/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "NetconEthernetTap.hpp"
#include "../node/Utils.hpp"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Phy.hpp"
#include "Intercept.h"
#include "LWIPStack.hpp"
#include "lwip/tcp_impl.h"
#include "netif/etharp.h"
#include "lwip/api.h"
#include "lwip/ip.h"
#include "lwip/ip_addr.h"
#include "lwip/ip_frag.h"
#include "lwip/tcp.h"
#include "common.inc.c"
#include "RPC.h"
#define APPLICATION_POLL_FREQ 50
#define ZT_LWIP_TCP_TIMER_INTERVAL 5
#define STATUS_TMR_INTERVAL 1000 // How often we check connection statuses (in ms)
#define DEFAULT_BUF_SZ 1024 * 1024 * 2
namespace ZeroTier {
// ---------------------------------------------------------------------------
static err_t tapif_init(struct netif *netif)
{
// Actual init functionality is in addIp() of tap
return ERR_OK;
}
/*
* Outputs data from the pbuf queue to the interface
*/
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
char buf[ZT_MAX_MTU+32];
char *bufptr;
int totalLength = 0;
ZeroTier::NetconEthernetTap *tap = (ZeroTier::NetconEthernetTap*)netif->state;
bufptr = buf;
// Copy data from each pbuf, one at a time
for(q = p; q != NULL; q = q->next) {
memcpy(bufptr, q->payload, q->len);
bufptr += q->len;
totalLength += q->len;
}
// [Send packet to network]
// Split ethernet header and feed into handler
struct eth_hdr *ethhdr;
ethhdr = (struct eth_hdr *)buf;
ZeroTier::MAC src_mac;
ZeroTier::MAC dest_mac;
src_mac.setTo(ethhdr->src.addr, 6);
dest_mac.setTo(ethhdr->dest.addr, 6);
tap->_handler(tap->_arg,tap->_nwid,src_mac,dest_mac,
Utils::ntoh((uint16_t)ethhdr->type),0,buf + sizeof(struct eth_hdr),totalLength - sizeof(struct eth_hdr));
return ERR_OK;
}
/*
* TCP connection administered by service
*/
class TcpConnection
{
public:
bool listening;
int pid, txsz, rxsz;
PhySocket *rpcSock, *sock;
struct tcp_pcb *pcb;
struct sockaddr_storage *addr;
unsigned char txbuf[DEFAULT_BUF_SZ];
unsigned char rxbuf[DEFAULT_BUF_SZ];
};
/*
* A helper class for passing a reference to _phy to LWIP callbacks as a "state"
*/
class Larg
{
public:
NetconEthernetTap *tap;
TcpConnection *conn;
Larg(NetconEthernetTap *_tap, TcpConnection *conn) : tap(_tap), conn(conn) {}
};
// ---------------------------------------------------------------------------
NetconEthernetTap::NetconEthernetTap(
const char *homePath,
const MAC &mac,
unsigned int mtu,
unsigned int metric,
uint64_t nwid,
const char *friendlyName,
void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
void *arg) :
_nwid(nwid),
_handler(handler),
_arg(arg),
_phy(this,false,true),
_unixListenSocket((PhySocket *)0),
_mac(mac),
_homePath(homePath),
_mtu(mtu),
_enabled(true),
_run(true)
{
char sockPath[4096],lwipPath[4096];
rpcCounter = -1;
Utils::snprintf(sockPath,sizeof(sockPath),"%s%snc_%.16llx",homePath,ZT_PATH_SEPARATOR_S,_nwid,ZT_PATH_SEPARATOR_S,(unsigned long long)nwid);
_dev = sockPath; // in netcon mode, set device to be just the network ID
Utils::snprintf(lwipPath,sizeof(lwipPath),"%s%sliblwip.so",homePath,ZT_PATH_SEPARATOR_S);
lwipstack = new LWIPStack(lwipPath);
if(!lwipstack)
throw std::runtime_error("unable to dynamically load a new instance of liblwip.so (searched ZeroTier home path)");
lwipstack->lwip_init();
_unixListenSocket = _phy.unixListen(sockPath,(void *)this);
dwr(MSG_INFO," NetconEthernetTap initialized!\n", _phy.getDescriptor(_unixListenSocket));
if (!_unixListenSocket)
throw std::runtime_error(std::string("unable to bind to ")+sockPath);
_thread = Thread::start(this);
}
NetconEthernetTap::~NetconEthernetTap()
{
_run = false;
_phy.whack();
_phy.whack(); // TODO: Rationale?
