/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_INETADDRESS_HPP #define ZT_INETADDRESS_HPP #include #include #include #include "Constants.hpp" #include "../include/ZeroTierOne.h" #include "Utils.hpp" #include "MAC.hpp" #include "Buffer.hpp" namespace ZeroTier { /** * Maximum integer value of enum IpScope */ #define ZT_INETADDRESS_MAX_SCOPE 7 /** * Extends sockaddr_storage with friendly C++ methods * * This is basically a "mixin" for sockaddr_storage. It adds methods and * operators, but does not modify the structure. This can be cast to/from * sockaddr_storage and used interchangeably. DO NOT change this by e.g. * adding non-static fields, since much code depends on this identity. */ struct InetAddress : public sockaddr_storage { /** * Loopback IPv4 address (no port) */ static const InetAddress LO4; /** * Loopback IPV6 address (no port) */ static const InetAddress LO6; /** * IP address scope * * Note that these values are in ascending order of path preference and * MUST remain that way or Path must be changed to reflect. Also be sure * to change ZT_INETADDRESS_MAX_SCOPE if the max changes. */ enum IpScope { IP_SCOPE_NONE = 0, // NULL or not an IP address IP_SCOPE_MULTICAST = 1, // 224.0.0.0 and other V4/V6 multicast IPs IP_SCOPE_LOOPBACK = 2, // 127.0.0.1, ::1, etc. IP_SCOPE_PSEUDOPRIVATE = 3, // 28.x.x.x, etc. -- unofficially unrouted IPv4 blocks often "bogarted" IP_SCOPE_GLOBAL = 4, // globally routable IP address (all others) IP_SCOPE_LINK_LOCAL = 5, // 169.254.x.x, IPv6 LL IP_SCOPE_SHARED = 6, // currently unused, formerly used for carrier-grade NAT ranges IP_SCOPE_PRIVATE = 7 // 10.x.x.x, 192.168.x.x, etc. }; // Can be used with the unordered maps and sets in c++11. We don't use C++11 in the core // but this is safe to put here. struct Hasher { inline std::size_t operator()(const InetAddress &a) const { return (std::size_t)a.hashCode(); } }; InetAddress() { memset(this,0,sizeof(InetAddress)); } InetAddress(const InetAddress &a) { memcpy(this,&a,sizeof(InetAddress)); } InetAddress(const InetAddress *a) { memcpy(this,a,sizeof(InetAddress)); } InetAddress(const struct sockaddr_storage &ss) { *this = ss; } InetAddress(const struct sockaddr_storage *ss) { *this = ss; } InetAddress(const struct sockaddr &sa) { *this = sa; } InetAddress(const struct sockaddr *sa) { *this = sa; } InetAddress(const struct sockaddr_in &sa) { *this = sa; } InetAddress(const struct sockaddr_in *sa) { *this = sa; } InetAddress(const struct sockaddr_in6 &sa) { *this = sa; } InetAddress(const struct sockaddr_in6 *sa) { *this = sa; } InetAddress(const void *ipBytes,unsigned int ipLen,unsigned int port) { this->set(ipBytes,ipLen,port); } InetAddress(const uint32_t ipv4,unsigned int port) { this->set(&ipv4,4,port); } InetAddress(const char *ipSlashPort) { this->fromString(ipSlashPort); } inline InetAddress &operator=(const InetAddress &a) { if (&a != this) memcpy(this,&a,sizeof(InetAddress)); return *this; } inline InetAddress &operator=(const InetAddress *a) { if (a != this) memcpy(this,a,sizeof(InetAddress)); return *this; } inline InetAddress &operator=(const struct sockaddr_storage &ss) { if (reinterpret_cast(&ss) != this) memcpy(this,&ss,sizeof(InetAddress)); return *this; } inline InetAddress &operator=(const struct sockaddr_storage *ss) { if (reinterpret_cast(ss) != this) memcpy(this,ss,sizeof(InetAddress)); return *this; } inline InetAddress &operator=(const struct sockaddr_in &sa) { if (reinterpret_cast(&sa) != this) { memset(this,0,sizeof(InetAddress)); memcpy(this,&sa,sizeof(struct sockaddr_in)); } return *this; } inline InetAddress &operator=(const struct sockaddr_in *sa) { if (reinterpret_cast(sa) != this) { memset(this,0,sizeof(InetAddress)); memcpy(this,sa,sizeof(struct sockaddr_in)); } return *this; } inline InetAddress &operator=(const struct sockaddr_in6 &sa) { if (reinterpret_cast(&sa) != this) { memset(this,0,sizeof(InetAddress)); memcpy(this,&sa,sizeof(struct sockaddr_in6)); } return *this; } inline InetAddress &operator=(const struct sockaddr_in6 *sa) { if (reinterpret_cast(sa) != this) { memset(this,0,sizeof(InetAddress)); memcpy(this,sa,sizeof(struct sockaddr_in6)); } return *this; } inline InetAddress &operator=(const struct sockaddr &sa) { if (reinterpret_cast(&sa) != this) { memset(this,0,sizeof(InetAddress)); switch(sa.sa_family) { case AF_INET: memcpy(this,&sa,sizeof(struct sockaddr_in)); break; case AF_INET6: memcpy(this,&sa,sizeof(struct sockaddr_in6)); break; } } return *this; } inline InetAddress &operator=(const struct sockaddr *sa) { if (reinterpret_cast(sa) != this) { memset(this,0,sizeof(InetAddress)); switch(sa->sa_family) { case AF_INET: memcpy(this,sa,sizeof(struct sockaddr_in)); break; case AF_INET6: memcpy(this,sa,sizeof(struct sockaddr_in6)); break; } } return *this; } /** * @return IP scope classification (e.g. loopback, link-local, private, global) */ IpScope ipScope() const; /** * Set from a raw IP and port number * * @param ipBytes Bytes of IP address in network byte order * @param ipLen Length of IP address: 4 or 16 * @param port Port number or 0 for none */ void set(const void *ipBytes,unsigned int ipLen,unsigned int port); /** * Set the port component * * @param port Port, 0 to 65535 */ inline void setPort(unsigned int port) { switch(ss_family) { case AF_INET: reinterpret_cast(this)->sin_port = Utils::hton((uint16_t)port); break; case AF_INET6: reinterpret_cast(this)->sin6_port = Utils::hton((uint16_t)port); break; } } /** * @return True if this network/netmask route describes a default route (e.g. 0.0.0.0/0) */ inline bool isDefaultRoute() const { switch(ss_family) { case AF_INET: return ( (reinterpret_cast(this)->sin_addr.s_addr == 0) && (reinterpret_cast(this)->sin_port == 0) ); case AF_INET6: const uint8_t *ipb = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); for(int i=0;i<16;++i) { if (ipb[i]) return false; } return (reinterpret_cast(this)->sin6_port == 0); } return false; } /** * @return ASCII IP/port format representation */ char *toString(char buf[64]) const; /** * @return IP portion only, in ASCII string format */ char *toIpString(char buf[64]) const; /** * @param ipSlashPort IP/port (port is optional, will be 0 if not included) * @return True if address appeared to be valid */ bool fromString(const char *ipSlashPort); /** * @return Port or 0 if no port component defined */ inline unsigned int port() const { switch(ss_family) { case AF_INET: return Utils::ntoh((uint16_t)(reinterpret_cast(this)->sin_port)); case AF_INET6: return Utils::ntoh((uint16_t)(reinterpret_cast(this)->sin6_port)); default: return 0; } } /** * Alias for port() * * This just aliases port() to make code more readable when netmask bits * are stuffed there, as they are in Network, EthernetTap, and a few other * spots. * * @return Netmask bits */ inline unsigned int netmaskBits() const { return port(); } /** * @return True if netmask bits is valid for the address type */ inline bool netmaskBitsValid() const { const unsigned int n = port(); switch(ss_family) { case AF_INET: return (n <= 32); case AF_INET6: return (n <= 128); } return false; } /** * Alias for port() * * This just aliases port() because for gateways we use this field to * store the gateway metric. * * @return Gateway metric */ inline unsigned int metric() const { return port(); } /** * Construct a full netmask as an InetAddress * * @return Netmask such as 255.255.255.0 if this address is /24 (port field will be unchanged) */ InetAddress netmask() const; /** * Constructs a broadcast address from a network/netmask address * * This is only valid for IPv4 and will return a NULL InetAddress for other * address families. * * @return Broadcast address (only IP portion is meaningful) */ InetAddress broadcast() const; /** * Return the network -- a.k.a. the IP ANDed with the netmask * * @return Network e.g. 10.0.1.0/24 from 10.0.1.200/24 */ InetAddress network() const; /** * Test whether this IPv6 prefix matches the prefix of a given IPv6 address * * @param addr Address to check * @return True if this IPv6 prefix matches the prefix of a given IPv6 address */ bool isEqualPrefix(const InetAddress &addr) const; /** * Test whether this IP/netmask contains this address * * @param addr Address to check * @return True if this IP/netmask (route) contains this address */ bool containsAddress(const InetAddress &addr) const; /** * @return True if this is an IPv4 address */ inline bool isV4() const { return (ss_family == AF_INET); } /** * @return True if this is an IPv6 address */ inline bool isV6() const { return (ss_family == AF_INET6); } /** * @return pointer to raw address bytes or NULL if not available */ inline const void *rawIpData() const { switch(ss_family) { case AF_INET: return (const void *)&(reinterpret_cast(this)->sin_addr.s_addr); case AF_INET6: return (const void *)(reinterpret_cast(this)->sin6_addr.s6_addr); default: return 0; } } /** * @return InetAddress containing only the IP portion of this address and a zero port, or NULL if not IPv4 or IPv6 */ inline InetAddress ipOnly() const { InetAddress r; switch(ss_family) { case AF_INET: r.ss_family = AF_INET; reinterpret_cast(&r)->sin_addr.s_addr = reinterpret_cast(this)->sin_addr.s_addr; break; case AF_INET6: r.ss_family = AF_INET6; memcpy(reinterpret_cast(&r)->sin6_addr.s6_addr,reinterpret_cast(this)->sin6_addr.s6_addr,16); break; } return r; } /** * Performs an IP-only comparison or, if that is impossible, a memcmp() * * @param a InetAddress to compare again * @return True if only IP portions are equal (false for non-IP or null addresses) */ inline bool ipsEqual(const InetAddress &a) const { if (ss_family == a.ss_family) { if (ss_family == AF_INET) return (reinterpret_cast(this)->sin_addr.s_addr == reinterpret_cast(&a)->sin_addr.s_addr); if (ss_family == AF_INET6) return (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,16) == 0); return (memcmp(this,&a,sizeof(InetAddress)) == 0); } return false; } /** * Performs an IP-only comparison or, if that is impossible, a memcmp() * * This version compares only the first 64 bits of IPv6 addresses. * * @param a InetAddress to compare again * @return True if only IP portions are equal (false for non-IP or null addresses) */ inline bool ipsEqual2(const InetAddress &a) const { if (ss_family == a.ss_family) { if (ss_family == AF_INET) return (reinterpret_cast(this)->sin_addr.s_addr == reinterpret_cast(&a)->sin_addr.s_addr); if (ss_family == AF_INET6) return (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,8) == 0); return (memcmp(this,&a,sizeof(InetAddress)) == 0); } return false; } inline unsigned long hashCode() const { if (ss_family == AF_INET) { return ((unsigned long)reinterpret_cast(this)->sin_addr.s_addr + (unsigned long)reinterpret_cast(this)->sin_port); } else if (ss_family == AF_INET6) { unsigned long tmp = reinterpret_cast(this)->sin6_port; const uint8_t *a = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); for(long i=0;i<16;++i) reinterpret_cast(&tmp)[i % sizeof(tmp)] ^= a[i]; return tmp; } else { unsigned long tmp = reinterpret_cast(this)->sin6_port; const uint8_t *a = reinterpret_cast(this); for(long i=0;i<(long)sizeof(InetAddress);++i) reinterpret_cast(&tmp)[i % sizeof(tmp)] ^= a[i]; return tmp; } } /** * Set to null/zero */ inline void zero() { memset(this,0,sizeof(InetAddress)); } /** * Check whether this is a network/route rather than an IP assignment * * A network is an IP/netmask where everything after the netmask is * zero e.g. 10.0.0.0/8. * * @return True if everything after netmask bits is zero */ bool isNetwork() const; /** * Find the total number of prefix bits that match between this IP and another * * @param b Second IP to compare with * @return Number of matching prefix bits or 0 if none match or IPs are of different families (e.g. v4 and v6) */ inline unsigned int matchingPrefixBits(const InetAddress &b) const { unsigned int c = 0; if (ss_family == b.ss_family) { switch(ss_family) { case AF_INET: { uint32_t ip0 = Utils::ntoh((uint32_t)reinterpret_cast(this)->sin_addr.s_addr); uint32_t ip1 = Utils::ntoh((uint32_t)reinterpret_cast(&b)->sin_addr.s_addr); while ((ip0 >> 31) == (ip1 >> 31)) { ip0 <<= 1; ip1 <<= 1; if (++c == 32) break; } } break; case AF_INET6: { const uint8_t *ip0 = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); const uint8_t *ip1 = reinterpret_cast(reinterpret_cast(&b)->sin6_addr.s6_addr); for(unsigned int i=0;i<16;++i) { if (ip0[i] == ip1[i]) { c += 8; } else { uint8_t ip0b = ip0[i]; uint8_t ip1b = ip1[i]; uint8_t bit = 0x80; while (bit != 0) { if ((ip0b & bit) != (ip1b & bit)) break; ++c; bit >>= 1; } break; } } } break; } } return c; } /** * @return 14-bit (0-16383) hash of this IP's first 24 or 48 bits (for V4 or V6) for rate limiting code, or 0 if non-IP */ inline unsigned long rateGateHash() const { unsigned long h = 0; switch(ss_family) { case AF_INET: h = (Utils::ntoh((uint32_t)reinterpret_cast(this)->sin_addr.s_addr) & 0xffffff00) >> 8; h ^= (h >> 14); break; case AF_INET6: { const uint8_t *ip = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); h = ((unsigned long)ip[0]); h <<= 1; h += ((unsigned long)ip[1]); h <<= 1; h += ((unsigned long)ip[2]); h <<= 1; h += ((unsigned long)ip[3]); h <<= 1; h += ((unsigned long)ip[4]); h <<= 1; h += ((unsigned