/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include #include #include #include #include #include "NetconEthernetTap.hpp" #include "../node/Utils.hpp" #include "../osdep/OSUtils.hpp" #include "../osdep/Phy.hpp" #include "Intercept.h" #include "LWIPStack.hpp" #include "lwip/tcp_impl.h" #include "netif/etharp.h" #include "lwip/api.h" #include "lwip/ip.h" #include "lwip/ip_addr.h" #include "lwip/ip_frag.h" #include "lwip/tcp.h" #include "common.inc.c" #include "RPC.h" #define APPLICATION_POLL_FREQ 50 #define ZT_LWIP_TCP_TIMER_INTERVAL 5 #define STATUS_TMR_INTERVAL 1000 // How often we check connection statuses (in ms) #define DEFAULT_BUF_SZ 1024 * 1024 * 2 namespace ZeroTier { // --------------------------------------------------------------------------- static err_t tapif_init(struct netif *netif) { // Actual init functionality is in addIp() of tap return ERR_OK; } /* * Outputs data from the pbuf queue to the interface */ static err_t low_level_output(struct netif *netif, struct pbuf *p) { struct pbuf *q; char buf[ZT_MAX_MTU+32]; char *bufptr; int totalLength = 0; ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state; bufptr = buf; // Copy data from each pbuf, one at a time for(q = p; q != NULL; q = q->next) { memcpy(bufptr, q->payload, q->len); bufptr += q->len; totalLength += q->len; } // [Send packet to network] // Split ethernet header and feed into handler struct eth_hdr *ethhdr; ethhdr = (struct eth_hdr *)buf; ZeroTier::MAC src_mac; ZeroTier::MAC dest_mac; src_mac.setTo(ethhdr->src.addr, 6); dest_mac.setTo(ethhdr->dest.addr, 6); tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac, Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),totalLength - sizeof(struct eth_hdr)); return ERR_OK; } /* * TCP connection administered by service */ class TcpConnection { public: bool listening; int pid, txsz, rxsz; PhySocket *rpcSock, *sock; struct tcp_pcb *pcb; struct sockaddr_storage *addr; unsigned char txbuf[DEFAULT_BUF_SZ]; unsigned char rxbuf[DEFAULT_BUF_SZ]; }; /* * A helper class for passing a reference to _phy to LWIP callbacks as a "state" */ class Larg { public: NetconEthernetTap *tap; TcpConnection *conn; Larg(NetconEthernetTap *_tap, TcpConnection *conn) : tap(_tap), conn(conn) {} }; // --------------------------------------------------------------------------- NetconEthernetTap::NetconEthernetTap( const char *homePath, const MAC &mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char *friendlyName, void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int), void *arg) : _nwid(nwid), _handler(handler), _arg(arg), _phy(this,false,true), _unixListenSocket((PhySocket *)0), _mac(mac), _homePath(homePath), _mtu(mtu), _enabled(true), _run(true) { char sockPath[4096],lwipPath[4096]; rpcCounter = -1; Utils::snprintf(sockPath,sizeof(sockPath),"%s%snc_%.16llx",homePath,ZT_PATH_SEPARATOR_S,_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid); _dev = sockPath; // in netcon mode, set device to be just the network ID Utils::snprintf(lwipPath,sizeof(lwipPath),"%s%sliblwip.so",homePath,ZT_PATH_SEPARATOR_S); lwipstack = new LWIPStack(lwipPath); if(!lwipstack) throw std::runtime_error("unable to dynamically load a new instance of liblwip.so (searched ZeroTier home path)"); lwipstack->lwip_init(); _unixListenSocket = _phy.unixListen(sockPath,(void *)this); dwr(MSG_INFO," NetconEthernetTap initialized!\n", _phy.getDescriptor(_unixListenSocket)); if (!