally, since we redirected } else { return true; } } else { return false; } } int Network::filterIncomingPacket( void *tPtr, const SharedPtr &sourcePeer, const Address &ztDest, const MAC &macSource, const MAC &macDest, const uint8_t *frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId) { Address ztFinalDest(ztDest); int accept = 0; Mutex::Lock _l(_lock); Membership &membership = _membership(sourcePeer->address()); Address cc; unsigned int ccLength = 0; bool ccWatch = false; switch (_doZtFilter(RR,_config,&membership,true,sourcePeer->address(),ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,_config.rules,_config.ruleCount,cc,ccLength,ccWatch)) { case DOZTFILTER_NO_MATCH: { Membership::CapabilityIterator mci(membership,_config); const Capability *c; while ((c = mci.next())) { ztFinalDest = ztDest; // sanity check, should be unmodified if there was no match Address cc2; unsigned int ccLength2 = 0; bool ccWatch2 = false; switch(_doZtFilter(RR,_config,&membership,true,sourcePeer->address(),ztFinalDest,macSource,macDest,frameData,frameLen,etherType,vlanId,c->rules(),c->ruleCount(),cc2,ccLength2,ccWatch2)) { case DOZTFILTER_NO_MATCH: case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern break; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; // ACCEPT break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; // super-ACCEPT break; } if (accept) { if (cc2) { _membership(cc2).pushCredentials(RR,tPtr,RR->node->now(),cc2,_config,-1,false); Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch2 ? 0x1c : 0x08)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength2); outp.compress(); RR->sw->send(tPtr,outp,true); } break; } } } break; case DOZTFILTER_DROP: return 0; // DROP case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; // ACCEPT break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; // super-ACCEPT break; } if (accept) { if (cc) { _membership(cc).pushCredentials(RR,tPtr,RR->node->now(),cc,_config,-1,false); Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch ? 0x1c : 0x08)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength); outp.compress(); RR->sw->send(tPtr,outp,true); } if ((ztDest != ztFinalDest)&&(ztFinalDest)) { _membership(ztFinalDest).pushCredentials(RR,tPtr,RR->node->now(),ztFinalDest,_config,-1,false); Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)0x0a); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,frameLen); outp.compress(); RR->sw->send(tPtr,outp,true); return 0; // DROP locally, since we redirected } } return accept; } bool Network::subscribedToMulticastGroup(const MulticastGroup &mg,bool includeBridgedGroups) const { Mutex::Lock _l(_lock); if (std::binary_search(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg)) return true; else if (includeBridgedGroups) return _multicastGroupsBehindMe.contains(mg); return false; } void Network::multicastSubscribe(void *tPtr,const MulticastGroup &mg) { Mutex::Lock _l(_lock); if (!std::binary_search(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg)) { _myMulticastGroups.insert(std::upper_bound(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg),mg); _sendUpdatesToMembers(tPtr,&mg); } } void Network::multicastUnsubscribe(const MulticastGroup &mg) { Mutex::Lock _l(_lock); std::vector::iterator i(std::lower_bound(_myMulticastGroups.begin(),_myMulticastGroups.end(),mg)); if ( (i != _myMulticastGroups.end()) && (*i == mg) ) _myMulticastGroups.erase(i); } uint64_t Network::handleConfigChunk(void *tPtr,const uint64_t packetId,const Address &source,const Buffer &chunk,unsigned int ptr) { if (_destroyed) return 0; const unsigned int start = ptr; ptr += 8; // skip network ID, which is already obviously known const unsigned int chunkLen = chunk.at(ptr); ptr += 2; const void *chunkData = chunk.field(ptr,chunkLen); ptr += chunkLen; NetworkConfig *nc = (NetworkConfig *)0; uint64_t