/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "../version.h" #include "../include/ZeroTierOne.h" #ifdef ZT_USE_SYSTEM_HTTP_PARSER #include #else #include "../ext/http-parser/http_parser.h" #endif #include "../node/Constants.hpp" #include "../node/Mutex.hpp" #include "../node/Node.hpp" #include "../node/Utils.hpp" #include "../node/InetAddress.hpp" #include "../node/MAC.hpp" #include "../node/Identity.hpp" #include "../osdep/Phy.hpp" #include "../osdep/Thread.hpp" #include "../osdep/OSUtils.hpp" #include "../osdep/Http.hpp" #include "../osdep/BackgroundResolver.hpp" #include "../osdep/PortMapper.hpp" #include "../osdep/Binder.hpp" #include "../osdep/ManagedRoute.hpp" #include "OneService.hpp" #include "ControlPlane.hpp" #include "ClusterGeoIpService.hpp" #include "ClusterDefinition.hpp" /** * Uncomment to enable UDP breakage switch * * If this is defined, the presence of a file called /tmp/ZT_BREAK_UDP * will cause direct UDP TX/RX to stop working. This can be used to * test TCP tunneling fallback and other robustness features. Deleting * this file will cause it to start working again. */ //#define ZT_BREAK_UDP #ifdef ZT_ENABLE_NETWORK_CONTROLLER #include "../controller/SqliteNetworkController.hpp" #else class SqliteNetworkController; #endif // ZT_ENABLE_NETWORK_CONTROLLER #ifdef __WINDOWS__ #include #include #include #include #include #else #include #include #include #include #include #endif // Include the right tap device driver for this platform -- add new platforms here #ifdef ZT_SERVICE_NETCON // In network containers builds, use the virtual netcon endpoint instead of a tun/tap port driver #include "../netcon/NetconEthernetTap.hpp" namespace ZeroTier { typedef NetconEthernetTap EthernetTap; } #else // not ZT_SERVICE_NETCON so pick a tap driver #ifdef __APPLE__ #include "../osdep/OSXEthernetTap.hpp" namespace ZeroTier { typedef OSXEthernetTap EthernetTap; } #endif // __APPLE__ #ifdef __LINUX__ #include "../osdep/LinuxEthernetTap.hpp" namespace ZeroTier { typedef LinuxEthernetTap EthernetTap; } #endif // __LINUX__ #ifdef __WINDOWS__ #include "../osdep/WindowsEthernetTap.hpp" namespace ZeroTier { typedef WindowsEthernetTap EthernetTap; } #endif // __WINDOWS__ #ifdef __FreeBSD__ #include "../osdep/BSDEthernetTap.hpp" namespace ZeroTier { typedef BSDEthernetTap EthernetTap; } #endif // __FreeBSD__ #endif // ZT_SERVICE_NETCON // Sanity limits for HTTP #define ZT_MAX_HTTP_MESSAGE_SIZE (1024 * 1024 * 64) #define ZT_MAX_HTTP_CONNECTIONS 64 // Interface metric for ZeroTier taps -- this ensures that if we are on WiFi and also // bridged via ZeroTier to the same LAN traffic will (if the OS is sane) prefer WiFi. #define ZT_IF_METRIC 5000 // How often to check for new multicast subscriptions on a tap device #define ZT_TAP_CHECK_MULTICAST_INTERVAL 5000 // Path under ZT1 home for controller database if controller is enabled #define ZT_CONTROLLER_DB_PATH "controller.db" // TCP fallback relay host -- geo-distributed using Amazon Route53 geo-aware DNS #define ZT_TCP_FALLBACK_RELAY "tcp-fallback.zerotier.com" #define ZT_TCP_FALLBACK_RELAY_PORT 443 // Frequency at which we re-resolve the TCP fallback relay #define ZT_TCP_FALLBACK_RERESOLVE_DELAY 86400000 // Attempt to engage TCP fallback after this many ms of no reply to packets sent to global-scope IPs #define ZT_TCP_FALLBACK_AFTER 60000 // How often to check for local interface addresses #define ZT_LOCAL_INTERFACE_CHECK_INTERVAL 60000 namespace ZeroTier { namespace { #ifdef ZT_AUTO_UPDATE #define ZT_AUTO_UPDATE_MAX_HTTP_RESPONSE_SIZE (1024 * 1024 * 64) #define ZT_AUTO_UPDATE_CHECK_PERIOD 21600000 class BackgroundSoftwareUpdateChecker { public: bool isValidSigningIdentity(const Identity &id) { return ( /* 0001 - 0004 : obsolete, used in old versions */ /* 0005 */ (id == Identity("ba57ea350e:0:9d4be6d7f86c5660d5ee1951a3d759aa6e12a84fc0c0b74639500f1dbc1a8c566622e7d1c531967ebceb1e9d1761342f88324a8ba520c93c35f92f35080fa23f")) /* 0006 */ ||(id == Identity("5067b21b83:0:8af477730f5055c48135b84bed6720a35bca4c0e34be4060a4c636288b1ec22217eb22709d610c66ed464c643130c51411bbb0294eef12fbe8ecc1a1e2c63a7a")) /* 0007 */ ||(id == Identity("4f5e97a8f1:0:57880d056d7baeb04bbc057d6f16e6cb41388570e87f01492fce882485f65a798648595610a3ad49885604e7fb1db2dd3c2c534b75e42c3c0b110ad07b4bb138")) /* 0008 */ ||(id == Identity("580bbb8e15:0:ad5ef31155bebc6bc413991992387e083fed26d699997ef76e7c947781edd47d1997161fa56ba337b1a2b44b129fd7c7197ce5185382f06011bc88d1363b4ddd")) ); } void doUpdateCheck() { std::string url(OneService::autoUpdateUrl()); if ((url.length() <= 7)||(url.substr(0,7) != "http://")) return; std::string httpHost; std::string httpPath; { std::size_t slashIdx = url.substr(7).find_first_of('/'); if (slashIdx == std::string::npos) { httpHost = url.substr(7); httpPath = "/"; } else { httpHost = url.substr(7,slashIdx); httpPath = url.substr(slashIdx + 7); } } if (httpHost.length() == 0) return; std::vector ips(OSUtils::resolve(httpHost.c_str())); for(std::vector::iterator ip(ips.begin());ip!=ips.end();++ip) { if (!ip->port()) ip->setPort(80); std::string nfoPath = httpPath + "LATEST.nfo"; std::map requestHeaders,responseHeaders; std::string body; requestHeaders["Host"] = httpHost; unsigned int scode = Http::GET(ZT_AUTO_UPDATE_MAX_HTTP_RESPONSE_SIZE,60000,reinterpret_cast(&(*ip)),nfoPath.c_str(),requestHeaders,responseHeaders,body); //fprintf(stderr,"UPDATE %s %s %u %lu\n",ip->toString().c_str(),nfoPath.c_str(),scode,body.length()); if ((scode == 200)&&(body.length() > 0)) { /* NFO fields: * * file= * signedBy= * ed25519= * vMajor= * vMinor= * vRevision= */ Dictionary nfo(body); unsigned int vMajor = Utils::strToUInt(nfo.get("vMajor","0").c_str()); unsigned int vMinor = Utils::strToUInt(nfo.get("vMinor","0").c_str()); unsigned int vRevision = Utils::strToUInt(nfo.get("vRevision","0").c_str()); if (Utils::compareVersion(vMajor,vMinor,vRevision,ZEROTIER_ONE_VERSION_MAJOR,ZEROTIER_ONE_VERSION_MINOR,ZEROTIER_ONE_VERSION_REVISION) <= 0) { //fprintf(stderr,"UPDATE %u.%u.%u is not newer than our version\n",vMajor,vMinor,vRevision); return; } Identity signedBy; if ((!signedBy.fromString(nfo.get("signedBy","")))||(!isValidSigningIdentity(signedBy))) { //fprintf(stderr,"UPDATE invalid signedBy or not authorized signing identity.