Thread::join(_thread);
_phy.close(_unixListenSocket,false);
delete lwipstack;
}
void NetconEthernetTap::setEnabled(bool en)
{
_enabled = en;
}
bool NetconEthernetTap::enabled() const
{
return _enabled;
}
bool NetconEthernetTap::addIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) {
_ips.push_back(ip);
std::sort(_ips.begin(),_ips.end());
if (ip.isV4()) {
// Set IP
static ip_addr_t ipaddr, netmask, gw;
IP4_ADDR(&gw,192,168,0,1);
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
// Set up the lwip-netif for LWIP's sake
lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input);
interface.state = this;
interface.output = lwipstack->_etharp_output;
_mac.copyTo(interface.hwaddr, 6);
interface.mtu = _mtu;
interface.name[0] = 't';
interface.name[1] = 'p';
interface.linkoutput = low_level_output;
interface.hwaddr_len = 6;
interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP;
lwipstack->netif_set_default(&interface);
lwipstack->netif_set_up(&interface);
}
}
return true;
}
bool NetconEthernetTap::removeIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip));
if (i == _ips.end())
return false;
_ips.erase(i);
if (ip.isV4()) {
// TODO: dealloc from LWIP
}
return true;
}
std::vector NetconEthernetTap::ips() const
{
Mutex::Lock _l(_ips_m);
return _ips;
}
void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
struct pbuf *p,*q;
if (!_enabled)
return;
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
// We allocate a pbuf chain of pbufs from the pool.
p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
if (p != NULL) {
const char *dataptr = reinterpret_cast(data);
// First pbuf gets ethernet header at start
q = p;
if (q->len < sizeof(ethhdr)) {
dwr(MSG_ERROR,"_put(): Dropped packet: first pbuf smaller than ethernet header\n");
return;
}
memcpy(q->payload,ðhdr,sizeof(ethhdr));
memcpy((char*)q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
dataptr += q->len - sizeof(ethhdr);
// Remaining pbufs (if any) get rest of data
while ((q = q->next)) {
memcpy(q->payload,dataptr,q->len);
dataptr += q->len;
}
} else {
dwr(MSG_ERROR,"put(): Dropped packet: no pbufs available\n");
return;
}
{
Mutex::Lock _l2(lwipstack->_lock);
if(interface.input(p, &interface) != ERR_OK) {
dwr(MSG_ERROR,"put(): Error while RXing packet (netif->input)\n");
}
}
}
std::string NetconEthernetTap::deviceName() const
{
return _dev;
}
void NetconEthernetTap::setFriendlyName(const char *friendlyName) {
}
void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed)
{
std::vector newGroups;
Mutex::Lock _l(_multicastGroups_m);
// TODO: get multicast subscriptions from LWIP
std::vector allIps(ips());
for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip)
newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
std::sort(newGroups.begin(),newGroups.end());
std::unique(newGroups.begin(),newGroups.end());
for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) {
if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
added.push_back(*m);
}
for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
removed.push_back(*m);
}
_multicastGroups.swap(newGroups);
}
void NetconEthernetTap::threadMain()
throw()
{
uint64_t prev_tcp_time = 0, prev_status_time = 0, prev_etharp_time = 0;
// Main timer loop
while (_run) {
uint64_t now = OSUtils::now();
uint64_t since_tcp = now - prev_tcp_time;
uint64_t since_etharp = now - prev_etharp_time;
uint64_t since_status = now - prev_status_time;
uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL;
uint64_t etharp_remaining = ARP_TMR_INTERVAL;
uint64_t status_remaining = STATUS_TMR_INTERVAL;
// Connection prunning
if (since_status >= STATUS_TMR_INTERVAL) {
prev_status_time = now;
status_remaining = STATUS_TMR_INTERVAL - since_status;
for(size_t i=0;i<_TcpConnections.size();++i) {
if(!_TcpConnections[i]->sock)
continue; // Skip, this is a pending connection