configUpdateId; { Mutex::Lock _l(_lock); _IncomingConfigChunk *c = (_IncomingConfigChunk *)0; uint64_t chunkId = 0; unsigned long totalLength,chunkIndex; if (ptr < chunk.size()) { const bool fastPropagate = ((chunk[ptr++] & 0x01) != 0); configUpdateId = chunk.at(ptr); ptr += 8; totalLength = chunk.at(ptr); ptr += 4; chunkIndex = chunk.at(ptr); ptr += 4; if (((chunkIndex + chunkLen) > totalLength)||(totalLength >= ZT_NETWORKCONFIG_DICT_CAPACITY)) { // >= since we need room for a null at the end TRACE("discarded chunk from %s: invalid length or length overflow",source.toString().c_str()); return 0; } if ((chunk[ptr] != 1)||(chunk.at(ptr + 1) != ZT_C25519_SIGNATURE_LEN)) { TRACE("discarded chunk from %s: unrecognized signature type",source.toString().c_str()); return 0; } const uint8_t *sig = reinterpret_cast(chunk.field(ptr + 3,ZT_C25519_SIGNATURE_LEN)); // We can use the signature, which is unique per chunk, to get a per-chunk ID for local deduplication use for(unsigned int i=0;i<16;++i) reinterpret_cast(&chunkId)[i & 7] ^= sig[i]; // Find existing or new slot for this update and check if this is a duplicate chunk for(int i=0;ihaveChunks;++j) { if (c->haveChunkIds[j] == chunkId) return 0; } break; } else if ((!c)||(_incomingConfigChunks[i].ts < c->ts)) { c = &(_incomingConfigChunks[i]); } } // If it's not a duplicate, check chunk signature const Identity controllerId(RR->topology->getIdentity(tPtr,controller())); if (!controllerId) { // we should always have the controller identity by now, otherwise how would we have queried it the first time? TRACE("unable to verify chunk from %s: don't have controller identity",source.toString().c_str()); return 0; } if (!controllerId.verify(chunk.field(start,ptr - start),ptr - start,sig,ZT_C25519_SIGNATURE_LEN)) { TRACE("discarded chunk from %s: signature check failed",source.toString().c_str()); return 0; } #ifdef ZT_ENABLE_CLUSTER if ((source)&&(RR->cluster)) RR->cluster->broadcastNetworkConfigChunk(chunk.field(start,chunk.size() - start),chunk.size() - start); #endif // New properly verified chunks can be flooded "virally" through the network if (fastPropagate) { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if ((*a != source)&&(*a != controller())) { Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CONFIG); outp.append(reinterpret_cast(chunk.data()) + start,chunk.size() - start); RR->sw->send(tPtr,outp,true); } } } } else if ((source == controller())||(!source)) { // since old chunks aren't signed, only accept from controller itself (or via cluster backplane) // Legacy support for OK(NETWORK_CONFIG_REQUEST) from older controllers chunkId = packetId; configUpdateId = chunkId; totalLength = chunkLen; chunkIndex = 0; if (totalLength >= ZT_NETWORKCONFIG_DICT_CAPACITY) return 0; for(int i=0;its)) c = &(_incomingConfigChunks[i]); } #ifdef ZT_ENABLE_CLUSTER if ((source)&&(RR->cluster)) RR->cluster->broadcastNetworkConfigChunk(chunk.field(start,chunk.size() - start),chunk.size() - start); #endif } else { TRACE("discarded single-chunk unsigned legacy config: this is only allowed if the sender is the controller itself"); return 0; } ++c->ts; // newer is higher, that's all we need if (c->updateId != configUpdateId) { c->updateId = configUpdateId; c->haveChunks = 0; c->haveBytes = 0; } if (c->haveChunks >= ZT_NETWORK_MAX_UPDATE_CHUNKS) return false; c->haveChunkIds[c->haveChunks++] = chunkId; memcpy(c->data.unsafeData() + chunkIndex,chunkData,chunkLen); c->haveBytes += chunkLen; if (c->haveBytes == totalLength) { c->data.unsafeData()[c->haveBytes] = (char)0; // ensure null terminated nc = new NetworkConfig(); try { if (!nc->fromDictionary(c->data)) { delete nc; nc = (NetworkConfig *)0; } } catch ( ... ) { delete nc; nc = (NetworkConfig *)0; } } } if (nc) { this->setConfiguration(tPtr,*nc,true); delete nc; return configUpdateId; } else { return 0; } return 