_unixListenSocket) throw std::runtime_error(std::string("unable to bind to ")+sockPath); _thread = Thread::start(this); } NetconEthernetTap::~NetconEthernetTap() { _run = false; _phy.whack(); _phy.whack(); // TODO: Rationale? Thread::join(_thread); _phy.close(_unixListenSocket,false); delete lwipstack; } void NetconEthernetTap::setEnabled(bool en) { _enabled = en; } bool NetconEthernetTap::enabled() const { return _enabled; } bool NetconEthernetTap::addIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) { _ips.push_back(ip); std::sort(_ips.begin(),_ips.end()); if (ip.isV4()) { // Set IP static ip_addr_t ipaddr, netmask, gw; IP4_ADDR(&gw,192,168,0,1); ipaddr.addr = *((u32_t *)ip.rawIpData()); netmask.addr = *((u32_t *)ip.netmask().rawIpData()); // Set up the lwip-netif for LWIP's sake lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input); interface.state = this; interface.output = lwipstack->_etharp_output; _mac.copyTo(interface.hwaddr, 6); interface.mtu = _mtu; interface.name[0] = 't'; interface.name[1] = 'p'; interface.linkoutput = low_level_output; interface.hwaddr_len = 6; interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP; lwipstack->netif_set_default(&interface); lwipstack->netif_set_up(&interface); } } return true; } bool NetconEthernetTap::removeIp(const InetAddress &ip) { Mutex::Lock _l(_ips_m); std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip)); if (i == _ips.end()) return false; _ips.erase(i); if (ip.isV4()) { // TODO: dealloc from LWIP } return true; } std::vector NetconEthernetTap::ips() const { Mutex::Lock _l(_ips_m); return _ips; } void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len) { struct pbuf *p,*q; if (!_enabled) return; struct eth_hdr ethhdr; from.copyTo(ethhdr.src.addr, 6); to.copyTo(ethhdr.dest.addr, 6); ethhdr.type = Utils::hton((uint16_t)etherType); // We allocate a pbuf chain of pbufs from the pool. p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL); if (p != NULL) { const char *dataptr = reinterpret_cast(data); // First pbuf gets ethernet header at start q = p; if (q->len < sizeof(ethhdr)) { dwr(MSG_ERROR,"_put(): Dropped packet: first pbuf smaller than ethernet header\n"); return; } memcpy(q->payload,ðhdr,sizeof(ethhdr)); memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr)); dataptr += q->len - sizeof(ethhdr); // Remaining pbufs (if any) get rest of data while ((q = q->next)) { memcpy(q->payload,dataptr,q->len); dataptr += q->len; } } else { dwr(MSG_ERROR,"put(): Dropped packet: no pbufs available\n"); return; } { Mutex::Lock _l2(lwipstack->_lock); if(interface.input(p, &interface) != ERR_OK) { dwr(MSG_ERROR,"put(): Error while RXing packet (netif->input)\n"); } } } std::string NetconEthernetTap::deviceName() const { return _dev; } void NetconEthernetTap::setFriendlyName(const char *friendlyName) { } void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed) { std::vector newGroups; Mutex::Lock _l(_multicastGroups_m); // TODO: get multicast subscriptions from LWIP std::vector allIps(ips()); for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(),newGroups.end()); std::unique(newGroups.begin(),newGroups.end()); for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) { if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m)) added.push_back(*m); } for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) { if (!std::binary_search(newGroups.begin(),newGroups.end(),*m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void NetconEthernetTap::threadMain() throw() { uint64_t prev_tcp_time = 0, prev_status_time = 0, prev_etharp_time = 0; // Main timer loop while (_run) { uint64_t now = OSUtils::now(); uint64_t since_tcp = now - prev_tcp_time; uint64_t since_etharp = now - prev_etharp_time; uint64_t since_status = now - prev_status_time; uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL; uint64_t etharp_remaining = ARP_TMR_INTERVAL; uint64_t status_remaining = STATUS_TMR_INTERVAL; // Connection prunning if (since_status >= STATUS_TMR_INTERVAL) { prev_status_time = now; status_remaining = STATUS_TMR_INTERVAL - since_status; for(size_t i=0;i<_TcpConnections.size();++i) { if(!