\n"); return; } std::string filePath(nfo.get("file","")); if ((!filePath.length())||(filePath.find("..") != std::string::npos)) return; filePath = httpPath + filePath; std::string fileData; if (Http::GET(ZT_AUTO_UPDATE_MAX_HTTP_RESPONSE_SIZE,60000,reinterpret_cast(&(*ip)),filePath.c_str(),requestHeaders,responseHeaders,fileData) != 200) { //fprintf(stderr,"UPDATE GET %s failed\n",filePath.c_str()); return; } std::string ed25519(Utils::unhex(nfo.get("ed25519",""))); if ((ed25519.length() == 0)||(!signedBy.verify(fileData.data(),(unsigned int)fileData.length(),ed25519.data(),(unsigned int)ed25519.length()))) { //fprintf(stderr,"UPDATE %s failed signature check!\n",filePath.c_str()); return; } /* --------------------------------------------------------------- */ /* We made it! Begin OS-specific installation code. */ #ifdef __APPLE__ /* OSX version is in the form of a MacOSX .pkg file, so we will * launch installer (normally in /usr/sbin) to install it. It will * then turn around and shut down the service, update files, and * relaunch. */ { char bashp[128],pkgp[128]; Utils::snprintf(bashp,sizeof(bashp),"/tmp/ZeroTierOne-update-%u.%u.%u.sh",vMajor,vMinor,vRevision); Utils::snprintf(pkgp,sizeof(pkgp),"/tmp/ZeroTierOne-update-%u.%u.%u.pkg",vMajor,vMinor,vRevision); FILE *pkg = fopen(pkgp,"w"); if ((!pkg)||(fwrite(fileData.data(),fileData.length(),1,pkg) != 1)) { fclose(pkg); unlink(bashp); unlink(pkgp); fprintf(stderr,"UPDATE error writing %s\n",pkgp); return; } fclose(pkg); FILE *bash = fopen(bashp,"w"); if (!bash) { fclose(pkg); unlink(bashp); unlink(pkgp); fprintf(stderr,"UPDATE error writing %s\n",bashp); return; } fprintf(bash, "#!/bin/bash\n" "export PATH=/bin:/usr/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/local/sbin\n" "sleep 1\n" "installer -pkg \"%s\" -target /\n" "sleep 1\n" "rm -f \"%s\" \"%s\"\n" "exit 0\n", pkgp, pkgp, bashp); fclose(bash); long pid = (long)vfork(); if (pid == 0) { setsid(); // detach from parent so that shell isn't killed when parent is killed signal(SIGHUP,SIG_IGN); signal(SIGTERM,SIG_IGN); signal(SIGQUIT,SIG_IGN); execl("/bin/bash","/bin/bash",bashp,(char *)0); exit(0); } } #endif // __APPLE__ #ifdef __WINDOWS__ /* Windows version comes in the form of .MSI package that * takes care of everything. */ { char tempp[512],batp[512],msip[512],cmdline[512]; if (GetTempPathA(sizeof(tempp),tempp) <= 0) return; CreateDirectoryA(tempp,(LPSECURITY_ATTRIBUTES)0); Utils::snprintf(batp,sizeof(batp),"%s\\ZeroTierOne-update-%u.%u.%u.bat",tempp,vMajor,vMinor,vRevision); Utils::snprintf(msip,sizeof(msip),"%s\\ZeroTierOne-update-%u.%u.%u.msi",tempp,vMajor,vMinor,vRevision); FILE *msi = fopen(msip,"wb"); if ((!msi)||(fwrite(fileData.data(),(size_t)fileData.length(),1,msi) != 1)) { fclose(msi); return; } fclose(msi); FILE *bat = fopen(batp,"wb"); if (!bat) return; fprintf(bat, "TIMEOUT.EXE /T 1 /NOBREAK\r\n" "NET.EXE STOP \"ZeroTierOneService\"\r\n" "TIMEOUT.EXE /T 1 /NOBREAK\r\n" "MSIEXEC.EXE /i \"%s\" /qn\r\n" "TIMEOUT.EXE /T 1 /NOBREAK\r\n" "NET.EXE START \"ZeroTierOneService\"\r\n" "DEL \"%s\"\r\n" "DEL \"%s\"\r\n", msip, msip, batp); fclose(bat); STARTUPINFOA si; PROCESS_INFORMATION pi; memset(&si,0,sizeof(si)); memset(&pi,0,sizeof(pi)); Utils::snprintf(cmdline,sizeof(cmdline),"CMD.EXE /c \"%s\"",batp); CreateProcessA(NULL,cmdline,NULL,NULL,FALSE,CREATE_NO_WINDOW|CREATE_NEW_PROCESS_GROUP,NULL,NULL,&si,&pi); } #endif // __WINDOWS__ /* --------------------------------------------------------------- */ return; } // else try to fetch from next IP address } } void threadMain() throw() { try { this->doUpdateCheck(); } catch ( ... ) {} } }; static BackgroundSoftwareUpdateChecker backgroundSoftwareUpdateChecker; #endif // ZT_AUTO_UPDATE static bool isBlacklistedLocalInterfaceForZeroTierTraffic(const char *ifn) { #if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux) if ((ifn[0] == 'l')&&(ifn[1] == 'o')) return true; // loopback if ((ifn[0] == 'z')&&(ifn[1] == 't')) return true; // sanity check: zt# if ((ifn[0] == 't')&&(ifn[1] == 'u')&&(ifn[2] == 'n')) return true; // tun# is probably an OpenVPN tunnel or similar if ((ifn[0] == 't')&&(ifn[1] == 'a')&&(ifn[2] == 'p')) return true; // tap# is probably an OpenVPN tunnel or similar #endif #ifdef __APPLE__ if ((ifn[0] == 'l')&&(ifn[1] == 'o')) return true; // loopback if ((ifn[0] == 'z')&&(ifn[1] == 't')) return true; // sanity check: zt# if ((ifn[0] == 't')&&(ifn[1] == 'u')&&(ifn[2] == 'n')) return true; // tun# is probably an OpenVPN tunnel or similar if ((ifn[0] == 't')&&(ifn[1] == 'a')&&(ifn[2] == 'p')) return true; // tap# is probably an OpenVPN tunnel or similar if ((ifn[0] == 'u')&&(ifn[1] == 't')&&(ifn[2] == 'u')&&(ifn[3] == 'n')) return true; // ... as is utun# #endif return false; } static std::string _trimString(const std::string &s) { unsigned long end = (unsigned long)s.length(); while (end) { char c = s[end - 1]; if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t')) --end; else break; } unsigned long start = 0; while (start < end) { char c = s[start]; if ((c == ' ')||(c == '\r')||(c == '\n')||(!c)||(c == '\t')) ++start; else break; } return s.substr(start,end - start); } class OneServiceImpl; static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf); static void SnodeEventCallback(ZT_Node *node,void *uptr,enum ZT_Event event,const void *metaData); static long SnodeDataStoreGetFunction(ZT_Node *node,void *uptr,const char *name,void *buf,unsigned long bufSize,unsigned long readIndex,unsigned long *totalSize); static int SnodeDataStorePutFunction(ZT_Node *node,void *uptr,const char *name,const void *data,unsigned long len,int secure); static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,const struct sockaddr_storage *localAddr,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl); static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len); static int SnodePathCheckFunction(ZT_Node *node,void *uptr,const struct sockaddr_storage *localAddr,const struct sockaddr_storage *remoteAddr); #ifdef ZT_ENABLE_CLUSTER static void SclusterSendFunction(void *uptr,unsigned int toMemberId,const void *data,unsigned int len); static int