int fd = _phy.getDescriptor(_TcpConnections[i]->sock);
dwr(MSG_DEBUG," tap_thread(): tcp\\jobs = {%d, %d}\n", _TcpConnections.size(), jobmap.size());
fcntl(fd, F_SETFL, O_NONBLOCK);
unsigned char tmpbuf[BUF_SZ];
int n = read(fd,&tmpbuf,BUF_SZ);
if(_TcpConnections[i]->pcb->state == SYN_SENT) {
dwr(MSG_DEBUG_EXTRA," tap_thread(): <%x> state = SYN_SENT, should finish or be removed soon\n", _TcpConnections[i]->sock);
}
if((n < 0 && errno != EAGAIN) || (n == 0 && errno == EAGAIN)) {
dwr(MSG_DEBUG," tap_thread(): closing sock (%x)\n", _TcpConnections[i]->sock);
closeConnection(_TcpConnections[i]->sock);
} else if (n > 0) {
dwr(MSG_DEBUG," tap_thread(): data read during connection check (%d bytes)\n", n);
phyOnUnixData(_TcpConnections[i]->sock,_phy.getuptr(_TcpConnections[i]->sock),&tmpbuf,BUF_SZ);
}
}
}
// Main TCP/ETHARP timer section
if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) {
prev_tcp_time = now;
lwipstack->tcp_tmr();
// Makeshift poll
for(size_t i=0;i<_TcpConnections.size();++i) {
if(_TcpConnections[i]->txsz > 0){
lwipstack->_lock.lock();
handleWrite(_TcpConnections[i]);
lwipstack->_lock.unlock();
}
}
} else {
tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
}
if (since_etharp >= ARP_TMR_INTERVAL) {
prev_etharp_time = now;
lwipstack->etharp_tmr();
} else {
etharp_remaining = ARP_TMR_INTERVAL - since_etharp;
}
_phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining));
}
dlclose(lwipstack->_libref);
}
// Unused -- no UDP or TCP from this thread/Phy<>
void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {}
void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {}
void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {}
TcpConnection *NetconEthernetTap::getConnection(PhySocket *sock)
{
Mutex::Lock _l(_tcpconns_m);
for(size_t i=0;i<_TcpConnections.size();++i) {
if(_TcpConnections[i]->sock == sock)
return _TcpConnections[i];
}
return NULL;
}
TcpConnection *NetconEthernetTap::addConnection(TcpConnection *conn)
{
Mutex::Lock _l(_tcpconns_m);
_TcpConnections.push_back(conn);
return conn;
}
void NetconEthernetTap::removeConnection(TcpConnection *conn)
{
Mutex::Lock _l(_tcpconns_m);
for(size_t i=0;i<_TcpConnections.size();++i) {
if(_TcpConnections[i] == conn){
_TcpConnections.erase(_TcpConnections.begin() + i);
return;
}
}
}
void NetconEthernetTap::closeConnection(PhySocket *sock)
{
dwr(MSG_DEBUG,"closeConnection(%x)\n",sock);
if(!sock) {
dwr(MSG_DEBUG," closeConnection(): invalid PhySocket\n");
return;
}
TcpConnection *conn = getConnection(sock);
if(!conn)
return;
else
removeConnection(conn);
if(!conn->pcb)
return;
if(conn->pcb->state == SYN_SENT) {
dwr(MSG_DEBUG," closeConnection(): invalid PCB state (SYN_SENT) -- cannot close right now\n");
return;
}
dwr(MSG_DEBUG," closeConnection(): PCB->state = %d\n", conn->pcb->state);
if(lwipstack->_tcp_close(conn->pcb) != ERR_OK) {
dwr(MSG_ERROR," closeConnection(): Error while calling tcp_close()\n");
}
if(!sock)
return;
close(_phy.getDescriptor(sock));
_phy.close(sock, false);
}
void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr) {
closeConnection(sock);
}
void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) {
// Currently unused since phyOnUnixData() handles everything now
}
void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {
dwr(MSG_DEBUG,"\nphyOnUnixAccept(): new connection = %x\n", sockN);
}
void NetconEthernetTap::phyOnUnixWritable(PhySocket *sock,void **uptr)
{
TcpConnection *conn = getConnection(sock);
Mutex::Lock _l(_rx_buf_m);
int len = conn->rxsz;
int n = _phy.streamSend(conn->sock, conn->rxbuf, len);
if(n > 0) {
if(n < len) {
dwr(MSG_ERROR,"\n phyOnUnixWritable(): unable to write entire \"block\" to stream\n");
}
if(len-n)
memcpy(conn->rxbuf, conn->rxbuf+n, len-n);
conn->rxsz -= n;
float max = (float)DEFAULT_BUF_SZ;
dwr(MSG_TRANSFER," <--- RX :: { TX: %.3f%% | RX: %.3f%% } :: %d bytes\n",