_TcpConnections[i]->sock) continue; // Skip, this is a pending connection int fd = _phy.getDescriptor(_TcpConnections[i]->sock); dwr(MSG_DEBUG," tap_thread(): tcp\\jobs = {%d, %d}\n", _TcpConnections.size(), jobmap.size()); fcntl(fd, F_SETFL, O_NONBLOCK); unsigned char tmpbuf[BUF_SZ]; int n = read(fd,&tmpbuf,BUF_SZ); if(_TcpConnections[i]->pcb->state == SYN_SENT) { dwr(MSG_DEBUG_EXTRA," tap_thread(): <%x> state = SYN_SENT, should finish or be removed soon\n", _TcpConnections[i]->sock); } if((n < 0 && errno != EAGAIN) || (n == 0 && errno == EAGAIN)) { dwr(MSG_DEBUG," tap_thread(): closing sock (%x)\n", _TcpConnections[i]->sock); closeConnection(_TcpConnections[i]->sock); } else if (n > 0) { dwr(MSG_DEBUG," tap_thread(): data read during connection check (%d bytes)\n", n); phyOnUnixData(_TcpConnections[i]->sock,_phy.getuptr(_TcpConnections[i]->sock),&tmpbuf,BUF_SZ); } } } // Main TCP/ETHARP timer section if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) { prev_tcp_time = now; lwipstack->tcp_tmr(); // Makeshift poll for(size_t i=0;i<_TcpConnections.size();++i) { if(_TcpConnections[i]->txsz > 0){ lwipstack->_lock.lock(); handleWrite(_TcpConnections[i]); lwipstack->_lock.unlock(); } } } else { tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp; } if (since_etharp >= ARP_TMR_INTERVAL) { prev_etharp_time = now; lwipstack->etharp_tmr(); } else { etharp_remaining = ARP_TMR_INTERVAL - since_etharp; } _phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining)); } dlclose(lwipstack->_libref); } // Unused -- no UDP or TCP from this thread/Phy<> void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {} void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {} void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {} void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {} void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {} TcpConnection *NetconEthernetTap::getConnection(PhySocket *sock) { Mutex::Lock _l(_tcpconns_m); for(size_t i=0;i<_TcpConnections.size();++i) { if(_TcpConnections[i]->sock == sock) return _TcpConnections[i]; } return NULL; } TcpConnection *NetconEthernetTap::addConnection(TcpConnection *conn) { Mutex::Lock _l(_tcpconns_m); _TcpConnections.push_back(conn); return conn; } void NetconEthernetTap::removeConnection(TcpConnection *conn) { Mutex::Lock _l(_tcpconns_m); for(size_t i=0;i<_TcpConnections.size();++i) { if(_TcpConnections[i] == conn){ _TcpConnections.erase(_TcpConnections.begin() + i); return; } } } void NetconEthernetTap::closeConnection(PhySocket *sock) { dwr(MSG_DEBUG,"closeConnection(%x)\n",sock); if(!sock) { dwr(MSG_DEBUG," closeConnection(): invalid PhySocket\n"); return; } TcpConnection *conn = getConnection(sock); if(!conn) return; else removeConnection(conn); if(!conn->pcb) return; if(conn->pcb->state == SYN_SENT) { dwr(MSG_DEBUG," closeConnection(): invalid PCB state (SYN_SENT) -- cannot close right now\n"); return; } dwr(MSG_DEBUG," closeConnection(): PCB->state = %d\n", conn->pcb->state); if(lwipstack->_tcp_close(conn->pcb) != ERR_OK) { dwr(MSG_ERROR," closeConnection(): Error while calling tcp_close()\n"); } if(!sock) return; close(_phy.getDescriptor(sock)); _phy.close(sock, false); } void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) { closeConnection(sock); } void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) { // Currently unused since phyOnUnixData() handles everything now } void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) { dwr(MSG_DEBUG,"\nphyOnUnixAccept(): new connection = %x\n", sockN); } void NetconEthernetTap::phyOnUnixWritable(PhySocket *sock,void **uptr) { TcpConnection *conn = getConnection(sock); Mutex::Lock _l(_rx_buf_m); int len = conn->rxsz; int n = _phy.streamSend(conn->sock, conn->rxbuf, len); if(n > 0) { if(n < len) { dwr(MSG_ERROR,"\n phyOnUnixWritable(): unable to write entire \"block\" to stream\n"); } if(len-n) memcpy(conn->rxbuf, conn->rxbuf+n, len-n); conn->rxsz -= n; float max = (float)DEFAULT_BUF_SZ; dwr(MSG_TRANSFER," <--- RX :: { TX: %.3f%% | RX: %.3f%% } :: %d bytes\n", (float)conn->txsz / max, (float)conn->rxsz / max, n); lwipstack->_tcp_recved(conn->pcb, n); if(conn->rxsz == 0){ _phy.setNotifyWritable(conn->sock, false); // Nothing more to be notified about } } else { perror("\n"); dwr(MSG_ERROR, "errno = %d\n", errno); dwr(MSG_ERROR," phyOnUnixWritable(): No data written to stream <%x>\n", conn->sock); } } void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) { uint64_t CANARY_num; pid_t pid, tid; int rpcCount, wlen = len; char cmd, timestamp[20], CANARY[CANARY_SZ], padding[] = {PADDING}; void *payload; unsigned char *buf = (unsigned char*)data; std::pair sockdata; PhySocket *rpcSock; bool foundJob = false, detected_rpc = false; TcpConnection *conn; // RPC char phrase[RPC_PHRASE_SZ]; memset(phrase, 0, RPC_PHRASE_SZ); if(len == BUF_SZ) { memcpy(phrase, buf, RPC_PHRASE_SZ); if(strcmp(phrase, RPC_PHRASE) == 0) detected_rpc = true; } if(detected_rpc) { unloadRPC(data, pid, tid, rpcCount, timestamp, CANARY, cmd, payload); memcpy(&CANARY_num, CANARY, CANARY_SZ); dwr(MSG_DEBUG," <%x> RPC: (pid=%d, tid=%d, rpcCount=%d, timestamp=%s, cmd=%d)\n", sock, pid, tid, rpcCount, timestamp, cmd); if(cmd == RPC_SOCKET) { dwr(MSG_DEBUG," <%x> RPC_SOCKET\n", sock); // Create new lwip socket and associate it with this sock struct socket_st socket_rpc; memcpy(&socket_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct socket_st)); TcpConnection * new_conn; if((new_conn = handleSocket(sock, uptr, &socket_rpc))) { new_conn->pid = pid; // Merely kept to look up application path/names later, not strictly necessary } } else { jobmap[CANARY_num] = std::make_pair(sock, data); } write(_phy.getDescriptor(sock), "z", 1); // RPC ACK byte to maintain order } // STREAM else { int data_start = -1, data_end = -1, canary_pos = -1, padding_pos = -1; // Look for padding std::string padding_pattern(padding, padding+PADDING_SZ); std::string buffer(buf, buf + len); padding_pos = buffer.find(padding_pattern); canary_pos = padding_pos-CANARY_SZ; // Grab token, next we'll use it to look up an RPC job if(canary_pos > -1) { memcpy(&CANARY_num, buf+canary_pos, CANARY_SZ); if(CANARY_num != 0) { // TODO: Added to address CANARY_num==0 bug, last seeen 20160108 // Find job sockdata = jobmap[CANARY_num]; if(!sockdata.first) { // Stream before RPC dwr(MSG_DEBUG," <%x> unable to locate job entry for %llu\n", sock, CANARY_num); return; } else foundJob = true; } } conn = getConnection(sock); if(!conn) return; if(padding_pos == -1) { // [DATA] memcpy(&conn->txbuf[conn->txsz], buf, wlen); } else { // Padding found, implies a canary is present // [CANARY] if(len == CANARY_SZ+PADDING_SZ && canary_pos == 0) { wlen = 0; // Nothing to write } else { // [CANARY] + [DATA] if(len > CANARY_SZ+PADDING_SZ && canary_pos == 0) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = padding_pos+PADDING_SZ; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen); } // [CANARY] + [TOKEN] if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && canary_pos == len - CANARY_SZ+PADDING_SZ) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = 0; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen); } // [CANARY] + [TOKEN] + [DATA] if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && len > (canary_pos + CANARY_SZ+PADDING_SZ)) { wlen = len - CANARY_SZ+PADDING_SZ; data_start = 0; data_end = padding_pos-CANARY_SZ; memcpy((&conn->txbuf)+conn->txsz, buf+data_start, (data_end-data_start)+1); memcpy((&conn->txbuf)+conn->txsz, buf+(padding_pos+PADDING_SZ), len-(canary_pos+CANARY_SZ+PADDING_SZ)); } } } // Write data from stream if(conn->txsz > (DEFAULT_BUF_SZ / 2)) { _phy.setNotifyReadable(sock, false); } lwipstack->_lock.lock(); conn->txsz += wlen; handleWrite(conn); lwipstack->_lock.unlock(); } if(foundJob) { rpcSock = sockdata.first; buf = (unsigned char*)sockdata.second; } // Process RPC if we have a corresponding jobmap entry if(foundJob) { unloadRPC(buf, pid, tid, rpcCount, timestamp, CANARY, cmd, payload); dwr(MSG_DEBUG," <%x> RPC: (pid=%d, tid=%d, rpcCount=%d, timestamp=%s, cmd=%d)\n", sock, pid, tid, rpcCount, timestamp, cmd); switch(cmd) { case RPC_BIND: dwr(MSG_DEBUG," <%x> RPC_BIND\n", sock); struct bind_st bind_rpc; memcpy(&bind_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct bind_st)); handleBind(sock, rpcSock, uptr, &bind_rpc); break; case RPC_LISTEN: dwr(MSG_DEBUG," <%x> RPC_LISTEN\n", sock); struct listen_st listen_rpc; memcpy(&listen_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct listen_st)); handleListen(sock, rpcSock, uptr, &listen_rpc); break; case RPC_GETSOCKNAME: dwr(MSG_DEBUG," <%x> RPC_GETSOCKNAME\n", sock); struct getsockname_st getsockname_rpc; memcpy(&getsockname_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st)); handleGetsockname(sock, rpcSock, uptr, &getsockname_rpc); break; case RPC_CONNECT: dwr(MSG_DEBUG," <%x> RPC_CONNECT\n", sock); struct connect_st connect_rpc; memcpy(&connect_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct connect_st)); handleConnect(sock, rpcSock, conn, &connect_rpc); jobmap.erase(CANARY_num); return; // Keep open RPC, we'll use it once in nc_connected to send retval default: break; } closeConnection(sockdata.first); // close RPC after sending retval, no longer needed jobmap.erase(CANARY_num); return; } } int NetconEthernetTap::sendReturnValue(PhySocket *sock, int retval, int _errno = 0){ return sendReturnValue(_phy.getDescriptor(sock), retval, _errno); } int NetconEthernetTap::sendReturnValue(int fd, int retval, int _errno = 0) { dwr(MSG_DEBUG," sendReturnValue(): fd = %d, retval = %d, errno = %d\n", fd, retval, _errno); int sz = sizeof(char) + sizeof(retval) + sizeof(errno); char retmsg[sz]; memset(&retmsg, 0, sizeof(retmsg)); retmsg[0]=RPC_RETVAL; memcpy(&retmsg[1], &retval, sizeof(retval)); memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno)); return write(fd, &retmsg, sz); } void NetconEthernetTap::unloadRPC(void *data, pid_t &pid, pid_t &tid, int &rpcCount, char (timestamp[RPC_TIMESTAMP_SZ]), char (CANARY[sizeof(uint64_t)]), char &cmd, void* &payload) { unsigned char *buf = (unsigned char*)data; memcpy(&pid, &buf[IDX_PID], sizeof(pid_t)); memcpy(&tid, &buf[IDX_TID], sizeof(pid_t)); memcpy(&rpcCount, &buf[IDX_COUNT], sizeof(int)); memcpy(timestamp, &buf[IDX_TIME], RPC_TIMESTAMP_SZ); memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char)); memcpy(CANARY, &buf[IDX_PAYLOAD+1], CANARY_SZ); } /*------------------------------------------------------------------------------ --------------------------------- LWIP callbacks ------------------------------- ------------------------------------------------------------------------------*/ err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err) { Larg *l = (Larg*)arg; TcpConnection *conn = l->conn; NetconEthernetTap *tap = l->tap; if(!conn->sock) return -1; int fd = tap->_phy.getDescriptor(conn->sock); if(conn) { // create new socketpair ZT_PHY_SOCKFD_TYPE fds[2]; if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) { if(errno < 0) { l->tap->sendReturnValue(conn, -1, errno); dwr(MSG_ERROR," nc_accept(): unable to create socketpair\n"); return ERR_MEM; } } // create and populate new TcpConnection TcpConnection *newTcpConn = new TcpConnection(); tap->addConnection(newTcpConn); newTcpConn->pcb = newPCB; newTcpConn->sock = tap->_phy.wrapSocket(fds[0], newTcpConn); if(sock_fd_write(fd, fds[1]) < 0) return -1; else { //close(fds[1]); // close other end of socketpair } tap->lwipstack->_tcp_arg(newPCB, new Larg(tap, newTcpConn)); tap->lwipstack->_tcp_recv(newPCB, nc_recved); tap->lwipstack->_tcp_err(newPCB, nc_err); tap->lwipstack->_tcp_sent(newPCB, nc_sent); tap->lwipstack->_tcp_poll(newPCB, nc_poll, 1); if(conn->pcb->state == LISTEN) { dwr(MSG_DEBUG," nc_accept(): can't call tcp_accept() on LISTEN socket (pcb = %x)\n", conn->pcb); return ERR_OK; // TODO: Verify this is correct } tcp_accepted(conn->pcb); // Let lwIP know that it can queue additional incoming connections return ERR_OK; } else dwr(MSG_ERROR," nc_accept(%d): can't locate Connection object for PCB.