/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "../include/ZeroTierOne.h" #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "IncomingPacket.hpp" #include "Topology.hpp" #include "Switch.hpp" #include "Peer.hpp" #include "NetworkController.hpp" #include "SelfAwareness.hpp" #include "Salsa20.hpp" #include "Node.hpp" #include "CertificateOfMembership.hpp" #include "Capability.hpp" #include "Tag.hpp" #include "Revocation.hpp" #include "Trace.hpp" #include #include #include #include namespace ZeroTier { bool IncomingPacket::tryDecode(const RuntimeEnvironment *RR,void *tPtr) { const Address sourceAddress(source()); try { // Check for trusted paths or unencrypted HELLOs (HELLO is the only packet sent in the clear) const unsigned int c = cipher(); bool trusted = false; if (c == ZT_PROTO_CIPHER_SUITE__NONE) { // If this is marked as a packet via a trusted path, check source address and path ID. // Obviously if no trusted paths are configured this always returns false and such // packets are dropped on the floor. const uint64_t tpid = trustedPathId(); if (RR->topology->shouldInboundPathBeTrusted(_path->address(),tpid)) { trusted = true; } else { RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,packetId(),sourceAddress,hops(),"path not trusted"); return true; } } else if ((c == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(verb() == Packet::VERB_HELLO)) { // Only HELLO is allowed in the clear, but will still have a MAC return _doHELLO(RR,tPtr,false); } const SharedPtr peer(RR->topology->get(sourceAddress)); if (peer) { if (!trusted) { if (!dearmor(peer->key())) { RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,packetId(),sourceAddress,hops(),"invalid MAC"); _path->recordInvalidPacket(); return true; } } if (!uncompress()) { RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),Packet::VERB_NOP,"LZ4 decompression failed"); return true; } const Packet::Verb v = verb(); bool r = true; switch(v) { //case Packet::VERB_NOP: default: // ignore unknown verbs, but if they pass auth check they are "received" peer->received(tPtr,_path,hops(),packetId(),payloadLength(),v,0,Packet::VERB_NOP,0); break; case Packet::VERB_HELLO: r = _doHELLO(RR,tPtr,true); break; case Packet::VERB_ACK: r = _doACK(RR,tPtr,peer); break; case Packet::VERB_QOS_MEASUREMENT: r = _doQOS_MEASUREMENT(RR,tPtr,peer); break; case Packet::VERB_ERROR: r = _doERROR(RR,tPtr,peer); break; case Packet::VERB_OK: r = _doOK(RR,tPtr,peer); break; case Packet::VERB_WHOIS: r = _doWHOIS(RR,tPtr,peer); break; case Packet::VERB_RENDEZVOUS: r = _doRENDEZVOUS(RR,tPtr,peer); break; case Packet::VERB_FRAME: r = _doFRAME(RR,tPtr,peer); break; case Packet::VERB_EXT_FRAME: r = _doEXT_FRAME(RR,tPtr,peer); break; case Packet::VERB_ECHO: r = _doECHO(RR,tPtr,peer); break; case Packet::VERB_MULTICAST_LIKE: r = _doMULTICAST_LIKE(RR,tPtr,peer); break; case Packet::VERB_NETWORK_CREDENTIALS: r = _doNETWORK_CREDENTIALS(RR,tPtr,peer); break; case Packet::VERB_NETWORK_CONFIG_REQUEST: r = _doNETWORK_CONFIG_REQUEST(RR,tPtr,peer); break; case Packet::VERB_NETWORK_CONFIG: r = _doNETWORK_CONFIG(RR,tPtr,peer); break; case Packet::VERB_MULTICAST_GATHER: r = _doMULTICAST_GATHER(RR,tPtr,peer); break; case Packet::VERB_MULTICAST_FRAME: r = _doMULTICAST_FRAME(RR,tPtr,peer); break; case Packet::VERB_PUSH_DIRECT_PATHS: r = _doPUSH_DIRECT_PATHS(RR,tPtr,peer); break; case Packet::VERB_USER_MESSAGE: r = _doUSER_MESSAGE(RR,tPtr,peer); break; case Packet::VERB_REMOTE_TRACE: r = _doREMOTE_TRACE(RR,tPtr,peer); break; case Packet::VERB_SET_LOCATOR: break; case Packet::VERB_WILL_RELAY: break; case Packet::VERB_EPHEMERAL_KEY: break; } return r; } else { RR->sw->requestWhois(tPtr,RR->node->now(),sourceAddress); return false; } } catch (int ztExcCode) { RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),verb(),"unexpected exception in tryDecode()"); return true; } catch ( ... ) { RR->t->incomingPacketInvalid(tPtr,_path,packetId(),sourceAddress,hops(),verb(),"unexpected exception in tryDecode()"); return true; } } bool IncomingPacket::_doERROR(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB]; const uint64_t inRePacketId = at(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID); const Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE]; uint64_t networkId = 0; /* Security note: we do not gate doERROR() with expectingReplyTo() to * avoid having to log every