/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2017 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #ifndef ZT_TOPOLOGY_HPP #define ZT_TOPOLOGY_HPP #include #include #include #include #include #include #include "Constants.hpp" #include "../include/ZeroTierOne.h" #include "Address.hpp" #include "Identity.hpp" #include "Peer.hpp" #include "Path.hpp" #include "Mutex.hpp" #include "InetAddress.hpp" #include "Hashtable.hpp" #include "World.hpp" #include "CertificateOfRepresentation.hpp" namespace ZeroTier { class RuntimeEnvironment; /** * Database of network topology */ class Topology { public: Topology(const RuntimeEnvironment *renv,void *tPtr); /** * Add a peer to database * * This will not replace existing peers. In that case the existing peer * record is returned. * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param peer Peer to add * @return New or existing peer (should replace 'peer') */ SharedPtr addPeer(void *tPtr,const SharedPtr &peer); /** * Get a peer from its address * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param zta ZeroTier address of peer * @return Peer or NULL if not found */ SharedPtr getPeer(void *tPtr,const Address &zta); /** * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param zta ZeroTier address of peer * @return Identity or NULL identity if not found */ Identity getIdentity(void *tPtr,const Address &zta); /** * Get a peer only if it is presently in memory (no disk cache) * * This also does not update the lastUsed() time for peers, which means * that it won't prevent them from falling out of RAM. This is currently * used in the Cluster code to update peer info without forcing all peers * across the entire cluster to remain in memory cache. * * @param zta ZeroTier address */ inline SharedPtr getPeerNoCache(const Address &zta) { Mutex::Lock _l(_peers_m); const SharedPtr *const ap = _peers.get(zta); if (ap) return *ap; return SharedPtr(); } /** * Get a Path object for a given local and remote physical address, creating if needed * * @param l Local socket * @param r Remote address * @return Pointer to canonicalized Path object */ inline SharedPtr getPath(const int64_t l,const InetAddress &r) { Mutex::Lock _l(_paths_m); SharedPtr &p = _paths[Path::HashKey(l,r)]; if (!p) p.setToUnsafe(new Path(l,r)); return p; } /** * Get the current best upstream peer * * @return Root server with lowest latency or NULL if none */ inline SharedPtr getUpstreamPeer() { return getUpstreamPeer((const Address *)0,0,false); } /** * Get the current best upstream peer, avoiding those in the supplied avoid list * * @param avoid Nodes to avoid * @param avoidCount Number of nodes to avoid * @param strictAvoid If false, consider avoided root servers anyway if no non-avoid root servers are available * @return Root server or NULL if none available */ SharedPtr getUpstreamPeer(const Address *avoid,unsigned int avoidCount,bool strictAvoid); /** * @param id Identity to check * @return True if this is a root server or a network preferred relay from one of our networks */ bool isUpstream(const Identity &id) const; /** * @param addr Address to check * @return True if we should accept a world update from this address */ bool shouldAcceptWorldUpdateFrom(const Address &addr) const; /** * @param ztaddr ZeroTier address * @return Peer role for this device */ ZT_PeerRole role(const Address &ztaddr) const; /** * Check for prohibited endpoints * * Right now this returns true if the designated ZT address is a root and if * the IP (IP only, not port) does not equal any of the IPs defined in the * current World. This is an extra little security feature in case root keys * get appropriated or something. * * Otherwise it returns false. * * @param ztaddr ZeroTier address * @param ipaddr IP address * @return True if this ZT/IP pair should not be allowed to be used */ bool isProhibitedEndpoint(const Address &ztaddr,const InetAddress &ipaddr) const; /** * Gets upstreams to contact and their stable endpoints (if known) * * @param eps Hash table to fill with addresses and their stable endpoints */ inline void getUpstreamsToContact(Hashtable< Address,std::vector > &eps) const { Mutex::Lock _l(_upstreams_m); for(std::vector::const_iterator i(_planet.roots().begin());i!=_planet.roots().end();++i) { if (i->identity != RR->identity) { std::vector &ips = eps[i->identity.address()]; for(std::vector::const_iterator j(i->stableEndpoints.begin());j!=i->stableEndpoints.end();++j) { if (std::find(ips.begin(),ips.end(),*j) == ips.end()) ips.push_back(*j); } } } for(std::vector::const_iterator m(_moons.begin());m!=_moons.end();++m) { for(std::vector::const_iterator i(m->roots().begin());i!=m->roots().end();++i) { if (i->identity != RR->identity) { std::vector &ips = eps[i->identity.address()]; for(std::vector::const_iterator j(i->stableEndpoints.begin());j!=i->stableEndpoints.end();++j) { if (std::find(ips.begin(),ips.end(),*j) == ips.end()) ips.push_back(*j); } } } } for(std::vector< std::pair >::const_iterator m(_moonSeeds.begin());m!=_moonSeeds.end();++m) eps[m->second]; } /** * @return Vector of active upstream addresses (including roots) */ inline std::vector