(float)conn->txsz / max, (float)conn->rxsz / max, n);
lwipstack->_tcp_recved(conn->pcb, n);
if(conn->rxsz == 0){
_phy.setNotifyWritable(conn->sock, false); // Nothing more to be notified about
}
} else {
perror("\n");
dwr(MSG_ERROR, "errno = %d\n", errno);
dwr(MSG_ERROR," phyOnUnixWritable(): No data written to stream <%x>\n", conn->sock);
}
}
void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len)
{
uint64_t CANARY_num;
pid_t pid, tid;
int rpcCount, wlen = len;
char cmd, timestamp[20], CANARY[CANARY_SZ], padding[] = {PADDING};
void *payload;
unsigned char *buf = (unsigned char*)data;
std::pair sockdata;
PhySocket *rpcSock;
bool foundJob = false, detected_rpc = false;
TcpConnection *conn;
// RPC
char phrase[RPC_PHRASE_SZ];
memset(phrase, 0, RPC_PHRASE_SZ);
if(len == BUF_SZ) {
memcpy(phrase, buf, RPC_PHRASE_SZ);
if(strcmp(phrase, RPC_PHRASE) == 0)
detected_rpc = true;
}
if(detected_rpc) {
unloadRPC(data, pid, tid, rpcCount, timestamp, CANARY, cmd, payload);
memcpy(&CANARY_num, CANARY, CANARY_SZ);
dwr(MSG_DEBUG," <%x> RPC: (pid=%d, tid=%d, rpcCount=%d, timestamp=%s, cmd=%d)\n",
sock, pid, tid, rpcCount, timestamp, cmd);
if(cmd == RPC_SOCKET) {
dwr(MSG_DEBUG," <%x> RPC_SOCKET\n", sock);
// Create new lwip socket and associate it with this sock
struct socket_st socket_rpc;
memcpy(&socket_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct socket_st));
TcpConnection * new_conn;
if((new_conn = handleSocket(sock, uptr, &socket_rpc))) {
new_conn->pid = pid; // Merely kept to look up application path/names later, not strictly necessary
}
} else {
jobmap[CANARY_num] = std::make_pair(sock, data);
}
write(_phy.getDescriptor(sock), "z", 1); // RPC ACK byte to maintain order
}
// STREAM
else {
int data_start = -1, data_end = -1, canary_pos = -1, padding_pos = -1;
// Look for padding
std::string padding_pattern(padding, padding+PADDING_SZ);
std::string buffer(buf, buf + len);
padding_pos = buffer.find(padding_pattern);
canary_pos = padding_pos-CANARY_SZ;
// Grab token, next we'll use it to look up an RPC job
if(canary_pos > -1) {
memcpy(&CANARY_num, buf+canary_pos, CANARY_SZ);
if(CANARY_num != 0) { // TODO: Added to address CANARY_num==0 bug, last seeen 20160108
// Find job
sockdata = jobmap[CANARY_num];
if(!sockdata.first) { // Stream before RPC
dwr(MSG_DEBUG," <%x> unable to locate job entry for %llu\n", sock, CANARY_num);
return;
} else
foundJob = true;
}
}
conn = getConnection(sock);
if(!conn)
return;
if(padding_pos == -1) { // [DATA]
memcpy(&conn->txbuf[conn->txsz], buf, wlen);
} else { // Padding found, implies a canary is present
// [CANARY]
if(len == CANARY_SZ+PADDING_SZ && canary_pos == 0) {
wlen = 0; // Nothing to write
} else {
// [CANARY] + [DATA]
if(len > CANARY_SZ+PADDING_SZ && canary_pos == 0) {
wlen = len - CANARY_SZ+PADDING_SZ;
data_start = padding_pos+PADDING_SZ;
memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen);
}
// [CANARY] + [TOKEN]
if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && canary_pos == len - CANARY_SZ+PADDING_SZ) {
wlen = len - CANARY_SZ+PADDING_SZ;
data_start = 0;
memcpy((&conn->txbuf)+conn->txsz, buf+data_start, wlen);
}
// [CANARY] + [TOKEN] + [DATA]
if(len > CANARY_SZ+PADDING_SZ && canary_pos > 0 && len > (canary_pos + CANARY_SZ+PADDING_SZ)) {
wlen = len - CANARY_SZ+PADDING_SZ;
data_start = 0;
data_end = padding_pos-CANARY_SZ;
memcpy((&conn->txbuf)+conn->txsz, buf+data_start, (data_end-data_start)+1);
memcpy((&conn->txbuf)+conn->txsz, buf+(padding_pos+PADDING_SZ), len-(canary_pos+CANARY_SZ+PADDING_SZ));
}
}
}
// Write data from stream
if(conn->txsz > (DEFAULT_BUF_SZ / 2)) {
_phy.setNotifyReadable(sock, false);
}
lwipstack->_lock.lock();
conn->txsz += wlen;
handleWrite(conn);
lwipstack->_lock.unlock();
}
if(foundJob) {
rpcSock = sockdata.first;
buf = (unsigned char*)sockdata.second;
}
// Process RPC if we have a corresponding jobmap entry