outgoing packet ID. Instead we put the * logic to determine whether we should consider an ERROR in each * error handler. In most cases these are only trusted in specific * circumstances. */ switch(errorCode) { case Packet::ERROR_OBJ_NOT_FOUND: // Object not found, currently only meaningful from network controllers. if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) { networkId = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); if ((network)&&(network->controller() == peer->address())) network->setNotFound(); } break; case Packet::ERROR_UNSUPPORTED_OPERATION: // This can be sent in response to any operation, though right now we only // consider it meaningful from network controllers. This would indicate // that the queried node does not support acting as a controller. if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) { networkId = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); if ((network)&&(network->controller() == peer->address())) network->setNotFound(); } break; case Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE: { // Peers can send this to ask for a cert for a network. networkId = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); const int64_t now = RR->node->now(); if ((network)&&(network->config().com)) network->pushCredentialsNow(tPtr,peer->address(),now); } break; case Packet::ERROR_NETWORK_ACCESS_DENIED_: { // Network controller: network access denied. networkId = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); if ((network)&&(network->controller() == peer->address())) network->setAccessDenied(); } break; case Packet::ERROR_MULTICAST_STFU: { // Members of networks can use this error to indicate that they no longer // want to receive multicasts on a given channel. const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8,6),6),at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 14)); RR->mc->remove(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD),mg,peer->address()); } break; default: break; } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_ERROR,inRePacketId,inReVerb,networkId); return true; } bool IncomingPacket::_doACK(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (!peer->rateGateACK(RR->node->now())) return true; /* Dissect incoming ACK packet. From this we can estimate current throughput of the path, establish known * maximums and detect packet loss. */ if (peer->localMultipathSupport()) { int32_t ackedBytes; if (payloadLength() != sizeof(ackedBytes)) { return true; // ignore } memcpy(&ackedBytes, payload(), sizeof(ackedBytes)); _path->receivedAck(RR->node->now(), Utils::ntoh(ackedBytes)); peer->inferRemoteMultipathEnabled(); } return true; } bool IncomingPacket::_doQOS_MEASUREMENT(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (!peer->rateGateQoS(RR->node->now())) return true; /* Dissect incoming QoS packet. From this we can compute latency values and their variance. * The latency variance is used as a measure of "jitter". */ if (peer->localMultipathSupport()) { if (payloadLength() > ZT_PATH_MAX_QOS_PACKET_SZ || payloadLength() < ZT_PATH_MIN_QOS_PACKET_SZ) { return true; // ignore } const int64_t now = RR->node->now(); uint64_t rx_id[ZT_PATH_QOS_TABLE_SIZE]; uint16_t rx_ts[ZT_PATH_QOS_TABLE_SIZE]; char *begin = (char *)payload(); char *ptr = begin; int count = 0; int len = payloadLength(); // Read packet IDs and latency compensation intervals for each packet tracked by this QoS packet while (ptr < (begin + len) && (count < ZT_PATH_QOS_TABLE_SIZE)) { memcpy((void*)&rx_id[count], ptr, sizeof(uint64_t)); ptr+=sizeof(uint64_t); memcpy((void*)&rx_ts[count], ptr, sizeof(uint16_t)); ptr+=sizeof(uint16_t); count++; } _path->receivedQoS(now, count, rx_id, rx_ts); peer->inferRemoteMultipathEnabled(); } return true; } bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,void *tPtr,const bool alreadyAuthenticated) { const int64_t now = RR->node->now(); const uint64_t pid = packetId(); const Address fromAddress(source()); const unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION]; const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION]; const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION]; const unsigned int vRevision = at(ZT_PROTO_VERB_HELLO_IDX_REVISION); const int64_t timestamp = at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); Identity id; unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(*this,ZT_PROTO_VERB_HELLO_IDX_IDENTITY); if (protoVersion < ZT_PROTO_VERSION_MIN) { RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"protocol version too old"); return true; } if (fromAddress != id.address()) { RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"identity/address mismatch"); return true; } SharedPtr peer(RR->topology->get(id.address())); if (peer) { // We already have an identity with this address -- check for collisions if (!alreadyAuthenticated) { if (peer->identity() != id) { // Identity is different from the one we already have -- address collision // Check rate limits if (!RR->node->rateGateIdentityVerification(now,_path->address())) return true; uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]; if (RR->identity.agree(id,key)) { if (dearmor(key)) { // ensure packet is authentic, otherwise drop RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"address collision"); Packet outp(id.address(),RR->identity.address(),Packet::VERB_ERROR); outp.append((uint8_t)Packet::VERB_HELLO); outp.append((uint64_t)pid); outp.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION); outp.armor(key,true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } else { RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid MAC"); } } else { RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid identity"); } return true; } else { // Identity is the same as the one we already have -- check packet integrity if (!dearmor(peer->key())) { RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid MAC"); return true; } // Continue at // VALID } } // else if alreadyAuthenticated then continue at // VALID } else { // We don't already have an identity with this address -- validate and learn it // Sanity check: this basically can't happen if (alreadyAuthenticated) { RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"illegal alreadyAuthenticated state"); return true; } // Check rate limits if (!RR->node->rateGateIdentityVerification(now,_path->address())) { RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"rate limit exceeded"); return true; } // Check packet integrity and MAC (this is faster than locallyValidate() so do it first to filter out total crap) SharedPtr newPeer(new Peer(RR,RR->identity,id)); if (!dearmor(newPeer->key())) { RR->t->incomingPacketMessageAuthenticationFailure(tPtr,_path,pid,fromAddress,hops(),"invalid MAC"); return true; } // Check that identity's address is valid as per the derivation function if (!id.locallyValidate()) { RR->t->incomingPacketDroppedHELLO(tPtr,_path,pid,fromAddress,"invalid identity"); return true; } peer = RR->topology->add(newPeer); // Continue at // VALID } // VALID -- if we made it here, packet passed identity and authenticity checks! // Get address to which this packet was sent to learn our external surface address if packet was direct. if (hops() == 0) { InetAddress externalSurfaceAddress; if (ptr < size()) { ptr += externalSurfaceAddress.deserialize(*this,ptr); if ((externalSurfaceAddress)&&(hops() == 0)) RR->sa->iam(tPtr,id.address(),_path->localSocket(),_path->address(),externalSurfaceAddress,RR->topology->isRoot(id),now); } } // Send OK(HELLO) with an echo of the packet's timestamp and some of the same // information about us: version, sent-to address, etc. Packet outp(id.address(),RR->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_HELLO); outp.append((uint64_t)pid); outp.append((uint64_t)timestamp); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); _path->address().serialize(outp); outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),now); peer->setRemoteVersion(protoVersion,vMajor,vMinor,vRevision); // important for this to go first so received() knows the version peer->received(tPtr,_path,hops(),pid,payloadLength(),Packet::VERB_HELLO,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB]; const uint64_t inRePacketId = at(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID); uint64_t networkId = 0; if (!RR->node->expectingReplyTo(inRePacketId)) return true; switch(inReVerb) { case Packet::VERB_HELLO: { const uint64_t latency = RR->node->now() - at(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP); const unsigned int vProto = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION]; const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION]; const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION]; const