long)ip[5]); } break; } return (h & 0x3fff); } /** * @return True if address family is non-zero */ inline operator bool() const { return (ss_family != 0); } template inline void serialize(Buffer &b) const { // This is used in the protocol and must be the same as describe in places // like VERB_HELLO in Packet.hpp. switch(ss_family) { case AF_INET: b.append((uint8_t)0x04); b.append(&(reinterpret_cast(this)->sin_addr.s_addr),4); b.append((uint16_t)port()); // just in case sin_port != uint16_t return; case AF_INET6: b.append((uint8_t)0x06); b.append(reinterpret_cast(this)->sin6_addr.s6_addr,16); b.append((uint16_t)port()); // just in case sin_port != uint16_t return; default: b.append((uint8_t)0); return; } } template inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0) { memset(this,0,sizeof(InetAddress)); unsigned int p = startAt; switch(b[p++]) { case 0: return 1; case 0x01: // TODO: Ethernet address (but accept for forward compatibility) return 7; case 0x02: // TODO: Bluetooth address (but accept for forward compatibility) return 7; case 0x03: // TODO: Other address types (but accept for forward compatibility) // These could be extended/optional things like AF_UNIX, LTE Direct, shared memory, etc. return (unsigned int)(b.template at(p) + 3); // other addresses begin with 16-bit non-inclusive length case 0x04: ss_family = AF_INET; memcpy(&(reinterpret_cast(this)->sin_addr.s_addr),b.field(p,4),4); p += 4; reinterpret_cast(this)->sin_port = Utils::hton(b.template at(p)); p += 2; break; case 0x06: ss_family = AF_INET6; memcpy(reinterpret_cast(this)->sin6_addr.s6_addr,b.field(p,16),16); p += 16; reinterpret_cast(this)->sin_port = Utils::hton(b.template at(p)); p += 2; break; default: throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_BAD_ENCODING; } return (p - startAt); } bool operator==(const InetAddress &a) const; bool operator<(const InetAddress &a) const; inline bool operator!=(const InetAddress &a) const { return !(*this == a); } inline bool operator>(const InetAddress &a) const { return (a < *this); } inline bool operator<=(const InetAddress &a) const { return !(a < *this); } inline bool operator>=(const InetAddress &a) const { return !(*this < a); } /** * @param mac MAC address seed * @return IPv6 link-local address */ static InetAddress makeIpv6LinkLocal(const MAC &mac); /** * Compute private IPv6 unicast address from network ID and ZeroTier address * * This generates a private unicast IPv6 address that is mostly compliant * with the letter of RFC4193 and certainly compliant in spirit. * * RFC4193 specifies a format of: * * | 7 bits |1| 40 bits | 16 bits | 64 bits | * | Prefix |L| Global ID | Subnet ID | Interface ID | * * The 'L' bit is set to 1, yielding an address beginning with 0xfd. Then * the network ID is filled into the global ID, subnet ID, and first byte * of the "interface ID" field. Since the first 40 bits of the network ID * is the unique ZeroTier address of its controller, this makes a very * good random global ID. Since network IDs have 24 more bits, we let it * overflow into the interface ID. * * After that we pad with two bytes: 0x99, 0x93, namely the default ZeroTier * port in hex. * * Finally we fill the remaining 40 bits of the interface ID field with * the 40-bit unique ZeroTier device ID of the network member. * * This yields a valid RFC4193 address with a random global ID, a * meaningful subnet ID, and a unique interface ID, all mappable back onto * ZeroTier space. * * This in turn could allow us, on networks numbered this way, to emulate * IPv6 NDP and eliminate all multicast. This could be beneficial for * small devices and huge networks, e.g. IoT applications. * * The returned address is given an odd prefix length of /88, since within * a given network only the last 40 bits (device ID) are variable. This * is a bit unusual but as far as we know should not cause any problems with * any non-braindead IPv6 stack. * * @param nwid 64-bit network ID * @param zeroTierAddress 40-bit device address (in least significant 40 bits, highest 24 bits ignored) * @return IPv6 private unicast address with /88 netmask */ static InetAddress makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress); /** * Compute a private IPv6 "6plane" unicast address from network ID and ZeroTier address */ static InetAddress makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress); }; } // namespace ZeroTier #endif