SclusterGeoIpFunction(void *uptr,const struct sockaddr_storage *addr,int *x,int *y,int *z); #endif static void StapFrameHandler(void *uptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len); static int ShttpOnMessageBegin(http_parser *parser); static int ShttpOnUrl(http_parser *parser,const char *ptr,size_t length); #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2) static int ShttpOnStatus(http_parser *parser,const char *ptr,size_t length); #else static int ShttpOnStatus(http_parser *parser); #endif static int ShttpOnHeaderField(http_parser *parser,const char *ptr,size_t length); static int ShttpOnValue(http_parser *parser,const char *ptr,size_t length); static int ShttpOnHeadersComplete(http_parser *parser); static int ShttpOnBody(http_parser *parser,const char *ptr,size_t length); static int ShttpOnMessageComplete(http_parser *parser); #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 1) static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnStatus, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete }; #else static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete }; #endif struct TcpConnection { enum { TCP_HTTP_INCOMING, TCP_HTTP_OUTGOING, // not currently used TCP_TUNNEL_OUTGOING // fale-SSL outgoing tunnel -- HTTP-related fields are not used } type; bool shouldKeepAlive; OneServiceImpl *parent; PhySocket *sock; InetAddress from; http_parser parser; unsigned long messageSize; uint64_t lastActivity; std::string currentHeaderField; std::string currentHeaderValue; std::string url; std::string status; std::map< std::string,std::string > headers; std::string body; std::string writeBuf; Mutex writeBuf_m; }; // Used to pseudo-randomize local source port picking static volatile unsigned int _udpPortPickerCounter = 0; class OneServiceImpl : public OneService { public: // begin member variables -------------------------------------------------- const std::string _homePath; BackgroundResolver _tcpFallbackResolver; #ifdef ZT_ENABLE_NETWORK_CONTROLLER SqliteNetworkController *_controller; #endif Phy _phy; Node *_node; /* * To attempt to handle NAT/gateway craziness we use three local UDP ports: * * [0] is the normal/default port, usually 9993 * [1] is a port dervied from our ZeroTier address * [2] is a port computed from the normal/default for use with uPnP/NAT-PMP mappings * * [2] exists because on some gateways trying to do regular NAT-t interferes * destructively with uPnP port mapping behavior in very weird buggy ways. * It's only used if uPnP/NAT-PMP is enabled in this build. */ Binder _bindings[3]; unsigned int _ports[3]; uint16_t _portsBE[3]; // ports in big-endian network byte order as in sockaddr // Sockets for JSON API -- bound only to V4 and V6 localhost PhySocket *_v4TcpControlSocket; PhySocket *_v6TcpControlSocket; // JSON API handler ControlPlane *_controlPlane; // Time we last received a packet from a global address uint64_t _lastDirectReceiveFromGlobal; #ifdef ZT_TCP_FALLBACK_RELAY uint64_t _lastSendToGlobalV4; #endif // Last potential sleep/wake event uint64_t _lastRestart; // Deadline for the next background task service function volatile uint64_t _nextBackgroundTaskDeadline; // Configured networks struct NetworkState { NetworkState() : tap((EthernetTap *)0),managedIps(),managedRoutes(),allowManaged(true),allowGlobal(true),allowDefault(true) {} EthernetTap *tap; std::vector managedIps; std::list managedRoutes; bool allowManaged; // allow managed addresses and routes bool allowGlobal; // allow global (non-private) IP routes? bool allowDefault; // allow default route? }; std::map _nets; Mutex _nets_m; // Active TCP/IP connections std::set< TcpConnection * > _tcpConnections; // no mutex for this since it's done in the main loop thread only TcpConnection *_tcpFallbackTunnel; // Termination status information ReasonForTermination _termReason; std::string _fatalErrorMessage; Mutex _termReason_m; // uPnP/NAT-PMP port mapper if enabled #ifdef ZT_USE_MINIUPNPC PortMapper *_portMapper; #endif // Cluster management instance if enabled #ifdef ZT_ENABLE_CLUSTER PhySocket *_clusterMessageSocket; ClusterDefinition *_clusterDefinition; unsigned int _clusterMemberId; #endif // Set to false to force service to stop volatile bool _run; Mutex _run_m; // end member variables ---------------------------------------------------- OneServiceImpl(const char *hp,unsigned int port) : _homePath((hp) ? hp : ".") ,_tcpFallbackResolver(ZT_TCP_FALLBACK_RELAY) #ifdef ZT_ENABLE_NETWORK_CONTROLLER ,_controller((SqliteNetworkController *)0) #endif ,_phy(this,false,true) ,_node((Node *)0) ,_controlPlane((ControlPlane *)0) ,_lastDirectReceiveFromGlobal(0) #ifdef ZT_TCP_FALLBACK_RELAY ,_lastSendToGlobalV4(0) #endif ,_lastRestart(0) ,_nextBackgroundTaskDeadline(0) ,_tcpFallbackTunnel((TcpConnection *)0) ,_termReason(ONE_STILL_RUNNING) #ifdef ZT_USE_MINIUPNPC ,_portMapper((PortMapper *)0) #endif #ifdef ZT_ENABLE_CLUSTER ,_clusterMessageSocket((PhySocket *)0) ,_clusterDefinition((ClusterDefinition *)0) ,_clusterMemberId(0) #endif ,_run(true) { _ports[0] = 0; _ports[1] = 0; _ports[2] = 0; // The control socket is bound to the default/static port on localhost. If we // can do this, we have successfully allocated a port. The binders will take // care of binding non-local addresses for ZeroTier traffic. const int portTrials = (port == 0) ? 256 : 1; // if port is 0, pick random for(int k=0;kaddress() % 45500); for(int i=0;;++i) { if (i > 1000) { _ports[1] = 0; break; } else if (++_ports[1] >= 65536) { _ports[1] = 20000; } if (_trialBind(_ports[1])) break; } #ifdef ZT_USE_MINIUPNPC // If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't // use the other two ports for that because some NATs do really funky // stuff with ports that are explicitly mapped that breaks things. if (_ports[1]) { _ports[2] = _ports[1]; for(int i=0;;++i) { if (i > 1000) { _ports[2] = 0; break; } else if (++_ports[2] >= 65536) { _ports[2] = 20000; } if (_trialBind(_ports[2])) break; } if (_ports[2]) { char uniqueName[64]; Utils::snprintf(uniqueName,sizeof(uniqueName),"ZeroTier/%.10llx@%u",_node->address(),_ports[2]); _portMapper = new PortMapper(_ports[2],uniqueName); } } #endif for(int i=0;i<3;++i) _portsBE[i] = Utils::hton((uint16_t)_ports[i]); #ifdef ZT_ENABLE_NETWORK_CONTROLLER _controller = new SqliteNetworkController(_node,(_homePath + ZT_PATH_SEPARATOR_S + ZT_CONTROLLER_DB_PATH).c_str(),(_homePath + ZT_PATH_SEPARATOR_S + "circuitTestResults.d").c_str()); _node->setNetconfMaster((void *)_controller); #endif #ifdef ZT_ENABLE_CLUSTER if (OSUtils::fileExists((_homePath + ZT_PATH_SEPARATOR_S + "cluster").c_str())) { _clusterDefinition = new ClusterDefinition(_node->address(),(_homePath + ZT_PATH_SEPARATOR_S + "cluster").c_str()); if (_clusterDefinition->size() > 0) { std::vector members(_clusterDefinition->members()); for(std::vector::iterator m(members.begin());m!