0; } int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToDisk) { if (_destroyed) return 0; // _lock is NOT locked when this is called try { if ((nconf.issuedTo != RR->identity.address())||(nconf.networkId != _id)) return 0; // invalid config that is not for us or not for this network if (_config == nconf) return 1; // OK config, but duplicate of what we already have ZT_VirtualNetworkConfig ctmp; bool oldPortInitialized; { // do things that require lock here, but unlock before calling callbacks Mutex::Lock _l(_lock); _config = nconf; _lastConfigUpdate = RR->node->now(); _netconfFailure = NETCONF_FAILURE_NONE; oldPortInitialized = _portInitialized; _portInitialized = true; _externalConfig(&ctmp); Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) m->resetPushState(); } _portError = RR->node->configureVirtualNetworkPort(tPtr,_id,&_uPtr,(oldPortInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP,&ctmp); if (saveToDisk) { Dictionary *d = new Dictionary(); try { if (nconf.toDictionary(*d,false)) RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,_id,d->data(),d->sizeBytes()); } catch ( ... ) {} delete d; } return 2; // OK and configuration has changed } catch ( ... ) { TRACE("ignored invalid configuration for network %.16llx",(unsigned long long)_id); } return 0; } void Network::requestConfiguration(void *tPtr) { if (_destroyed) return; /* ZeroTier addresses can't begin with 0xff, so this is used to mark controllerless * network IDs. Controllerless network IDs only support unicast IPv6 using the 6plane * addressing scheme and have the following format: 0xffSSSSEEEE000000 where SSSS * is the 16-bit starting IP port range allowed and EEEE is the 16-bit ending IP port * range allowed. Remaining digits are reserved for future use and must be zero. */ if ((_id >> 56) == 0xff) { const uint16_t startPortRange = (uint16_t)((_id >> 40) & 0xffff); const uint16_t endPortRange = (uint16_t)((_id >> 24) & 0xffff); if (((_id & 0xffffff) == 0)&&(endPortRange >= startPortRange)) { NetworkConfig *const nconf = new NetworkConfig(); nconf->networkId = _id; nconf->timestamp = RR->node->now(); nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA; nconf->revision = 1; nconf->issuedTo = RR->identity.address(); nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION; nconf->mtu = ZT_DEFAULT_MTU; nconf->multicastLimit = 0; nconf->staticIpCount = 1; nconf->ruleCount = 14; nconf->staticIps[0] = InetAddress::makeIpv66plane(_id,RR->identity.address().toInt()); // Drop everything but IPv6 nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE | 0x80; // NOT nconf->rules[0].v.etherType = 0x86dd; // IPv6 nconf->rules[1].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP; // Allow ICMPv6 nconf->rules[2].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL; nconf->rules[2].v.ipProtocol = 0x3a; // ICMPv6 nconf->rules[3].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Allow destination ports within range nconf->rules[4].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL; nconf->rules[4].v.ipProtocol = 0x11; // UDP nconf->rules[5].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL | 0x40; // OR nconf->rules[5].v.ipProtocol = 0x06; // TCP nconf->rules[6].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE; nconf->rules[6].v.port[0] = startPortRange; nconf->rules[6].v.port[1] = endPortRange; nconf->rules[7].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Allow non-SYN TCP packets to permit non-connection-initiating traffic nconf->rules[8].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS | 0x80; // NOT nconf->rules[8].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN; nconf->rules[9].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Also allow SYN+ACK which are replies to SYN nconf->rules[10].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS; nconf->rules[10].