if(foundJob) {
unloadRPC(buf, pid, tid, rpcCount, timestamp, CANARY, cmd, payload);
dwr(MSG_DEBUG," <%x> RPC: (pid=%d, tid=%d, rpcCount=%d, timestamp=%s, cmd=%d)\n",
sock, pid, tid, rpcCount, timestamp, cmd);
switch(cmd) {
case RPC_BIND:
dwr(MSG_DEBUG," <%x> RPC_BIND\n", sock);
struct bind_st bind_rpc;
memcpy(&bind_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct bind_st));
handleBind(sock, rpcSock, uptr, &bind_rpc);
break;
case RPC_LISTEN:
dwr(MSG_DEBUG," <%x> RPC_LISTEN\n", sock);
struct listen_st listen_rpc;
memcpy(&listen_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct listen_st));
handleListen(sock, rpcSock, uptr, &listen_rpc);
break;
case RPC_GETSOCKNAME:
dwr(MSG_DEBUG," <%x> RPC_GETSOCKNAME\n", sock);
struct getsockname_st getsockname_rpc;
memcpy(&getsockname_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct getsockname_st));
handleGetsockname(sock, rpcSock, uptr, &getsockname_rpc);
break;
case RPC_CONNECT:
dwr(MSG_DEBUG," <%x> RPC_CONNECT\n", sock);
struct connect_st connect_rpc;
memcpy(&connect_rpc, &buf[IDX_PAYLOAD+STRUCT_IDX], sizeof(struct connect_st));
handleConnect(sock, rpcSock, conn, &connect_rpc);
jobmap.erase(CANARY_num);
return; // Keep open RPC, we'll use it once in nc_connected to send retval
default:
break;
}
closeConnection(sockdata.first); // close RPC after sending retval, no longer needed
jobmap.erase(CANARY_num);
return;
}
}
int NetconEthernetTap::sendReturnValue(PhySocket *sock, int retval, int _errno = 0){
return sendReturnValue(_phy.getDescriptor(sock), retval, _errno);
}
int NetconEthernetTap::sendReturnValue(int fd, int retval, int _errno = 0)
{
dwr(MSG_DEBUG," sendReturnValue(): fd = %d, retval = %d, errno = %d\n", fd, retval, _errno);
int sz = sizeof(char) + sizeof(retval) + sizeof(errno);
char retmsg[sz];
memset(&retmsg, 0, sizeof(retmsg));
retmsg[0]=RPC_RETVAL;
memcpy(&retmsg[1], &retval, sizeof(retval));
memcpy(&retmsg[1]+sizeof(retval), &_errno, sizeof(_errno));
return write(fd, &retmsg, sz);
}
void NetconEthernetTap::unloadRPC(void *data, pid_t &pid, pid_t &tid,
int &rpcCount, char (timestamp[RPC_TIMESTAMP_SZ]), char (CANARY[sizeof(uint64_t)]), char &cmd, void* &payload)
{
unsigned char *buf = (unsigned char*)data;
memcpy(&pid, &buf[IDX_PID], sizeof(pid_t));
memcpy(&tid, &buf[IDX_TID], sizeof(pid_t));
memcpy(&rpcCount, &buf[IDX_COUNT], sizeof(int));
memcpy(timestamp, &buf[IDX_TIME], RPC_TIMESTAMP_SZ);
memcpy(&cmd, &buf[IDX_PAYLOAD], sizeof(char));
memcpy(CANARY, &buf[IDX_PAYLOAD+1], CANARY_SZ);
}
/*------------------------------------------------------------------------------
--------------------------------- LWIP callbacks -------------------------------
------------------------------------------------------------------------------*/
err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newPCB, err_t err)
{
Larg *l = (Larg*)arg;
TcpConnection *conn = l->conn;
NetconEthernetTap *tap = l->tap;
if(!conn->sock)
return -1;
int fd = tap->_phy.getDescriptor(conn->sock);
if(conn) {
// create new socketpair
ZT_PHY_SOCKFD_TYPE fds[2];
if(socketpair(PF_LOCAL, SOCK_STREAM, 0, fds) < 0) {
if(errno < 0) {
l->tap->sendReturnValue(conn, -1, errno);
dwr(MSG_ERROR," nc_accept(): unable to create socketpair\n");
return ERR_MEM;
}
}
// create and populate new TcpConnection
TcpConnection *newTcpConn = new TcpConnection();
tap->addConnection(newTcpConn);
newTcpConn->pcb = newPCB;
newTcpConn->sock = tap->_phy.wrapSocket(fds[0], newTcpConn);
if(sock_fd_write(fd, fds[1]) < 0)
return -1;
else {
//close(fds[1]); // close other end of socketpair
}
tap->lwipstack->_tcp_arg(newPCB, new Larg(tap, newTcpConn));
tap->lwipstack->_tcp_recv(newPCB, nc_recved);
tap->lwipstack->_tcp_err(newPCB, nc_err);
tap->lwipstack->_tcp_sent(newPCB, nc_sent);
tap->lwipstack->_tcp_poll(newPCB, nc_poll, 1);
if(conn->pcb->state == LISTEN) {