unsigned int vRevision = at(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION); if (vProto < ZT_PROTO_VERSION_MIN) return true; if (hops() == 0) { _path->updateLatency((unsigned int)latency,RR->node->now()); if ((ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2) < size()) { InetAddress externalSurfaceAddress; externalSurfaceAddress.deserialize(*this,ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2); if (externalSurfaceAddress) RR->sa->iam(tPtr,peer->address(),_path->localSocket(),_path->address(),externalSurfaceAddress,RR->topology->isRoot(peer->identity()),RR->node->now()); } } peer->setRemoteVersion(vProto,vMajor,vMinor,vRevision); } break; case Packet::VERB_WHOIS: if (RR->topology->isRoot(peer->identity())) { unsigned int p = ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY; while (p < size()) { try { Identity id; p += id.deserialize(*this,p); if (id) RR->sw->doAnythingWaitingForPeer(tPtr,RR->topology->add(SharedPtr(new Peer(RR,RR->identity,id)))); } catch ( ... ) { break; } } } break; case Packet::VERB_NETWORK_CONFIG_REQUEST: { networkId = at(ZT_PROTO_VERB_OK_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); if (network) network->handleConfigChunk(tPtr,packetId(),source(),*this,ZT_PROTO_VERB_OK_IDX_PAYLOAD); } break; case Packet::VERB_MULTICAST_GATHER: { // TODO /* networkId = at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_NETWORK_ID); const SharedPtr network(RR->node->network(networkId)); if (network) { const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_MAC,6),6),at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_ADI)); const unsigned int count = at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 4); if (((ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6) + (count * 5)) <= size()) RR->mc->addMultiple(tPtr,RR->node->now(),networkId,mg,field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6,count * 5),count,at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS)); } */ } break; default: break; } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_OK,inRePacketId,inReVerb,networkId); return true; } bool IncomingPacket::_doWHOIS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (!peer->rateGateInboundWhoisRequest(RR->node->now())) return true; Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_WHOIS); outp.append(packetId()); unsigned int count = 0; unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; while ((ptr + ZT_ADDRESS_LENGTH) <= size()) { const Address addr(field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH; const Identity id(RR->topology->getIdentity(tPtr,addr)); if (id) { id.serialize(outp,false); ++count; } else { // Request unknown WHOIS from upstream from us (if we have one) RR->sw->requestWhois(tPtr,RR->node->now(),addr); } } if (count > 0) { outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_WHOIS,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doRENDEZVOUS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (RR->topology->isRoot(peer->identity())) { const Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); const SharedPtr rendezvousWith(RR->topology->get(with)); if (rendezvousWith) { const unsigned int port = at(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT); const unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN]; if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) { InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port); if (RR->node->shouldUsePathForZeroTierTraffic(tPtr,with,_path->localSocket(),atAddr)) { const uint64_t junk = Utils::random(); RR->node->putPacket(tPtr,_path->localSocket(),atAddr,&junk,4,2); // send low-TTL junk packet to 'open' local NAT(s) and stateful firewalls rendezvousWith->sendHELLO(tPtr,_path->localSocket(),atAddr,RR->node->now()); } } } } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_RENDEZVOUS,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doFRAME(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const uint64_t nwid = at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID); const SharedPtr network(RR->node->network(nwid)); if (network) { if (network->gate(tPtr,peer)) { if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) { const unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE); const MAC sourceMac(peer->address(),nwid); const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD; const