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN; nconf->rules[11].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS; nconf->rules[11].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_ACK; nconf->rules[12].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; nconf->rules[13].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP; nconf->type = ZT_NETWORK_TYPE_PUBLIC; Utils::ztsnprintf(nconf->name,sizeof(nconf->name),"adhoc-%.04x-%.04x",(int)startPortRange,(int)endPortRange); this->setConfiguration(tPtr,*nconf,false); delete nconf; } else { this->setNotFound(); } return; } const Address ctrl(controller()); Dictionary rmd; rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION,(uint64_t)ZT_NETWORKCONFIG_VERSION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR,(uint64_t)ZT_VENDOR_ZEROTIER); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,(uint64_t)ZT_PROTO_VERSION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MAJOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MINOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,(uint64_t)ZEROTIER_ONE_VERSION_REVISION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES,(uint64_t)ZT_MAX_NETWORK_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES,(uint64_t)ZT_MAX_NETWORK_CAPABILITIES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES,(uint64_t)ZT_MAX_CAPABILITY_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS,(uint64_t)ZT_MAX_NETWORK_TAGS); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS,(uint64_t)0); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV,(uint64_t)ZT_RULES_ENGINE_REVISION); if (ctrl == RR->identity.address()) { if (RR->localNetworkController) { RR->localNetworkController->request(_id,InetAddress(),0xffffffffffffffffULL,RR->identity,rmd); } else { this->setNotFound(); } return; } TRACE("requesting netconf for network %.16llx from controller %s",(unsigned long long)_id,ctrl.toString().c_str()); Packet outp(ctrl,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append((uint64_t)_id); const unsigned int rmdSize = rmd.sizeBytes(); outp.append((uint16_t)rmdSize); outp.append((const void *)rmd.data(),rmdSize); if (_config) { outp.append((uint64_t)_config.revision); outp.append((uint64_t)_config.timestamp); } else { outp.append((unsigned char)0,16); } outp.compress(); RR->node->expectReplyTo(outp.packetId()); RR->sw->send(tPtr,outp,true); } bool Network::gate(void *tPtr,const SharedPtr &peer) { const uint64_t now = RR->node->now(); Mutex::Lock _l(_lock); try { if (_config) { Membership *m = _memberships.get(peer->address()); if ( (_config.isPublic()) || ((m)&&(m->isAllowedOnNetwork(_config))) ) { if (!m) m = &(_membership(peer->address())); if (m->multicastLikeGate(now)) { m->pushCredentials(RR,tPtr,now,peer->address(),_config,-1,false); _announceMulticastGroupsTo(tPtr,peer->address(),_allMulticastGroups()); } return true; } } } catch ( ... ) { TRACE("gate() check failed for peer %s: unexpected exception",peer->address().toString().c_str()); } return false; } void Network::clean() { const uint64_t now = RR->node->now(); Mutex::Lock _l(_lock); if (_destroyed) return; { Hashtable< MulticastGroup,uint64_t >::Iterator i(_multicastGroupsBehindMe); MulticastGroup *mg = (MulticastGroup *)0; uint64_t *ts = (uint64_t *)0; while (i.next(mg,ts)) { if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2)) _multicastGroupsBehindMe.erase(*mg); } } { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if (!RR->topology->getPeerNoCache(*a)) _memberships.erase(*a); else m->clean(now,_config); } } } void Network::learnBridgeRoute(const MAC &mac,const Address &addr) { Mutex::Lock _l(_lock); _remoteBridgeRoutes[mac] = addr; // Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes while (_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) { Hashtable< Address,unsigned long > counts; Address