=members.end();++m) { PhySocket *cs = _phy.udpBind(reinterpret_cast(&(m->clusterEndpoint))); if (cs) { if (_clusterMessageSocket) { _phy.close(_clusterMessageSocket,false); _phy.close(cs,false); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "Cluster: can't determine my cluster member ID: able to bind more than one cluster message socket IP/port!"; return _termReason; } _clusterMessageSocket = cs; _clusterMemberId = m->id; } } if (!_clusterMessageSocket) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "Cluster: can't determine my cluster member ID: unable to bind to any cluster message socket IP/port."; return _termReason; } const ClusterDefinition::MemberDefinition &me = (*_clusterDefinition)[_clusterMemberId]; InetAddress endpoints[255]; unsigned int numEndpoints = 0; for(std::vector::const_iterator i(me.zeroTierEndpoints.begin());i!=me.zeroTierEndpoints.end();++i) endpoints[numEndpoints++] = *i; if (_node->clusterInit(_clusterMemberId,reinterpret_cast(endpoints),numEndpoints,me.x,me.y,me.z,&SclusterSendFunction,this,_clusterDefinition->geo().available() ? &SclusterGeoIpFunction : 0,this) == ZT_RESULT_OK) { std::vector members(_clusterDefinition->members()); for(std::vector::iterator m(members.begin());m!=members.end();++m) { if (m->id != _clusterMemberId) _node->clusterAddMember(m->id); } } } else { delete _clusterDefinition; _clusterDefinition = (ClusterDefinition *)0; } } #endif _controlPlane = new ControlPlane(this,_node,(_homePath + ZT_PATH_SEPARATOR_S + "ui").c_str()); _controlPlane->addAuthToken(authToken.c_str()); #ifdef ZT_ENABLE_NETWORK_CONTROLLER _controlPlane->setController(_controller); #endif { // Remember networks from previous session std::vector networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S + "networks.d").c_str())); for(std::vector::iterator f(networksDotD.begin());f!=networksDotD.end();++f) { std::size_t dot = f->find_last_of('.'); if ((dot == 16)&&(f->substr(16) == ".conf")) _node->join(Utils::hexStrToU64(f->substr(0,dot).c_str()),(void *)0); } } // Start two background threads to handle expensive ops out of line Thread::start(_node); Thread::start(_node); _nextBackgroundTaskDeadline = 0; uint64_t clockShouldBe = OSUtils::now(); _lastRestart = clockShouldBe; uint64_t lastTapMulticastGroupCheck = 0; uint64_t lastTcpFallbackResolve = 0; uint64_t lastBindRefresh = 0; uint64_t lastLocalInterfaceAddressCheck = (OSUtils::now() - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle #ifdef ZT_AUTO_UPDATE uint64_t lastSoftwareUpdateCheck = 0; #endif // ZT_AUTO_UPDATE for(;;) { _run_m.lock(); if (!_run) { _run_m.unlock(); _termReason_m.lock(); _termReason = ONE_NORMAL_TERMINATION; _termReason_m.unlock(); break; } else { _run_m.unlock(); } const uint64_t now = OSUtils::now(); // Attempt to detect sleep/wake events by detecting delay overruns bool restarted = false; if ((now > clockShouldBe)&&((now - clockShouldBe) > 10000)) { _lastRestart = now; restarted = true; } // Refresh bindings in case device's interfaces have changed if (((now - lastBindRefresh) >= ZT_BINDER_REFRESH_PERIOD)||(restarted)) { lastBindRefresh = now; for(int i=0;i<3;++i) { if (_ports[i]) { _bindings[i].refresh(_phy,_ports[i],*this); } } } uint64_t dl = _nextBackgroundTaskDeadline; if (dl <= now) { _node->processBackgroundTasks(now,&_nextBackgroundTaskDeadline); dl = _nextBackgroundTaskDeadline; } #ifdef ZT_AUTO_UPDATE if ((now - lastSoftwareUpdateCheck) >= ZT_AUTO_UPDATE_CHECK_PERIOD) { lastSoftwareUpdateCheck = now; Thread::start(&backgroundSoftwareUpdateChecker); } #endif // ZT_AUTO_UPDATE if ((now - lastTcpFallbackResolve) >= ZT_TCP_FALLBACK_RERESOLVE_DELAY) { lastTcpFallbackResolve = now; _tcpFallbackResolver.resolveNow(); } if ((_tcpFallbackTunnel)&&((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2))) _phy.close(_tcpFallbackTunnel->sock); if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) { lastTapMulticastGroupCheck = now; Mutex::Lock _l(_nets_m); for(std::map::const_iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) { std::vector added,removed; n->second.tap->scanMulticastGroups(added,removed); for(std::vector::iterator m(added.begin());m!=added.end();++m) _node->multicastSubscribe(n->first,m->mac().toInt(),m->adi()); for(std::vector::iterator m(removed.begin());m!=removed.end();++m) _node->multicastUnsubscribe(n->first,m->mac().toInt(),m->adi()); } } } if ((now - lastLocalInterfaceAddressCheck) >= ZT_LOCAL_INTERFACE_CHECK_INTERVAL) { lastLocalInterfaceAddressCheck = now; _node->clearLocalInterfaceAddresses(); #ifdef ZT_USE_MINIUPNPC if (_portMapper) { std::vector mappedAddresses(_portMapper->get()); for(std::vector::const_iterator ext(mappedAddresses.begin());ext!=mappedAddresses.end();++ext) _node->addLocalInterfaceAddress(reinterpret_cast(&(*ext))); } #endif std::vector boundAddrs(_bindings[0].allBoundLocalInterfaceAddresses()); for(std::vector::const_iterator i(boundAddrs.begin());i!=boundAddrs.end();++i) _node->addLocalInterfaceAddress(reinterpret_cast(&(*i))); } const unsigned long delay = (dl > now) ? (unsigned long)(dl - now) : 100; clockShouldBe = now + (uint64_t)delay; _phy.poll(delay); } } catch (std::exception &exc) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = exc.what(); } catch ( ... ) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "unexpected exception in main thread"; } try { while (!_tcpConnections.empty()) _phy.close((*_tcpConnections.begin())->sock); } catch ( ... ) {} { Mutex::Lock _l(_nets_m); for(std::map::iterator n(_nets.begin());n!