dwr(MSG_DEBUG," nc_accept(): can't call tcp_accept() on LISTEN socket (pcb = %x)\n", conn->pcb);
return ERR_OK; // TODO: Verify this is correct
}
tcp_accepted(conn->pcb); // Let lwIP know that it can queue additional incoming connections
return ERR_OK;
} else
dwr(MSG_ERROR," nc_accept(%d): can't locate Connection object for PCB.\n", fd);
return -1;
}
err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *PCB, struct pbuf *p, err_t err)
{
Larg *l = (Larg*)arg;
int tot = 0;
struct pbuf* q = p;
if(!l->conn) {
dwr(MSG_ERROR," nc_recved(): no connection\n");
return ERR_OK;
}
if(p == NULL) {
if(l->conn && !l->conn->listening) {
dwr(MSG_INFO," nc_recved(): closing connection\n");
if(l->tap->lwipstack->_tcp_close(l->conn->pcb) != ERR_OK) {
dwr(MSG_ERROR," nc_recved(): error while calling tcp_close()\n");
}
l->tap->closeConnection(l->conn->sock);
return ERR_ABRT;
}
return err;
}
Mutex::Lock _l(l->tap->_rx_buf_m);
// Cycle through pbufs and write them to the RX buffer
// The RX buffer will be emptied via phyOnUnixWritable()
while(p != NULL) {
if(p->len <= 0)
break;
int avail = DEFAULT_BUF_SZ - l->conn->rxsz;
int len = p->len;
if(avail < len)
dwr(MSG_ERROR," nc_recved(): not enough room (%d bytes) on RX buffer\n", avail);
memcpy(l->conn->rxbuf + (l->conn->rxsz), p->payload, len);
l->conn->rxsz += len;
p = p->next;
tot += len;
}
if(tot)
l->tap->_phy.setNotifyWritable(l->conn->sock, true); // Signal that we're interested in knowing when we can write
l->tap->lwipstack->_pbuf_free(q);
return ERR_OK;
}
void NetconEthernetTap::nc_err(void *arg, err_t err)
{
dwr(MSG_DEBUG,"nc_err() = %d\n", err);
Larg *l = (Larg*)arg;
if(!l->conn)
dwr(MSG_ERROR,"nc_err(): connection is NULL!\n");
int fd = l->tap->_phy.getDescriptor(l->conn->sock);
switch(err)
{
case ERR_MEM:
dwr(MSG_ERROR,"nc_err(): ERR_MEM->ENOMEM\n");
l->tap->sendReturnValue(fd, -1, ENOMEM);
break;
case ERR_BUF:
dwr(MSG_ERROR,"nc_err(): ERR_BUF->ENOBUFS\n");
l->tap->sendReturnValue(fd, -1, ENOBUFS);
break;
case ERR_TIMEOUT:
dwr(MSG_ERROR,"nc_err(): ERR_TIMEOUT->ETIMEDOUT\n");
l->tap->sendReturnValue(fd, -1, ETIMEDOUT);
break;
case ERR_RTE:
dwr(MSG_ERROR,"nc_err(): ERR_RTE->ENETUNREACH\n");
l->tap->sendReturnValue(fd, -1, ENETUNREACH);
break;
case ERR_INPROGRESS:
dwr(MSG_ERROR,"nc_err(): ERR_INPROGRESS->EINPROGRESS\n");
l->tap->sendReturnValue(fd, -1, EINPROGRESS);
break;
case ERR_VAL:
dwr(MSG_ERROR,"nc_err(): ERR_VAL->EINVAL\n");
l->tap->sendReturnValue(fd, -1, EINVAL);
break;
case ERR_WOULDBLOCK:
dwr(MSG_ERROR,"nc_err(): ERR_WOULDBLOCK->EWOULDBLOCK\n");
l->tap->sendReturnValue(fd, -1, EWOULDBLOCK);
break;
case ERR_USE:
dwr(MSG_ERROR,"nc_err(): ERR_USE->EADDRINUSE\n");
l->tap->sendReturnValue(fd, -1, EADDRINUSE);
break;
case ERR_ISCONN:
dwr(MSG_ERROR,"nc_err(): ERR_ISCONN->EISCONN\n");
l->tap->sendReturnValue(fd, -1, EISCONN);
break;
case ERR_ABRT:
dwr(MSG_ERROR,"nc_err(): ERR_ABRT->ECONNREFUSED\n");
l->tap->sendReturnValue(fd, -1, ECONNREFUSED);
break;
// FIXME: Below are errors which don't have a standard errno correlate
case ERR_RST:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_CLSD:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_CONN:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_ARG:
l->tap->sendReturnValue(fd, -1, -1);
break;
case ERR_IF:
l->tap->sendReturnValue(fd, -1, -1);
break;
default:
break;
}
dwr(MSG_ERROR,"nc_err(): closing connection\n");
l->tap->closeConnection(l->conn);
}
err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *PCB)
{
return ERR_OK;
}
err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *PCB, u16_t len)
{
Larg *l = (Larg*)arg;
if(len) {
float max = (float)DEFAULT_BUF_SZ;
if(l->conn->txsz < max / 2) {
l->tap->_phy.setNotifyReadable(l->conn->sock, true);
l->tap->_phy.whack();
}
}
return ERR_OK;
}
err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *PCB, err_t err)
{