maxAddr; unsigned long maxCount = 0; MAC *m = (MAC *)0; Address *a = (Address *)0; // Find the address responsible for the most entries { Hashtable::Iterator i(_remoteBridgeRoutes); while (i.next(m,a)) { const unsigned long c = ++counts[*a]; if (c > maxCount) { maxCount = c; maxAddr = *a; } } } // Kill this address from our table, since it's most likely spamming us { Hashtable::Iterator i(_remoteBridgeRoutes); while (i.next(m,a)) { if (*a == maxAddr) _remoteBridgeRoutes.erase(*m); } } } } void Network::learnBridgedMulticastGroup(void *tPtr,const MulticastGroup &mg,uint64_t now) { Mutex::Lock _l(_lock); const unsigned long tmp = (unsigned long)_multicastGroupsBehindMe.size(); _multicastGroupsBehindMe.set(mg,now); if (tmp != _multicastGroupsBehindMe.size()) _sendUpdatesToMembers(tPtr,&mg); } Membership::AddCredentialResult Network::addCredential(void *tPtr,const CertificateOfMembership &com) { if (com.networkId() != _id) return Membership::ADD_REJECTED; const Address a(com.issuedTo()); Mutex::Lock _l(_lock); Membership &m = _membership(a); const Membership::AddCredentialResult result = m.addCredential(RR,tPtr,_config,com); if ((result == Membership::ADD_ACCEPTED_NEW)||(result == Membership::ADD_ACCEPTED_REDUNDANT)) { m.pushCredentials(RR,tPtr,RR->node->now(),a,_config,-1,false); RR->mc->addCredential(tPtr,com,true); } return result; } Membership::AddCredentialResult Network::addCredential(void *tPtr,const Address &sentFrom,const Revocation &rev) { if (rev.networkId() != _id) return Membership::ADD_REJECTED; Mutex::Lock _l(_lock); Membership &m = _membership(rev.target()); const Membership::AddCredentialResult result = m.addCredential(RR,tPtr,_config,rev); if ((result == Membership::ADD_ACCEPTED_NEW)&&(rev.fastPropagate())) { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if ((*a != sentFrom)&&(*a != rev.signer())) { Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); outp.append((uint8_t)0x00); // no COM outp.append((uint16_t)0); // no capabilities outp.append((uint16_t)0); // no tags outp.append((uint16_t)1); // one revocation! rev.serialize(outp); outp.append((uint16_t)0); // no certificates of ownership RR->sw->send(tPtr,outp,true); } } } return result; } void Network::destroy() { Mutex::Lock _l(_lock); _destroyed = true; } ZT_VirtualNetworkStatus Network::_status() const { // assumes _lock is locked if (_portError) return ZT_NETWORK_STATUS_PORT_ERROR; switch(_netconfFailure) { case NETCONF_FAILURE_ACCESS_DENIED: return ZT_NETWORK_STATUS_ACCESS_DENIED; case NETCONF_FAILURE_NOT_FOUND: return ZT_NETWORK_STATUS_NOT_FOUND; case NETCONF_FAILURE_NONE: return ((_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION); default: return ZT_NETWORK_STATUS_PORT_ERROR; } } void Network::_externalConfig(ZT_VirtualNetworkConfig *ec) const { // assumes _lock is locked ec->nwid = _id; ec->mac = _mac.toInt(); if (_config) Utils::scopy(ec->name,sizeof(ec->name),_config.name); else ec->name[0] = (char)0; ec->status = _status(); ec->type = (_config) ? (_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE; ec->mtu = (_config) ? _config.mtu : ZT_DEFAULT_MTU; ec->physicalMtu = ZT_UDP_DEFAULT_PAYLOAD_MTU - (ZT_PACKET_IDX_PAYLOAD + 16); ec->dhcp = 0; std::vector
ab(_config.activeBridges()); ec->bridge = ((_config.allowPassiveBridging())||(std::find(ab.begin(),ab.end(),RR->identity.address()) != ab.end())) ? 1 : 0; ec->broadcastEnabled = (_config) ? (_config.enableBroadcast() ? 