=_nets.end();++n) delete n->second.tap; _nets.clear(); } delete _controlPlane; _controlPlane = (ControlPlane *)0; delete _node; _node = (Node *)0; return _termReason; } virtual ReasonForTermination reasonForTermination() const { Mutex::Lock _l(_termReason_m); return _termReason; } virtual std::string fatalErrorMessage() const { Mutex::Lock _l(_termReason_m); return _fatalErrorMessage; } virtual std::string portDeviceName(uint64_t nwid) const { Mutex::Lock _l(_nets_m); std::map::const_iterator n(_nets.find(nwid)); if ((n != _nets.end())&&(n->second.tap)) return n->second.tap->deviceName(); else return std::string(); } virtual bool tcpFallbackActive() const { return (_tcpFallbackTunnel != (TcpConnection *)0); } virtual void terminate() { _run_m.lock(); _run = false; _run_m.unlock(); _phy.whack(); } // Begin private implementation methods inline void phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *localAddr,const struct sockaddr *from,void *data,unsigned long len) { #ifdef ZT_ENABLE_CLUSTER if (sock == _clusterMessageSocket) { _lastDirectReceiveFromGlobal = OSUtils::now(); _node->clusterHandleIncomingMessage(data,len); return; } #endif #ifdef ZT_BREAK_UDP if (OSUtils::fileExists("/tmp/ZT_BREAK_UDP")) return; #endif if ((len >= 16)&&(reinterpret_cast(from)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) _lastDirectReceiveFromGlobal = OSUtils::now(); const ZT_ResultCode rc = _node->processWirePacket( OSUtils::now(), reinterpret_cast(localAddr), (const struct sockaddr_storage *)from, // Phy<> uses sockaddr_storage, so it'll always be that big data, len, &_nextBackgroundTaskDeadline); if (ZT_ResultCode_isFatal(rc)) { char tmp[256]; Utils::snprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = tmp; this->terminate(); } } inline void phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) { if (!success) return; // Outgoing TCP connections are always TCP fallback tunnel connections. TcpConnection *tc = new TcpConnection(); _tcpConnections.insert(tc); tc->type = TcpConnection::TCP_TUNNEL_OUTGOING; tc->shouldKeepAlive = true; tc->parent = this; tc->sock = sock; // from and parser are not used tc->messageSize = 0; // unused tc->lastActivity = OSUtils::now(); // HTTP stuff is not used tc->writeBuf = ""; *uptr = (void *)tc; // Send "hello" message tc->writeBuf.push_back((char)0x17); tc->writeBuf.push_back((char)0x03); tc->writeBuf.push_back((char)0x03); // fake TLS 1.2 header tc->writeBuf.push_back((char)0x00); tc->writeBuf.push_back((char)0x04); // mlen == 4 tc->writeBuf.push_back((char)ZEROTIER_ONE_VERSION_MAJOR); tc->writeBuf.push_back((char)ZEROTIER_ONE_VERSION_MINOR); tc->writeBuf.push_back((char)((ZEROTIER_ONE_VERSION_REVISION >> 8) & 0xff)); tc->writeBuf.push_back((char)(ZEROTIER_ONE_VERSION_REVISION & 0xff)); _phy.setNotifyWritable(sock,true); _tcpFallbackTunnel = tc; } inline void phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) { if ((!from)||(reinterpret_cast(from)->ipScope() != InetAddress::IP_SCOPE_LOOPBACK)) { // Non-Loopback: deny (for now) _phy.close(sockN,false); return; } else { // Loopback == HTTP JSON API request TcpConnection *tc = new TcpConnection(); _tcpConnections.insert(tc); tc->type = TcpConnection::TCP_HTTP_INCOMING; tc->shouldKeepAlive = true; tc->parent = this; tc->sock = sockN; tc->from = from; http_parser_init(&(tc->parser),HTTP_REQUEST); tc->parser.data = (void *)tc; tc->messageSize = 0; tc->lastActivity = OSUtils::now(); tc->currentHeaderField = ""; tc->currentHeaderValue = ""; tc->url = ""; tc->status = ""; tc->headers.clear(); tc->body = ""; tc->writeBuf = ""; *uptrN = (void *)tc; } } inline void phyOnTcpClose(PhySocket *sock,void **uptr) { TcpConnection *tc = (TcpConnection *)*uptr; if (tc) { if (tc == _tcpFallbackTunnel) _tcpFallbackTunnel = (TcpConnection *)0; _tcpConnections.erase(tc); delete tc; } } inline void phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) { TcpConnection *tc = reinterpret_cast(*uptr); switch(tc->type) { case TcpConnection::TCP_HTTP_INCOMING: case TcpConnection::TCP_HTTP_OUTGOING: http_parser_execute(&(tc->parser),&HTTP_PARSER_SETTINGS,(const char *)data,len); if ((tc->parser.upgrade)||(tc->parser.http_errno != HPE_OK)) { _phy.close(sock); return; } break; case TcpConnection::TCP_TUNNEL_OUTGOING: tc->body.append((const char *)data,len); while (tc->body.length() >= 5) { const char *data = tc->body.data(); const unsigned long mlen = ( ((((unsigned long)data[3]) & 0xff) << 8) | (((unsigned long)data[4]) & 0xff) ); if (tc->body.length() >= (mlen + 5)) { InetAddress from; unsigned long plen = mlen; // payload length, modified if there's an IP header data += 5; // skip forward past pseudo-TLS junk and mlen if (plen == 4) { // Hello message, which isn't sent by proxy and would be ignored by client } else if (plen) { // Messages should contain IPv4 or IPv6 source IP address data switch(data[0]) { case 4: // IPv4 if (plen >= 7) { from.set((const void *)(data + 1),4,((((unsigned int)data[5]) & 0xff) << 8) | (((unsigned int)data[6]) & 0xff)); data += 7; // type + 4 byte IP + 2 byte port plen -= 7; } else { _phy.close(sock); return; } break; case 6: // IPv6 if (plen >= 19) { from.set((const void *)(data + 1),16,((((unsigned int)data[17]) & 0xff) << 8) | (((unsigned int)data[18]) & 0xff)); data += 19; // type + 16 byte IP + 2 byte port plen -= 19; } else { _phy.close(sock); return; } break; case 0: // none/omitted ++data; --plen; break; default: // invalid address type _phy.close(sock); return; } if (from) { InetAddress fakeTcpLocalInterfaceAddress((uint32_t)0xffffffff,0xffff); const ZT_ResultCode rc = _node->processWirePacket( OSUtils::now(), reinterpret_cast(&fakeTcpLocalInterfaceAddress), reinterpret_cast(&from), data, plen, &_nextBackgroundTaskDeadline); if (ZT_ResultCode_isFatal(rc)) { char tmp[256]; Utils::snprintf(tmp,sizeof(tmp),"fatal error code from processWirePacket: %d",(int)rc); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = tmp; this->terminate(); _phy.close(sock); return; } } } if (tc->body.length() > (mlen + 5)) tc->body = tc->body.substr(mlen + 5); else tc->body = ""; } else break; } break; } } inline void phyOnTcpWritable(PhySocket *sock,void **uptr) { TcpConnection *tc = reinterpret_cast(*uptr); Mutex::Lock _l(tc->writeBuf_m); if (tc->writeBuf.length() > 0) { long sent = (long)_phy.streamSend(sock,tc->writeBuf.data(),(unsigned long)tc->writeBuf.length(),true); if (sent > 0) { tc->lastActivity = OSUtils::now(); if ((unsigned long)sent >= (unsigned long)tc->writeBuf.length()) { tc->writeBuf = ""; _phy.setNotifyWritable(sock,false); if (!tc->shouldKeepAlive) _phy.close(sock); // will call close handler to delete from _tcpConnections } else { tc->writeBuf = tc->writeBuf.substr(sent); } } } else { _phy.setNotifyWritable(sock,false); } } inline void phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable) {} inline void phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN) {} inline void phyOnUnixClose(PhySocket *sock,void **uptr) {} inline void phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len) {} inline void phyOnUnixWritable(PhySocket *sock,void **uptr,bool lwip_invoked) {} inline int nodeVirtualNetworkConfigFunction(uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwc) { Mutex::Lock _l(_nets_m); NetworkState &n = _nets[nwid]; switch(op) { case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP: if (!n.tap) { try { char friendlyName[128]; Utils::snprintf(friendlyName,sizeof(friendlyName),"ZeroTier One [%.16llx]",nwid); n.tap = new EthernetTap( _homePath.c_str(), MAC(nwc->mac), nwc->mtu, (unsigned int)ZT_IF_METRIC, nwid, friendlyName, StapFrameHandler, (void *)this); *nuptr = (void *)&n; } catch (std::exception &exc) { #ifdef __WINDOWS__ FILE *tapFailLog = fopen((_homePath + ZT_PATH_SEPARATOR_S"port_error_log.txt").c_str(),"a"); if (tapFailLog) { fprintf(tapFailLog,"%.16llx: %s"ZT_EOL_S,(unsigned long long)nwid,exc.what()); fclose(tapFailLog); } #else fprintf(stderr,"ERROR: unable to configure virtual network port: %s"ZT_EOL_S,exc.what()); #endif _nets.erase(nwid); return -999; } catch ( ... ) { return -999; // tap init failed } } // After setting up tap, fall through to CONFIG_UPDATE since we also want to do this... case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE: if (n.tap) { // sanity check if (n.allowManaged) { { // configure managed IP addresses std::vector newManagedIps; for(unsigned int i=0;iassignedAddressCount;++i) { const InetAddress *ii = reinterpret_cast(&(nwc->assignedAddresses[i])); switch(ii->ipScope()) { case InetAddress::IP_SCOPE_NONE: case InetAddress::IP_SCOPE_MULTICAST: case InetAddress::IP_SCOPE_LOOPBACK: case InetAddress::IP_SCOPE_LINK_LOCAL: break; // ignore these -- they shouldn't appear here case InetAddress::IP_SCOPE_GLOBAL: if (!n.allowGlobal) continue; // skip global IP ranges if we haven't given this network permission to assign them // else fall through for PSEUDOPRIVATE, SHARED, PRIVATE default: newManagedIps.push_back(*ii); break; } } std::sort(newManagedIps.begin(),newManagedIps.end()); newManagedIps.erase(std::unique(newManagedIps.begin(),newManagedIps.end()),newManagedIps.end()); for(std::vector::iterator ip(newManagedIps.begin());ip!=newManagedIps.end();++ip) { if (std::find(n.managedIps.begin(),n.managedIps.end(),*ip) == n.managedIps.end()) { if (!n.tap->addIp(*ip)) fprintf(stderr,"ERROR: unable to add ip address %s"ZT_EOL_S, ip->toString().c_str()); } } for(std::vector::iterator ip(n.managedIps.begin());ip!=n.managedIps.end();++ip) { if (std::find(newManagedIps.begin(),newManagedIps.end(),*ip) == newManagedIps.end()) { if (!n.tap->removeIp(*ip)) fprintf(stderr,"ERROR: unable to remove ip address %s"ZT_EOL_S, ip->toString().c_str()); } } n.managedIps.swap(newManagedIps); } { // configure managed routes const std::string tapdev(n.tap->deviceName()); for(std::list::iterator mr(n.managedRoutes.begin());mr!=n.managedRoutes.end();) { bool haveRoute = false; for(unsigned int i=0;irouteCount;++i) { const InetAddress *const target = reinterpret_cast(&(nwc->routes[i].target)); const InetAddress *const via = reinterpret_cast(&(nwc->routes[i].via)); if (mr->target() == *target) { if ((via->ss_family == target->ss_family)&&(mr->via() == *via)) { haveRoute = true; break; } else if (tapdev == mr->device()) { haveRoute = true; break; } } } if (haveRoute) { ++mr; } else { n.managedRoutes.erase(mr++); // also removes route via RAII behavior } } for(unsigned int i=0;irouteCount;++i) { const InetAddress *const target = reinterpret_cast(&(nwc->routes[i].target)); const InetAddress *const via = reinterpret_cast(&(nwc->routes[i].via)); bool haveRoute = false; for(std::list::iterator mr(n.managedRoutes.begin());mr!=n.managedRoutes.end();++mr) { if (mr->target() == *target) { if ((via->ss_family == target->ss_family)&&(mr->via() == *via)) { haveRoute = true; break; } else if (tapdev == mr->device()) { haveRoute = true; break; } } } if (haveRoute) continue; n.managedRoutes.push_back(ManagedRoute()); if ((target->isDefaultRoute())&&(n.allowDefault)) { if (!n.managedRoutes.back().set(*target,*via,tapdev.c_str())) n.managedRoutes.pop_back(); } else { switch(target->ipScope()) { case InetAddress::IP_SCOPE_NONE: case InetAddress::IP_SCOPE_MULTICAST: case InetAddress::IP_SCOPE_LOOPBACK: case InetAddress::IP_SCOPE_LINK_LOCAL: break; case InetAddress::IP_SCOPE_GLOBAL: if (!n.allowGlobal) continue; // skip global IP ranges if we haven't given this network permission to assign them // else fall through for PSEUDOPRIVATE, SHARED, PRIVATE default: if (!n.managedRoutes.back().set(*target,*via,tapdev.c_str())) n.managedRoutes.pop_back(); break; } } } } } } else { _nets.erase(nwid); return -999; // tap init failed } break; case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN: case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY: if (n.tap) { // sanity check #ifdef __WINDOWS__ std::string winInstanceId(n.tap->instanceId()); #endif *nuptr = (void *)0; delete n.tap; _nets.erase(nwid); #ifdef __WINDOWS__ if ((op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY)&&(winInstanceId.length() > 0)) WindowsEthernetTap::deletePersistentTapDevice(winInstanceId.c_str()); #endif } else { _nets.erase(nwid); } break; } return 0; } inline void nodeEventCallback(enum ZT_Event event,const void *metaData) { switch(event) { case ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION: { Mutex::Lock _l(_termReason_m); _termReason = ONE_IDENTITY_COLLISION; _fatalErrorMessage = "identity/address collision"; this->terminate(); } break; case ZT_EVENT_TRACE: { if (metaData) { ::fprintf(stderr,"%s"ZT_EOL_S,(const char *)metaData); ::fflush(stderr); } } break; default: break; } } inline long nodeDataStoreGetFunction(const char *name,void *buf,unsigned long bufSize,unsigned long readIndex,unsigned long *totalSize) { std::string p(_dataStorePrepPath(name)); if (!p.length()) return -2; FILE *f = fopen(p.c_str(),"rb"); if (!f) return -1; if (fseek(f,0,SEEK_END) != 0) { fclose(f); return -2; } long ts = ftell(f); if (ts < 0) { fclose(f); return -2; } *totalSize = (unsigned long)ts; if (fseek(f,(long)readIndex,SEEK_SET) != 0) { fclose(f); return -2; } long n = (long)fread(buf,1,bufSize,f); fclose(f); return n; } inline int nodeDataStorePutFunction(const char *name,const void *data,unsigned long len,int secure) { std::string p(_dataStorePrepPath(name)); if (!p.length()) return -2; if (!data) { OSUtils::rm(p.c_str()); return 0; } FILE *f = fopen(p.c_str(),"wb"); if (!f) return -1; if (fwrite(data,len,1,f) == 1) { fclose(f); if (secure) OSUtils::lockDownFile(p.c_str(),false); return 0; } else { fclose(f); OSUtils::rm(p.c_str()); return -1; } } inline int nodeWirePacketSendFunction(const struct sockaddr_storage *localAddr,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl) { unsigned int fromBindingNo = 0; if (addr->ss_family == AF_INET) { if (reinterpret_cast(localAddr)->sin_port == 0) { // If sender is sending from wildcard (null address), choose the secondary backup // port 1/4 of the time. (but only for IPv4) fromBindingNo = (++_udpPortPickerCounter & 0x4) >> 2; if (!_ports[fromBindingNo]) fromBindingNo = 0; } else { const uint16_t lp = reinterpret_cast(localAddr)->sin_port; if (lp == _portsBE[1]) fromBindingNo = 1; else if (lp == _portsBE[2]) fromBindingNo = 2; } #ifdef ZT_TCP_FALLBACK_RELAY // TCP fallback tunnel support, currently IPv4 only if ((len >= 16)&&(reinterpret_cast(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) { // Engage TCP tunnel fallback if we haven't received anything valid from a global // IP address in ZT_TCP_FALLBACK_AFTER milliseconds. If we do start getting // valid direct traffic we'll stop using it and close the socket after a while. const uint64_t now = OSUtils::now(); if (((now - _lastDirectReceiveFromGlobal) > ZT_TCP_FALLBACK_AFTER)&&((now - _lastRestart) > ZT_TCP_FALLBACK_AFTER)) { if (_tcpFallbackTunnel) { Mutex::Lock _l(_tcpFallbackTunnel->writeBuf_m); if (!_tcpFallbackTunnel->writeBuf.length()) _phy.setNotifyWritable(_tcpFallbackTunnel->sock,true); unsigned long mlen = len + 7; _tcpFallbackTunnel->writeBuf.push_back((char)0x17); _tcpFallbackTunnel->writeBuf.push_back((char)0x03); _tcpFallbackTunnel->writeBuf.push_back((char)0x03); // fake TLS 1.2 header _tcpFallbackTunnel->writeBuf.push_back((char)((mlen >> 8) & 0xff)); _tcpFallbackTunnel->writeBuf.push_back((char)(mlen & 0xff)); _tcpFallbackTunnel->writeBuf.push_back((char)4); // IPv4 _tcpFallbackTunnel->writeBuf.append(reinterpret_cast(reinterpret_cast(&(reinterpret_cast(addr)->sin_addr.s_addr))),4); _tcpFallbackTunnel->writeBuf.append(reinterpret_cast(reinterpret_cast(&(reinterpret_cast(addr)->sin_port))),2); _tcpFallbackTunnel->writeBuf.append((const char *)data,len); } else if (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER)&&((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INVERVAL / 2))) { std::vector tunnelIps(_tcpFallbackResolver.get()); if (tunnelIps.empty()) { if (!_tcpFallbackResolver.running()) _tcpFallbackResolver.resolveNow(); } else { bool connected = false; InetAddress addr(tunnelIps[(unsigned long)now % tunnelIps.size()]); addr.setPort(ZT_TCP_FALLBACK_RELAY_PORT); _phy.tcpConnect(reinterpret_cast(&addr),connected); } } } _lastSendToGlobalV4 = now; } #endif // ZT_TCP_FALLBACK_RELAY } else if (addr->ss_family == AF_INET6) { if (reinterpret_cast(localAddr)->sin6_port != 0) { const uint16_t lp = reinterpret_cast(localAddr)->sin6_port; if (lp == _portsBE[1]) fromBindingNo = 1; else if (lp == _portsBE[2]) fromBindingNo = 2; } } else { return -1; } #ifdef ZT_BREAK_UDP if (OSUtils::fileExists("/tmp/ZT_BREAK_UDP")) return 0; // silently break UDP #endif return (_bindings[fromBindingNo].udpSend(_phy,*(reinterpret_cast(localAddr)),*(reinterpret_cast(addr)),data,len,ttl)) ? 0 : -1; } inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { NetworkState *n = reinterpret_cast(*nuptr); if ((!n)||(!n->tap)) return; n->tap->put(MAC(sourceMac),MAC(destMac),etherType,data,len); } inline int nodePathCheckFunction(const struct sockaddr_storage *localAddr,const struct sockaddr_storage *remoteAddr) { Mutex::Lock _l(_nets_m); for(std::map::const_iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) { std::vector ips(n->second.tap->ips()); for(std::vector::const_iterator i(ips.begin());i!=ips.end();++i) { if (i->containsAddress(*(reinterpret_cast(remoteAddr)))) { return 0; } } } } // TODO: also check routing table for L3 routes via ZeroTier managed devices return 1; } inline void tapFrameHandler(uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { _node->processVirtualNetworkFrame(OSUtils::now(),nwid,from.toInt(),to.toInt(),etherType,vlanId,data,len,&_nextBackgroundTaskDeadline); } inline void onHttpRequestToServer(TcpConnection *tc) { char tmpn[256]; std::string data; std::string contentType("text/plain"); // default if not changed in handleRequest() unsigned int scode = 404; try { if (_controlPlane) scode = _controlPlane->handleRequest(tc->from,tc->parser.method,tc->url,tc->headers,tc->body,data,contentType); else scode = 500; } catch ( ... ) { scode = 500; } const char *scodestr; switch(scode) { case 200: scodestr = "OK"; break; case 400: scodestr = "Bad Request"; break; case 401: scodestr = "Unauthorized"; break; case 403: scodestr = "Forbidden"; break; case 404: scodestr = "Not Found"; break; case 500: scodestr = "Internal Server Error"; break; case 501: scodestr = "Not Implemented"; break; case 503: scodestr = "Service Unavailable"; break; default: scodestr = "Error"; break; } Utils::snprintf(tmpn,sizeof(tmpn),"HTTP/1.1 %.3u %s\r\nCache-Control: no-cache\r\nPragma: no-cache\r\n",scode,scodestr); { Mutex::Lock _l(tc->writeBuf_m); tc->writeBuf.assign(tmpn); tc->writeBuf.append("Content-Type: "); tc->writeBuf.append(contentType); Utils::snprintf(tmpn,sizeof(tmpn),"\r\nContent-Length: %lu\r\n",(unsigned long)data.length()); tc->writeBuf.append(tmpn); if (!tc->shouldKeepAlive) tc->writeBuf.append("Connection: close\r\n"); tc->writeBuf.append("\r\n"); if (tc->parser.method != HTTP_HEAD) tc->writeBuf.append(data); } _phy.setNotifyWritable(tc->sock,true); } inline void onHttpResponseFromClient(TcpConnection *tc) { if (!tc->shouldKeepAlive) _phy.close(tc->sock); // will call close handler, which deletes from _tcpConnections } bool shouldBindInterface(const char *ifname,const InetAddress &ifaddr) { if (isBlacklistedLocalInterfaceForZeroTierTraffic(ifname)) return false; Mutex::Lock _l(_nets_m); for(std::map::const_iterator n(_nets.begin());n!