\n", fd); return -1; } err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err) { Larg *l = (Larg*)arg; int tot = 0; struct pbuf* q = p; if(!l->conn) { dwr(MSG_ERROR," nc_recved(): no connection\n"); return ERR_OK; } if(p == NULL) { if(l->conn && !l->conn->listening) { dwr(MSG_INFO," nc_recved(): closing connection\n"); if(l->tap->lwipstack->_tcp_close(l->conn->pcb) != ERR_OK) { dwr(MSG_ERROR," nc_recved(): error while calling tcp_close()\n"); } l->tap->closeConnection(l->conn->sock); return ERR_ABRT; } return err; } Mutex::Lock _l(l->tap->_rx_buf_m); // Cycle through pbufs and write them to the RX buffer // The RX buffer will be emptied via phyOnUnixWritable() while(p != NULL) { if(p->len <= 0) break; int avail = DEFAULT_BUF_SZ - l->conn->rxsz; int len = p->len; if(avail < len) dwr(MSG_ERROR," nc_recved(): not enough room (%d bytes) on RX buffer\n", avail); memcpy(l->conn->rxbuf + (l->conn->rxsz), p->payload, len); l->conn->rxsz += len; p = p->next; tot += len; } if(tot) l->tap->_phy.setNotifyWritable(l->conn->sock, true); // Signal that we're interested in knowing when we can write l->tap->lwipstack->_pbuf_free(q); return ERR_OK; } void NetconEthernetTap::nc_err(void *arg, err_t err) { dwr(MSG_DEBUG,"nc_err() = %d\n", err); Larg *l = (Larg*)arg; if(!l->conn) dwr(MSG_ERROR,"nc_err(): connection is NULL!\n"); int fd = l->tap->_phy.getDescriptor(l->conn->sock); switch(err) { case ERR_MEM: dwr(MSG_ERROR,"nc_err(): ERR_MEM->ENOMEM\n"); l->tap->sendReturnValue(fd, -1, ENOMEM); break; case ERR_BUF: dwr(MSG_ERROR,"nc_err(): ERR_BUF->ENOBUFS\n"); l->tap->sendReturnValue(fd, -1, ENOBUFS); break; case ERR_TIMEOUT: dwr(MSG_ERROR,"nc_err(): ERR_TIMEOUT->ETIMEDOUT\n"); l->tap->sendReturnValue(fd, -1, ETIMEDOUT); break; case ERR_RTE: dwr(MSG_ERROR,"nc_err(): ERR_RTE->ENETUNREACH\n"); l->tap->sendReturnValue(fd, -1, ENETUNREACH); break; case ERR_INPROGRESS: dwr(MSG_ERROR,"nc_err(): ERR_INPROGRESS->EINPROGRESS\n"); l->tap->sendReturnValue(fd, -1, EINPROGRESS); break; case ERR_VAL: dwr(MSG_ERROR,"nc_err(): ERR_VAL->EINVAL\n"); l->tap->sendReturnValue(fd, -1, EINVAL); break; case ERR_WOULDBLOCK: dwr(MSG_ERROR,"nc_err(): ERR_WOULDBLOCK->EWOULDBLOCK\n"); l->tap->sendReturnValue(fd, -1, EWOULDBLOCK); break; case ERR_USE: dwr(MSG_ERROR,"nc_err(): ERR_USE->EADDRINUSE\n"); l->tap->sendReturnValue(fd, -1, EADDRINUSE); break; case ERR_ISCONN: dwr(MSG_ERROR,"nc_err(): ERR_ISCONN->EISCONN\n"); l->tap->sendReturnValue(fd, -1, EISCONN); break; case ERR_ABRT: dwr(MSG_ERROR,"nc_err(): ERR_ABRT->ECONNREFUSED\n"); l->tap->sendReturnValue(fd, -1, ECONNREFUSED); break; // FIXME: Below are errors which don't have a standard errno correlate case ERR_RST: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_CLSD: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_CONN: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_ARG: l->tap->sendReturnValue(fd, -1, -1); break; case ERR_IF: l->tap->sendReturnValue(fd, -1, -1); break; default: break; } dwr(MSG_ERROR,"nc_err(): closing connection\n"); l->tap->closeConnection(l->conn); } err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *PCB) { return ERR_OK; } err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *PCB, u16_t len) { Larg *l = (Larg*)arg; if(len) { float max = (float)DEFAULT_BUF_SZ; if(l->conn->txsz < max / 2) { l->tap->_phy.setNotifyReadable(l->conn->sock, true); l->tap->_phy.whack(); } } return ERR_OK; } err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *PCB, err_t err) { Larg *l = (Larg*)arg; l->tap->sendReturnValue(l->tap->_phy.getDescriptor(l->conn->rpcSock), ERR_OK); return ERR_OK; } /*------------------------------------------------------------------------------ ----------------------------- RPC Handler functions ---------------------------- ------------------------------------------------------------------------------*/ void NetconEthernetTap::handleGetsockname(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc) { TcpConnection *conn = getConnection(sock); char retmsg[sizeof(struct sockaddr_storage)]; memset(&retmsg, 0, sizeof(retmsg)); if ((conn)&&(conn->addr)) memcpy(&retmsg, conn->addr, sizeof(struct sockaddr_storage)); write(_phy.getDescriptor(rpcSock), &retmsg, sizeof(struct sockaddr_storage)); } void NetconEthernetTap::handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc) { struct sockaddr_in *rawAddr = (struct sockaddr_in *) &bind_rpc->addr; int port = lwipstack->ntohs(rawAddr->sin_port); ip_addr_t connAddr; connAddr.addr = *((u32_t *)_ips[0].rawIpData()); TcpConnection *conn = getConnection(sock); dwr(MSG_DEBUG," handleBind(%d)\n", bind_rpc->sockfd); if(conn) { if(conn->pcb->state == CLOSED){ int err = lwipstack->tcp_bind(conn->pcb, &connAddr, port); int ip = rawAddr->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; dwr(MSG_DEBUG," handleBind(): %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], port); if(err != ERR_OK) { dwr(MSG_ERROR," handleBind(): err = %d\n", err); if(err == ERR_USE) sendReturnValue(rpcSock, -1, EADDRINUSE); if(err == ERR_MEM) sendReturnValue(rpcSock, -1, ENOMEM); if(err == ERR_BUF) sendReturnValue(rpcSock, -1, ENOMEM); } else { conn->addr = (struct sockaddr_storage *) &bind_rpc->addr; sendReturnValue(rpcSock, ERR_OK, ERR_OK); // Success } } else { dwr(MSG_ERROR," handleBind(): PCB (%x) not in CLOSED state. Ignoring BIND request.\n", conn->pcb); sendReturnValue(rpcSock, -1, EINVAL); } } else { dwr(MSG_ERROR," handleBind(): can't locate connection for PCB\n"); sendReturnValue(rpcSock, -1, EBADF); } } void NetconEthernetTap::handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc) { TcpConnection *conn = getConnection(sock); if(!conn){ dwr(MSG_ERROR," handleListen(): unable to locate connection object\n"); sendReturnValue(rpcSock, -1, EBADF); return; } if(conn->pcb->state == LISTEN) { dwr(MSG_ERROR," handleListen(): PCB is already in listening state.\n"); sendReturnValue(rpcSock, ERR_OK, ERR_OK); return; } struct tcp_pcb* listeningPCB; #ifdef TCP_LISTEN_BACKLOG listeningPCB = lwipstack->tcp_listen_with_backlog(conn->pcb, listen_rpc->backlog); #else listeningPCB = lwipstack->tcp_listen(conn->pcb); #endif if(listeningPCB != NULL) { conn->pcb = listeningPCB; lwipstack->tcp_accept(listeningPCB, nc_accept); lwipstack->tcp_arg(listeningPCB, new Larg(this, conn)); /* we need to wait for the client to send us the fd allocated on their end for this listening socket */ fcntl(_phy.getDescriptor(conn->sock), F_SETFL, O_NONBLOCK); conn->listening = true; sendReturnValue(rpcSock, ERR_OK, ERR_OK); return; } sendReturnValue(rpcSock, -1, -1); } TcpConnection * NetconEthernetTap::handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc) { struct tcp_pcb *newPCB = lwipstack->tcp_new(); if(newPCB != NULL) { TcpConnection *newConn = new TcpConnection(); *uptr = newConn; newConn->sock = sock; newConn->pcb = newPCB; return addConnection(newConn);; } dwr(MSG_ERROR," handleSocket(): Memory not available for new PCB\n"); sendReturnValue(_phy.getDescriptor(sock), -1, ENOMEM); return NULL; } void NetconEthernetTap::handleConnect(PhySocket *sock, PhySocket *rpcSock, TcpConnection *conn, struct connect_st* connect_rpc) { struct sockaddr_in *rawAddr = (struct sockaddr_in *) &connect_rpc->__addr; int port = lwipstack->ntohs(rawAddr->sin_port); ip_addr_t connAddr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr); if(conn != NULL) { lwipstack->tcp_sent(conn->pcb, nc_sent); lwipstack->tcp_recv(conn->pcb, nc_recved); lwipstack->tcp_err(conn->pcb, nc_err); lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ); lwipstack->tcp_arg(conn->pcb, new Larg(this, conn)); int err = 0, ip = rawAddr->sin_addr.s_addr; unsigned char d[4]; d[0] = ip & 0xFF; d[1] = (ip >> 8) & 0xFF; d[2] = (ip >> 16) & 0xFF; d[3] = (ip >> 24) & 0xFF; dwr(MSG_DEBUG," handleConnect(): %d.