upstreamAddresses() const { Mutex::Lock _l(_upstreams_m); return _upstreamAddresses; } /** * @return Current moons */ inline std::vector moons() const { Mutex::Lock _l(_upstreams_m); return _moons; } /** * @return Moon IDs we are waiting for from seeds */ inline std::vector moonsWanted() const { Mutex::Lock _l(_upstreams_m); std::vector mw; for(std::vector< std::pair >::const_iterator s(_moonSeeds.begin());s!=_moonSeeds.end();++s) { if (std::find(mw.begin(),mw.end(),s->first) == mw.end()) mw.push_back(s->first); } return mw; } /** * @return Current planet */ inline World planet() const { Mutex::Lock _l(_upstreams_m); return _planet; } /** * @return Current planet's world ID */ inline uint64_t planetWorldId() const { return _planet.id(); // safe to read without lock, and used from within eachPeer() so don't lock } /** * @return Current planet's world timestamp */ inline uint64_t planetWorldTimestamp() const { return _planet.timestamp(); // safe to read without lock, and used from within eachPeer() so don't lock } /** * Validate new world and update if newer and signature is okay * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param newWorld A new or updated planet or moon to learn * @param alwaysAcceptNew If true, always accept new moons even if we're not waiting for one * @return True if it was valid and newer than current (or totally new for moons) */ bool addWorld(void *tPtr,const World &newWorld,bool alwaysAcceptNew); /** * Add a moon * * This loads it from moons.d if present, and if not adds it to * a list of moons that we want to contact. * * @param id Moon ID * @param seed If non-NULL, an address of any member of the moon to contact */ void addMoon(void *tPtr,const uint64_t id,const Address &seed); /** * Remove a moon * * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param id Moon's world ID */ void removeMoon(void *tPtr,const uint64_t id); /** * Clean and flush database */ void doPeriodicTasks(void *tPtr,uint64_t now); /** * @param now Current time * @return Number of peers with active direct paths */ inline unsigned long countActive(uint64_t now) const { unsigned long cnt = 0; Mutex::Lock _l(_peers_m); Hashtable< Address,SharedPtr >::Iterator i(const_cast(this)->_peers); Address *a = (Address *)0; SharedPtr *p = (SharedPtr *)0; while (i.next(a,p)) { const SharedPtr pp((*p)->getBestPath(now,false)); if ((pp)&&(pp->alive(now))) ++cnt; } return cnt; } /** * Apply a function or function object to all peers * * @param f Function to apply * @tparam F Function or function object type */ template inline void eachPeer(F f) { Mutex::Lock _l(_peers_m); Hashtable< Address,SharedPtr >::Iterator i(_peers); Address *a = (Address *)0; SharedPtr *p = (SharedPtr *)0; while (i.next(a,p)) { f(*this,*((const SharedPtr *)p)); } } /** * @return All currently active peers by address (unsorted) */ inline std::vector< std::pair< Address,SharedPtr > > allPeers() const { Mutex::Lock _l(_peers_m); return _peers.entries(); } /** * @return True if I am a root server in a planet or moon */ inline bool amRoot() const { return _amRoot; } /** * Get the outbound trusted path ID for a physical address, or 0 if none * * @param physicalAddress Physical address to which we are sending the packet * @return Trusted path ID or 0 if none (0 is not a valid trusted path ID) */ inline uint64_t getOutboundPathTrust(const InetAddress &physicalAddress) { for(unsigned int i=0;i<_trustedPathCount;++i) { if (_trustedPathNetworks[i].containsAddress(physicalAddress)) return _trustedPathIds[i]; } return 0; } /** * Check whether in incoming trusted path marked packet is valid * * @param physicalAddress Originating physical address * @param trustedPathId Trusted path ID from packet (from MAC field) */ inline bool shouldInboundPathBeTrusted(const InetAddress &physicalAddress,const uint64_t trustedPathId) { for(unsigned int i=0;i<_trustedPathCount;++i) { if ((_trustedPathIds[i] == trustedPathId)&&(_trustedPathNetworks[i].containsAddress(physicalAddress))) return true; } return false; } /** * Set trusted paths in this topology * * @param networks Array of networks (prefix/netmask bits) * @param ids Array of trusted path IDs * @param count Number of trusted paths (if larger than ZT_MAX_TRUSTED_PATHS overflow is ignored) */ inline void setTrustedPaths(const InetAddress *networks,const uint64_t *ids,unsigned int count) { if (count > ZT_MAX_TRUSTED_PATHS) count = ZT_MAX_TRUSTED_PATHS; Mutex::Lock _l(_trustedPaths_m); for(unsigned int i=0;i void appendCertificateOfRepresentation(Buffer &buf) { Mutex::Lock _l(_upstreams_m); _cor.serialize(buf); } private: Identity _getIdentity(void *tPtr,const Address &zta); void _memoizeUpstreams(void *tPtr); const RuntimeEnvironment *const RR; uint64_t _trustedPathIds[ZT_MAX_TRUSTED_PATHS]; InetAddress _trustedPathNetworks[ZT_MAX_TRUSTED_PATHS]; unsigned int _trustedPathCount; Mutex _trustedPaths_m; Hashtable< Address,SharedPtr > _peers; Mutex _peers_m; Hashtable< Path::HashKey,SharedPtr > _paths; Mutex _paths_m; World _planet; std::vector _moons; std::vector< std::pair > _moonSeeds; std::vector
_upstreamAddresses; CertificateOfRepresentation _cor; bool _amRoot; Mutex _upstreams_m; // locks worlds, upstream info, moon info, etc. }; } // namespace ZeroTier #endif