uint8_t *const frameData = reinterpret_cast(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD; if (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),sourceMac,network->mac(),frameData,frameLen,etherType,0) > 0) RR->node->putFrame(tPtr,nwid,network->userPtr(),sourceMac,network->mac(),etherType,0,(const void *)frameData,frameLen); } } else { _sendErrorNeedCredentials(RR,tPtr,peer,nwid); return false; } } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_FRAME,0,Packet::VERB_NOP,nwid); return true; } bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const uint64_t nwid = at(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID); const SharedPtr network(RR->node->network(nwid)); if (network) { const unsigned int flags = (*this)[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS]; unsigned int comLen = 0; if ((flags & 0x01) != 0) { // inline COM with EXT_FRAME is deprecated but still used with old peers CertificateOfMembership com; comLen = com.deserialize(*this,ZT_PROTO_VERB_EXT_FRAME_IDX_COM); if (com) network->addCredential(tPtr,com); } if (!network->gate(tPtr,peer)) { RR->t->incomingNetworkAccessDenied(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,true); _sendErrorNeedCredentials(RR,tPtr,peer,nwid); return false; } if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) { const unsigned int etherType = at(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE); const MAC to(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO,ZT_PROTO_VERB_EXT_FRAME_LEN_TO),ZT_PROTO_VERB_EXT_FRAME_LEN_TO); const MAC from(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM,ZT_PROTO_VERB_EXT_FRAME_LEN_FROM),ZT_PROTO_VERB_EXT_FRAME_LEN_FROM); const unsigned int frameLen = size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD); const uint8_t *const frameData = (const uint8_t *)field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD,frameLen); if ((!from)||(from == network->mac())) { peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid); return true; } switch (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),from,to,frameData,frameLen,etherType,0)) { case 1: if (from != MAC(peer->address(),nwid)) { if (network->config().permitsBridging(peer->address())) { network->learnBridgeRoute(from,peer->address()); } else { RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"bridging not allowed (remote)"); peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid); return true; } } else if (to != network->mac()) { if (to.isMulticast()) { if (network->config().multicastLimit == 0) { RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"multicast disabled"); peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid); return true; } } else if (!network->config().permitsBridging(RR->identity.address())) { RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_EXT_FRAME,from,to,"bridging not allowed (local)"); peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid); return true; } } // fall through -- 2 means accept regardless of bridging checks or other restrictions case 2: RR->node->putFrame(tPtr,nwid,network->userPtr(),from,to,etherType,0,(const void *)frameData,frameLen); break; } } if ((flags & 0x10) != 0) { // ACK requested Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK); outp.append((uint8_t)Packet::VERB_EXT_FRAME); outp.append((uint64_t)packetId()); outp.append((uint64_t)nwid); outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_EXT_FRAME,0,Packet::VERB_NOP,nwid); return true; } bool IncomingPacket::_doECHO(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (!peer->rateGateEchoRequest(RR->node->now())) return true; const uint64_t pid = packetId(); Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_ECHO); outp.append((uint64_t)pid); if (size() > ZT_PACKET_IDX_PAYLOAD) outp.append(reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD,size() - ZT_PACKET_IDX_PAYLOAD); outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); peer->received(tPtr,_path,hops(),pid,payloadLength(),Packet::VERB_ECHO,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const int64_t now = RR->node->now(); bool authorized = false; uint64_t lastNwid = 0; // Packet contains a series of 18-byte network,MAC,ADI tuples for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;(ptr+18)<=size();ptr+=18) { // TODO /* const uint64_t nwid = at(ptr); if (nwid != lastNwid) { lastNwid = nwid; SharedPtr network(RR->node->network(nwid)); if (network) authorized = network->gate(tPtr,peer); //if (!authorized) // authorized = ((RR->topology->amUpstream())||(RR->node->localControllerHasAuthorized(now,nwid,peer->address()))); } if (authorized) RR->mc->add(tPtr,now,nwid,MulticastGroup(MAC(field(ptr + 8,6),6),at(ptr + 14)),peer->address()); */ } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_LIKE,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doNETWORK_CREDENTIALS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (!peer->rateGateCredentialsReceived(RR->node->now())) return true; CertificateOfMembership com; Capability cap; Tag tag; Revocation revocation; CertificateOfOwnership coo; SharedPtr network; unsigned int p = ZT_PACKET_IDX_PAYLOAD; while ((p < size())&&((*this)[p] != 0)) { p += com.deserialize(*this,p); if (com) { network = RR->node->network(com.networkId()); if (network) { if (network->addCredential(tPtr,com) == Membership::ADD_DEFERRED_FOR_WHOIS) return false; } } } ++p; // skip trailing 0 after COMs if present if (p < size()) { // older ZeroTier versions do not send capabilities, tags, or revocations const unsigned int numCapabilities = at(p); p += 2; for(unsigned int i=0;iid() != cap.networkId())) network = RR->node->network(cap.networkId()); if (network) { if (network->addCredential(tPtr,cap) == Membership::ADD_DEFERRED_FOR_WHOIS) return false; } } if (p >= size()) return true; const unsigned int numTags = at(p); p += 2; for(unsigned int i=0;iid() != tag.networkId())) network = RR->node->network(tag.networkId()); if (network) { if (network->addCredential(tPtr,tag) == Membership::ADD_DEFERRED_FOR_WHOIS) return false; } } if (p >= size()) return true; const unsigned int numRevocations = at(p); p += 2; for(unsigned int i=0;iid() != revocation.networkId())) network = RR->node->network(revocation.networkId()); if (network) { if (network->addCredential(tPtr,peer->address(),revocation) == Membership::ADD_DEFERRED_FOR_WHOIS) return false; } } if (p >= size()) return true; const unsigned int numCoos = at(p); p += 2; for(unsigned int i=0;iid() != coo.networkId())) network = RR->node->network(coo.networkId()); if (network) { if (network->addCredential(tPtr,coo) == Membership::ADD_DEFERRED_FOR_WHOIS) return false; } } } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_NETWORK_CREDENTIALS,0,Packet::VERB_NOP,(network) ? network->id() : 0); return true; } bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID); const unsigned int hopCount = hops(); const uint64_t requestPacketId = packetId(); if (RR->localNetworkController) { const unsigned int metaDataLength = (ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN <= size()) ? at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN) : 0; const char *metaDataBytes = (metaDataLength != 0) ? (const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength) : (const char *)0; const Dictionary metaData(metaDataBytes,metaDataLength); RR->localNetworkController->request(nwid,(hopCount > 0) ? InetAddress() : _path->address(),requestPacketId,peer->identity(),metaData); } else { Packet outp(peer->address(),RR->identity.address(),Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION); outp.append(nwid); outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } peer->received(tPtr,_path,hopCount,requestPacketId,payloadLength(),Packet::VERB_NETWORK_CONFIG_REQUEST,0,Packet::VERB_NOP,nwid); return true; } bool IncomingPacket::_doNETWORK_CONFIG(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const SharedPtr network(RR->node->network(at(ZT_PACKET_IDX_PAYLOAD))); if (network) { const uint64_t configUpdateId = network->handleConfigChunk(tPtr,packetId(),source(),*this,ZT_PACKET_IDX_PAYLOAD); if (configUpdateId) { Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK); outp.append((uint8_t)Packet::VERB_ECHO); outp.append((uint64_t)packetId()); outp.append((uint64_t)network->id()); outp.append((uint64_t)configUpdateId); outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_NETWORK_CONFIG,0,Packet::VERB_NOP,(network) ? network->id() : 0); return true; } bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID); const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS]; const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC,6),6),at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI)); const unsigned