1 : 0) : 0; ec->portError = _portError; ec->netconfRevision = (_config) ? (unsigned long)_config.revision : 0; ec->assignedAddressCount = 0; for(unsigned int i=0;iassignedAddresses[i]),&(_config.staticIps[i]),sizeof(struct sockaddr_storage)); ++ec->assignedAddressCount; } else { memset(&(ec->assignedAddresses[i]),0,sizeof(struct sockaddr_storage)); } } ec->routeCount = 0; for(unsigned int i=0;iroutes[i]),&(_config.routes[i]),sizeof(ZT_VirtualNetworkRoute)); ++ec->routeCount; } else { memset(&(ec->routes[i]),0,sizeof(ZT_VirtualNetworkRoute)); } } } void Network::_sendUpdatesToMembers(void *tPtr,const MulticastGroup *const newMulticastGroup) { // Assumes _lock is locked const uint64_t now = RR->node->now(); std::vector groups; if (newMulticastGroup) groups.push_back(*newMulticastGroup); else groups = _allMulticastGroups(); if ((newMulticastGroup)||((now - _lastAnnouncedMulticastGroupsUpstream) >= ZT_MULTICAST_ANNOUNCE_PERIOD)) { if (!newMulticastGroup) _lastAnnouncedMulticastGroupsUpstream = now; // Announce multicast groups to upstream peers (roots, etc.) and also send // them our COM so that MULTICAST_GATHER can be authenticated properly. const std::vector
upstreams(RR->topology->upstreamAddresses()); for(std::vector
::const_iterator a(upstreams.begin());a!=upstreams.end();++a) { if (_config.com) { Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); _config.com.serialize(outp); outp.append((uint8_t)0x00); outp.append((uint16_t)0); // no capabilities outp.append((uint16_t)0); // no tags outp.append((uint16_t)0); // no revocations outp.append((uint16_t)0); // no certificates of ownership RR->sw->send(tPtr,outp,true); } _announceMulticastGroupsTo(tPtr,*a,groups); } // Also announce to controller, and send COM to simplify and generalize behavior even though in theory it does not need it const Address c(controller()); if ( (std::find(upstreams.begin(),upstreams.end(),c) == upstreams.end()) && (!_memberships.contains(c)) ) { if (_config.com) { Packet outp(c,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); _config.com.serialize(outp); outp.append((uint8_t)0x00); outp.append((uint16_t)0); // no capabilities outp.append((uint16_t)0); // no tags outp.append((uint16_t)0); // no revocations outp.append((uint16_t)0); // no certificates of ownership RR->sw->send(tPtr,outp,true); } _announceMulticastGroupsTo(tPtr,c,groups); } } // Make sure that all "network anchors" have Membership records so we will // push multicasts to them. const std::vector
anchors(_config.anchors()); for(std::vector
::const_iterator a(anchors.begin());a!=anchors.end();++a) _membership(*a); // Send credentials and multicast LIKEs to members, upstreams, and controller { Address *a = (Address *)0; Membership *m = (Membership *)0; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { m->pushCredentials(RR,tPtr,now,*a,_config,-1,false); if ( ( m->multicastLikeGate(now) || (newMulticastGroup) ) && (m->isAllowedOnNetwork(_config)) ) _announceMulticastGroupsTo(tPtr,*a,groups); } } } void Network::_announceMulticastGroupsTo(void *tPtr,const Address &peer,const std::vector &allMulticastGroups) { // Assumes _lock is locked Packet outp(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE); for(std::vector::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) { if ((outp.size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) { outp.compress(); RR->sw->send(tPtr,outp,true); outp.reset(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE); } // network ID, MAC, ADI outp.append((uint64_t)_id); mg->mac().appendTo(outp); outp.append((uint32_t)mg->adi()); } if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH) { outp.compress(); RR->sw->send(tPtr,outp,true); } } std::vector Network::_allMulticastGroups() const { // Assumes _lock is locked std::vector mgs; mgs.reserve(_myMulticastGroups.size() + _multicastGroupsBehindMe.size() + 1); mgs.insert(mgs.end(),_myMulticastGroups.begin(),_myMulticastGroups.end()); _multicastGroupsBehindMe.appendKeys(mgs); if ((_config)&&(_config.enableBroadcast())) mgs.push_back(Network::BROADCAST); std::sort(mgs.begin(),mgs.end()); mgs.erase(std::unique(mgs.begin(),mgs.end()),mgs.end()); return mgs; } Membership &Network::_membership(const Address &a) { // assumes _lock is locked return _memberships[a]; } } // namespace ZeroTier