Larg *l = (Larg*)arg;
l->tap->sendReturnValue(l->tap->_phy.getDescriptor(l->conn->rpcSock), ERR_OK);
return ERR_OK;
}
/*------------------------------------------------------------------------------
----------------------------- RPC Handler functions ----------------------------
------------------------------------------------------------------------------*/
void NetconEthernetTap::handleGetsockname(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct getsockname_st *getsockname_rpc)
{
TcpConnection *conn = getConnection(sock);
char retmsg[sizeof(struct sockaddr_storage)];
memset(&retmsg, 0, sizeof(retmsg));
if ((conn)&&(conn->addr))
memcpy(&retmsg, conn->addr, sizeof(struct sockaddr_storage));
write(_phy.getDescriptor(rpcSock), &retmsg, sizeof(struct sockaddr_storage));
}
void NetconEthernetTap::handleBind(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct bind_st *bind_rpc)
{
struct sockaddr_in *rawAddr = (struct sockaddr_in *) &bind_rpc->addr;
int port = lwipstack->ntohs(rawAddr->sin_port);
ip_addr_t connAddr;
connAddr.addr = *((u32_t *)_ips[0].rawIpData());
TcpConnection *conn = getConnection(sock);
dwr(MSG_DEBUG," handleBind(%d)\n", bind_rpc->sockfd);
if(conn) {
if(conn->pcb->state == CLOSED){
int err = lwipstack->tcp_bind(conn->pcb, &connAddr, port);
int ip = rawAddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
dwr(MSG_DEBUG," handleBind(): %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], port);
if(err != ERR_OK) {
dwr(MSG_ERROR," handleBind(): err = %d\n", err);
if(err == ERR_USE)
sendReturnValue(rpcSock, -1, EADDRINUSE);
if(err == ERR_MEM)
sendReturnValue(rpcSock, -1, ENOMEM);
if(err == ERR_BUF)
sendReturnValue(rpcSock, -1, ENOMEM);
} else {
conn->addr = (struct sockaddr_storage *) &bind_rpc->addr;
sendReturnValue(rpcSock, ERR_OK, ERR_OK); // Success
}
} else {
dwr(MSG_ERROR," handleBind(): PCB (%x) not in CLOSED state. Ignoring BIND request.\n", conn->pcb);
sendReturnValue(rpcSock, -1, EINVAL);
}
} else {
dwr(MSG_ERROR," handleBind(): can't locate connection for PCB\n");
sendReturnValue(rpcSock, -1, EBADF);
}
}
void NetconEthernetTap::handleListen(PhySocket *sock, PhySocket *rpcSock, void **uptr, struct listen_st *listen_rpc)
{
TcpConnection *conn = getConnection(sock);
if(!conn){
dwr(MSG_ERROR," handleListen(): unable to locate connection object\n");
sendReturnValue(rpcSock, -1, EBADF);
return;
}
if(conn->pcb->state == LISTEN) {
dwr(MSG_ERROR," handleListen(): PCB is already in listening state.\n");
sendReturnValue(rpcSock, ERR_OK, ERR_OK);
return;
}
struct tcp_pcb* listeningPCB;
#ifdef TCP_LISTEN_BACKLOG
listeningPCB = lwipstack->tcp_listen_with_backlog(conn->pcb, listen_rpc->backlog);
#else
listeningPCB = lwipstack->tcp_listen(conn->pcb);
#endif
if(listeningPCB != NULL) {
conn->pcb = listeningPCB;
lwipstack->tcp_accept(listeningPCB, nc_accept);
lwipstack->tcp_arg(listeningPCB, new Larg(this, conn));
/* we need to wait for the client to send us the fd allocated on their end
for this listening socket */
fcntl(_phy.getDescriptor(conn->sock), F_SETFL, O_NONBLOCK);
conn->listening = true;
sendReturnValue(rpcSock, ERR_OK, ERR_OK);
return;
}
sendReturnValue(rpcSock, -1, -1);
}
TcpConnection * NetconEthernetTap::handleSocket(PhySocket *sock, void **uptr, struct socket_st* socket_rpc)
{
struct tcp_pcb *newPCB = lwipstack->tcp_new();
if(newPCB != NULL) {
TcpConnection *newConn = new TcpConnection();
*uptr = newConn;
newConn->sock = sock;
newConn->pcb = newPCB;
return addConnection(newConn);;
}
dwr(MSG_ERROR," handleSocket(): Memory not available for new PCB\n");
sendReturnValue(_phy.getDescriptor(sock), -1, ENOMEM);
return NULL;
}
void NetconEthernetTap::handleConnect(PhySocket *sock, PhySocket *rpcSock, TcpConnection *conn, struct connect_st* connect_rpc)
{
struct sockaddr_in *rawAddr = (struct sockaddr_in *) &connect_rpc->__addr;