int gatherLimit = at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT); const SharedPtr network(RR->node->network(nwid)); if ((flags & 0x01) != 0) { try { CertificateOfMembership com; com.deserialize(*this,ZT_PROTO_VERB_MULTICAST_GATHER_IDX_COM); if ((com)&&(network)) network->addCredential(tPtr,com); } catch ( ... ) {} // discard invalid COMs } if (network) { if (!network->gate(tPtr,peer)) { _sendErrorNeedCredentials(RR,tPtr,peer,nwid); return false; } } const int64_t now = RR->node->now(); if (gatherLimit) { // TODO /* Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER); outp.append(packetId()); outp.append(nwid); mg.mac().appendTo(outp); outp.append((uint32_t)mg.adi()); const unsigned int gatheredLocally = RR->mc->gather(peer->address(),nwid,mg,outp,gatherLimit); if (gatheredLocally > 0) { outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),now); } */ } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_GATHER,0,Packet::VERB_NOP,nwid); return true; } bool IncomingPacket::_doMULTICAST_FRAME(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { unsigned int offset = ZT_PACKET_IDX_PAYLOAD; const uint64_t nwid = at(offset); offset += 8; const unsigned int flags = (*this)[offset]; ++offset; const SharedPtr network(RR->node->network(nwid)); if (network) { if ((flags & 0x01) != 0) { // This is deprecated but may still be sent by old peers CertificateOfMembership com; offset += com.deserialize(*this,offset); if (com) network->addCredential(tPtr,com); } if (!network->gate(tPtr,peer)) { _sendErrorNeedCredentials(RR,tPtr,peer,nwid); return false; } unsigned int gatherLimit = 0; if ((flags & 0x02) != 0) { gatherLimit = at(offset); offset += 4; } MAC from; if ((flags & 0x04) != 0) { from.setTo(field(offset,6),6); offset += 6; } else { from.fromAddress(peer->address(),nwid); } const unsigned int recipientsOffset = offset; std::list
recipients; if ((flags & 0x08) != 0) { const unsigned int rc = at(offset); offset += 2; for(unsigned int i=0;iaddress())&&(a != RR->identity.address())) { recipients.push_back(a); } offset += 5; } } const unsigned int afterRecipientsOffset = offset; const MulticastGroup to(MAC(field(offset,6),6),at(offset + 6)); offset += 10; const unsigned int etherType = at(offset); offset += 2; const unsigned int frameLen = size() - offset; if (network->config().multicastLimit == 0) { RR->t->incomingNetworkFrameDropped(tPtr,network,_path,packetId(),size(),peer->address(),Packet::VERB_MULTICAST_FRAME,from,to.mac(),"multicast disabled"); peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,nwid); return true; } if (!to.mac().isMulticast()) { RR->t->incomingPacketInvalid(tPtr,_path,packetId(),source(),hops(),Packet::VERB_MULTICAST_FRAME,"destination not multicast"); peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,nwid); return true; } if ((!from)||(from.isMulticast())||(from == network->mac())) { RR->t->incomingPacketInvalid(tPtr,_path,packetId(),source(),hops(),Packet::VERB_MULTICAST_FRAME,"invalid source MAC"); peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,nwid); return true; } if ((frameLen > 0)&&(frameLen <= ZT_MAX_MTU)) { const uint8_t *const frameData = ((const uint8_t *)unsafeData()) + offset; if (network->filterIncomingPacket(tPtr,peer,RR->identity.address(),from,to.mac(),frameData,frameLen,etherType,0) > 0) { RR->node->putFrame(tPtr,nwid,network->userPtr(),from,to.mac(),etherType,0,(const void *)frameData,frameLen); } } if (!recipients.empty()) { // TODO /* const std::vector
anchors = network->config().anchors(); const bool amAnchor = (std::find(anchors.begin(),anchors.end(),RR->identity.address()) != anchors.end()); for(std::list
::iterator ra(recipients.begin());ra!=recipients.end();) { SharedPtr recipient(RR->topology->get(*ra)); if ((recipient)&&((recipient->remoteVersionProtocol() < 10)||(amAnchor))) { Packet outp(*ra,RR->identity.address(),Packet::VERB_MULTICAST_FRAME); outp.append(field(ZT_PACKET_IDX_PAYLOAD,recipientsOffset - ZT_PACKET_IDX_PAYLOAD),recipientsOffset - ZT_PACKET_IDX_PAYLOAD); outp.append(field(afterRecipientsOffset,size() - afterRecipientsOffset),size() - afterRecipientsOffset); RR->sw->send(tPtr,outp,true); recipients.erase(ra++); } else ++ra; } if (!recipients.empty()) { Packet outp(recipients.front(),RR->identity.address(),Packet::VERB_MULTICAST_FRAME); recipients.pop_front(); outp.append(field(ZT_PACKET_IDX_PAYLOAD,recipientsOffset - ZT_PACKET_IDX_PAYLOAD),recipientsOffset - ZT_PACKET_IDX_PAYLOAD); if (!recipients.empty()) { outp.append((uint16_t)recipients.size()); for(std::list