%d.%d.%d: %d\n", d[0],d[1],d[2],d[3], port); dwr(MSG_DEBUG," handleConnect(): pcb->state = %x\n", conn->pcb->state); if(conn->pcb->state != CLOSED) { dwr(MSG_DEBUG," handleConnect(): PCB != CLOSED, cannot connect using this PCB\n"); sendReturnValue(rpcSock, -1, EAGAIN); return; } if((err = lwipstack->tcp_connect(conn->pcb,&connAddr,port,nc_connected)) < 0) { if(err == ERR_ISCONN) { sendReturnValue(rpcSock, -1, EISCONN); // Already in connected state return; } if(err == ERR_USE) { sendReturnValue(rpcSock, -1, EADDRINUSE); // Already in use return; } if(err == ERR_VAL) { sendReturnValue(rpcSock, -1, EINVAL); // Invalid ipaddress parameter return; } if(err == ERR_RTE) { sendReturnValue(rpcSock, -1, ENETUNREACH); // No route to host return; } if(err == ERR_BUF) { sendReturnValue(rpcSock, -1, EAGAIN); // No more ports available return; } if(err == ERR_MEM) { /* Can occur for the following reasons: tcp_enqueue_flags() 1) tcp_enqueue_flags is always called with either SYN or FIN in flags. We need one available snd_buf byte to do that. This means we can't send FIN while snd_buf==0. A better fix would be to not include SYN and FIN sequence numbers in the snd_buf count. 2) Cannot allocate new pbuf 3) Cannot allocate new TCP segment */ sendReturnValue(rpcSock, -1, EAGAIN); // FIXME: Doesn't describe the problem well, but closest match return; } // We should only return a value if failure happens immediately // Otherwise, we still need to wait for a callback from lwIP. // - This is because an ERR_OK from tcp_connect() only verifies // that the SYN packet was enqueued onto the stack properly, // that's it! // - Most instances of a retval for a connect() should happen // in the nc_connect() and nc_err() callbacks! dwr(MSG_ERROR," handleConnect(): unable to connect\n"); sendReturnValue(rpcSock, -1, EAGAIN); } // Everything seems to be ok, but we don't have enough info to retval conn->listening=true; conn->rpcSock=rpcSock; // used for return value from lwip CB } else { dwr(MSG_ERROR," handleConnect(): could not locate PCB based on their fd\n"); sendReturnValue(rpcSock, -1, EBADF); } } void NetconEthernetTap::handleWrite(TcpConnection *conn) { if(!conn || !conn->pcb) { dwr(MSG_ERROR," handleWrite(): invalid connection/PCB\n"); return; } // How much we are currently allowed to write to the connection int err, sz, r, sndbuf = conn->pcb->snd_buf; if(sndbuf == 0) { /* PCB send buffer is full,turn off readability notifications for the corresponding PhySocket until nc_sent() is called and confirms that there is now space on the buffer */ dwr(MSG_DEBUG," handleWrite(): sndbuf == 0, LWIP stack is full\n"); _phy.setNotifyReadable(conn->sock, false); return; } if(conn->txsz <= 0) { dwr(MSG_DEBUG,"handleWrite(): conn->txsz <= 0, nothing in buffer to write\n"); return; } if(!conn->listening) lwipstack->_tcp_output(conn->pcb); if(conn->sock) { r = conn->txsz < sndbuf ? conn->txsz : sndbuf; /* Writes data pulled from the client's socket buffer to LWIP. This merely sends the * data to LWIP to be enqueued and eventually sent to the network. */ if(r > 0) { err = lwipstack->_tcp_write(conn->pcb, &conn->txbuf, r, TCP_WRITE_FLAG_COPY); lwipstack->_tcp_output(conn->pcb); if(err != ERR_OK) { dwr(MSG_ERROR," handleWrite(): error while writing to PCB, (err = %d)\n", err); if(err == -1) dwr(MSG_DEBUG," handleWrite(): possibly out of memory\n"); return; } else { sz = (conn->txsz)-r; if(sz) memmove(&conn->txbuf, (conn->txbuf+r), sz); conn->txsz -= r; float max = (float)DEFAULT_BUF_SZ; dwr(MSG_TRANSFER," TX ---> :: { TX: %.3f%% | RX: %.3f%% } :: %d bytes\n", (float)conn->txsz / max, (float)conn->rxsz / max, r); return; } } } } } // namespace ZeroTier