int port = lwipstack->ntohs(rawAddr->sin_port);
ip_addr_t connAddr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr);
if(conn != NULL) {
lwipstack->tcp_sent(conn->pcb, nc_sent);
lwipstack->tcp_recv(conn->pcb, nc_recved);
lwipstack->tcp_err(conn->pcb, nc_err);
lwipstack->tcp_poll(conn->pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->tcp_arg(conn->pcb, new Larg(this, conn));
int err = 0, ip = rawAddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
dwr(MSG_DEBUG," handleConnect(): %d.%d.%d.%d: %d\n", d[0],d[1],d[2],d[3], port);
dwr(MSG_DEBUG," handleConnect(): pcb->state = %x\n", conn->pcb->state);
if(conn->pcb->state != CLOSED) {
dwr(MSG_DEBUG," handleConnect(): PCB != CLOSED, cannot connect using this PCB\n");
sendReturnValue(rpcSock, -1, EAGAIN);
return;
}
if((err = lwipstack->tcp_connect(conn->pcb,&connAddr,port,nc_connected)) < 0)
{
if(err == ERR_ISCONN) {
sendReturnValue(rpcSock, -1, EISCONN); // Already in connected state
return;
} if(err == ERR_USE) {
sendReturnValue(rpcSock, -1, EADDRINUSE); // Already in use
return;
} if(err == ERR_VAL) {
sendReturnValue(rpcSock, -1, EINVAL); // Invalid ipaddress parameter
return;
} if(err == ERR_RTE) {
sendReturnValue(rpcSock, -1, ENETUNREACH); // No route to host
return;
} if(err == ERR_BUF) {
sendReturnValue(rpcSock, -1, EAGAIN); // No more ports available
return;
}
if(err == ERR_MEM) {
/* Can occur for the following reasons: tcp_enqueue_flags()
1) tcp_enqueue_flags is always called with either SYN or FIN in flags.
We need one available snd_buf byte to do that.
This means we can't send FIN while snd_buf==0. A better fix would be to
not include SYN and FIN sequence numbers in the snd_buf count.
2) Cannot allocate new pbuf
3) Cannot allocate new TCP segment
*/
sendReturnValue(rpcSock, -1, EAGAIN); // FIXME: Doesn't describe the problem well, but closest match
return;
}
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
dwr(MSG_ERROR," handleConnect(): unable to connect\n");
sendReturnValue(rpcSock, -1, EAGAIN);
}
// Everything seems to be ok, but we don't have enough info to retval
conn->listening=true;
conn->rpcSock=rpcSock; // used for return value from lwip CB
} else {
dwr(MSG_ERROR," handleConnect(): could not locate PCB based on their fd\n");
sendReturnValue(rpcSock, -1, EBADF);
}
}
void NetconEthernetTap::handleWrite(TcpConnection *conn)
{
if(!conn || !conn->pcb) {
dwr(MSG_ERROR," handleWrite(): invalid connection/PCB\n");
return;
}
// How much we are currently allowed to write to the connection
int err, sz, r, sndbuf = conn->pcb->snd_buf;
if(sndbuf == 0) {
/* PCB send buffer is full,turn off readability notifications for the
corresponding PhySocket until nc_sent() is called and confirms that there is
now space on the buffer */
dwr(MSG_DEBUG," handleWrite(): sndbuf == 0, LWIP stack is full\n");
_phy.setNotifyReadable(conn->sock, false);
return;
}
if(conn->txsz <= 0) {
dwr(MSG_DEBUG,"handleWrite(): conn->txsz <= 0, nothing in buffer to write\n");
return;
}
if(!conn->listening)
lwipstack->_tcp_output(conn->pcb);
if(conn->sock) {
r = conn->txsz < sndbuf ? conn->txsz : sndbuf;
/* Writes data pulled from the client's socket buffer to LWIP. This merely sends the
* data to LWIP to be enqueued and eventually sent to the network. */
if(r > 0) {
err = lwipstack->_tcp_write(conn->pcb, &conn->txbuf, r, TCP_WRITE_FLAG_COPY);
lwipstack->_tcp_output(conn->pcb);
if(err != ERR_OK) {
dwr(MSG_ERROR," handleWrite(): error while writing to PCB, (err = %d)\n", err);
if(err == -1)
dwr(MSG_DEBUG," handleWrite(): possibly out of memory\n");
return;
} else {
sz = (conn->txsz)-r;
if(sz)
memmove(&conn->txbuf, (conn->txbuf+r), sz);
conn->txsz -= r;
float max = (float)DEFAULT_BUF_SZ;
dwr(MSG_TRANSFER," TX ---> :: { TX: %.3f%% | RX: %.3f%% } :: %d bytes\n",
(float)conn->txsz / max, (float)conn->rxsz / max, r);
return;
}
}
}
}
} // namespace ZeroTier