::iterator ra(recipients.begin());ra!=recipients.end();++ra) ra->appendTo(outp); } outp.append(field(afterRecipientsOffset,size() - afterRecipientsOffset),size() - afterRecipientsOffset); RR->sw->send(tPtr,outp,true); } */ } if (gatherLimit) { // DEPRECATED but still supported /* Packet outp(source(),RR->identity.address(),Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_MULTICAST_FRAME); outp.append(packetId()); outp.append(nwid); to.mac().appendTo(outp); outp.append((uint32_t)to.adi()); outp.append((unsigned char)0x02); // flag 0x02 = contains gather results if (RR->mc->gather(peer->address(),nwid,to,outp,gatherLimit)) { outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } */ } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_MULTICAST_FRAME,0,Packet::VERB_NOP,nwid); return true; } else { _sendErrorNeedCredentials(RR,tPtr,peer,nwid); return false; } } bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { const int64_t now = RR->node->now(); // First, subject this to a rate limit if (!peer->rateGatePushDirectPaths(now)) { peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP,0); return true; } // Second, limit addresses by scope and type uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE+1][2]; // [][0] is v4, [][1] is v6 memset(countPerScope,0,sizeof(countPerScope)); unsigned int count = at(ZT_PACKET_IDX_PAYLOAD); unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2; while (count--) { // if ptr overflows Buffer will throw /* unsigned int flags = (*this)[ptr++]; */ ++ptr; unsigned int extLen = at(ptr); ptr += 2; ptr += extLen; // unused right now unsigned int addrType = (*this)[ptr++]; unsigned int addrLen = (*this)[ptr++]; switch(addrType) { case 4: { const InetAddress a(field(ptr,4),4,at(ptr + 4)); if ((!peer->hasActivePathTo(now,a)) && // not already known (RR->node->shouldUsePathForZeroTierTraffic(tPtr,peer->address(),-1,a)) ) // should use path { if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) peer->sendHELLO(tPtr,-1,a,now); } } break; case 6: { const InetAddress a(field(ptr,16),16,at(ptr + 16)); if ((!peer->hasActivePathTo(now,a)) && // not already known (RR->node->shouldUsePathForZeroTierTraffic(tPtr,peer->address(),-1,a)) ) // should use path { if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) peer->sendHELLO(tPtr,-1,a,now); } } break; } ptr += addrLen; } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_PUSH_DIRECT_PATHS,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doUSER_MESSAGE(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { if (likely(size() >= (ZT_PACKET_IDX_PAYLOAD + 8))) { ZT_UserMessage um; um.origin = peer->address().toInt(); um.typeId = at(ZT_PACKET_IDX_PAYLOAD); um.data = reinterpret_cast(reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD + 8); um.length = size() - (ZT_PACKET_IDX_PAYLOAD + 8); RR->node->postEvent(tPtr,ZT_EVENT_USER_MESSAGE,reinterpret_cast(&um)); } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_USER_MESSAGE,0,Packet::VERB_NOP,0); return true; } bool IncomingPacket::_doREMOTE_TRACE(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer) { ZT_RemoteTrace rt; const char *ptr = reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD; const char *const eof = reinterpret_cast(data()) + size(); rt.origin = peer->address().toInt(); rt.data = const_cast(ptr); // start of first string while (ptr < eof) { if (!*ptr) { // end of string rt.len = (unsigned int)(ptr - rt.data); if ((rt.len > 0)&&(rt.len <= ZT_MAX_REMOTE_TRACE_SIZE)) { RR->node->postEvent(tPtr,ZT_EVENT_REMOTE_TRACE,&rt); } rt.data = const_cast(++ptr); // start of next string, if any } else { ++ptr; } } peer->received(tPtr,_path,hops(),packetId(),payloadLength(),Packet::VERB_REMOTE_TRACE,0,Packet::VERB_NOP,0); return true; } void IncomingPacket::_sendErrorNeedCredentials(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr &peer,const uint64_t nwid) { Packet outp(source(),RR->identity.address(),Packet::VERB_ERROR); outp.append((uint8_t)verb()); outp.append(packetId()); outp.append((uint8_t)Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE); outp.append(nwid); outp.armor(peer->key(),true); _path->send(RR,tPtr,outp.data(),outp.size(),RR->node->now()); } } // namespace ZeroTier