=_nets.end();++n) { if (n->second.tap) { std::vector ips(n->second.tap->ips()); for(std::vector::const_iterator i(ips.begin());i!=ips.end();++i) { if (i->ipsEqual(ifaddr)) return false; } } } return true; } std::string _dataStorePrepPath(const char *name) const { std::string p(_homePath); p.push_back(ZT_PATH_SEPARATOR); char lastc = (char)0; for(const char *n=name;(*n);++n) { if ((*n == '.')&&(lastc == '.')) return std::string(); // don't allow ../../ stuff as a precaution if (*n == '/') { OSUtils::mkdir(p.c_str()); p.push_back(ZT_PATH_SEPARATOR); } else p.push_back(*n); lastc = *n; } return p; } bool _trialBind(unsigned int port) { struct sockaddr_in in4; struct sockaddr_in6 in6; PhySocket *tb; memset(&in4,0,sizeof(in4)); in4.sin_family = AF_INET; in4.sin_port = Utils::hton((uint16_t)port); tb = _phy.udpBind(reinterpret_cast(&in4),(void *)0,0); if (tb) { _phy.close(tb,false); tb = _phy.tcpListen(reinterpret_cast(&in4),(void *)0); if (tb) { _phy.close(tb,false); return true; } } memset(&in6,0,sizeof(in6)); in6.sin6_family = AF_INET6; in6.sin6_port = Utils::hton((uint16_t)port); tb = _phy.udpBind(reinterpret_cast(&in6),(void *)0,0); if (tb) { _phy.close(tb,false); tb = _phy.tcpListen(reinterpret_cast(&in6),(void *)0); if (tb) { _phy.close(tb,false); return true; } } return false; } }; static int SnodeVirtualNetworkConfigFunction(ZT_Node *node,void *uptr,uint64_t nwid,void **nuptr,enum ZT_VirtualNetworkConfigOperation op,const ZT_VirtualNetworkConfig *nwconf) { return reinterpret_cast(uptr)->nodeVirtualNetworkConfigFunction(nwid,nuptr,op,nwconf); } static void SnodeEventCallback(ZT_Node *node,void *uptr,enum ZT_Event event,const void *metaData) { reinterpret_cast(uptr)->nodeEventCallback(event,metaData); } static long SnodeDataStoreGetFunction(ZT_Node *node,void *uptr,const char *name,void *buf,unsigned long bufSize,unsigned long readIndex,unsigned long *totalSize) { return reinterpret_cast(uptr)->nodeDataStoreGetFunction(name,buf,bufSize,readIndex,totalSize); } static int SnodeDataStorePutFunction(ZT_Node *node,void *uptr,const char *name,const void *data,unsigned long len,int secure) { return reinterpret_cast(uptr)->nodeDataStorePutFunction(name,data,len,secure); } static int SnodeWirePacketSendFunction(ZT_Node *node,void *uptr,const struct sockaddr_storage *localAddr,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl) { return reinterpret_cast(uptr)->nodeWirePacketSendFunction(localAddr,addr,data,len,ttl); } static void SnodeVirtualNetworkFrameFunction(ZT_Node *node,void *uptr,uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { reinterpret_cast(uptr)->nodeVirtualNetworkFrameFunction(nwid,nuptr,sourceMac,destMac,etherType,vlanId,data,len); } static int SnodePathCheckFunction(ZT_Node *node,void *uptr,const struct sockaddr_storage *localAddr,const struct sockaddr_storage *remoteAddr) { return reinterpret_cast(uptr)->nodePathCheckFunction(localAddr,remoteAddr); } #ifdef ZT_ENABLE_CLUSTER static void SclusterSendFunction(void *uptr,unsigned int toMemberId,const void *data,unsigned int len) { OneServiceImpl *const impl = reinterpret_cast(uptr); const ClusterDefinition::MemberDefinition &md = (*(impl->_clusterDefinition))[toMemberId]; if (md.clusterEndpoint) impl->_phy.udpSend(impl->_clusterMessageSocket,reinterpret_cast(&(md.clusterEndpoint)),data,len); } static int SclusterGeoIpFunction(void *uptr,const struct sockaddr_storage *addr,int *x,int *y,int *z) { OneServiceImpl *const impl = reinterpret_cast(uptr); return (int)(impl->_clusterDefinition->geo().locate(*(reinterpret_cast(addr)),*x,*y,*z)); } #endif static void StapFrameHandler(void *uptr,uint64_t nwid,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) { reinterpret_cast(uptr)->tapFrameHandler(nwid,from,to,etherType,vlanId,data,len); } static int ShttpOnMessageBegin(http_parser *parser) { TcpConnection *tc = reinterpret_cast(parser->data); tc->currentHeaderField = ""; tc->currentHeaderValue = ""; tc->messageSize = 0; tc->url = ""; tc->status = ""; tc->headers.clear(); tc->body = ""; return 0; } static int ShttpOnUrl(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->url.append(ptr,length); return 0; } #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2) static int ShttpOnStatus(http_parser *parser,const char *ptr,size_t length) #else static int ShttpOnStatus(http_parser *parser) #endif { /* TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->status.append(ptr,length); */ return 0; } static int ShttpOnHeaderField(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; if ((tc->currentHeaderField.length())&&(tc->currentHeaderValue.length())) { tc->headers[tc->currentHeaderField] = tc->currentHeaderValue; tc->currentHeaderField = ""; tc->currentHeaderValue = ""; } for(size_t i=0;icurrentHeaderField.push_back(OSUtils::toLower(ptr[i])); return 0; } static int ShttpOnValue(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->currentHeaderValue.append(ptr,length); return 0; } static int ShttpOnHeadersComplete(http_parser *parser) { TcpConnection *tc = reinterpret_cast(parser->data); if ((tc->currentHeaderField.length())&&(tc->currentHeaderValue.length())) tc->headers[tc->currentHeaderField] = tc->currentHeaderValue; return 0; } static int ShttpOnBody(http_parser *parser,const char *ptr,size_t length) { TcpConnection *tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->body.append(ptr,length); return 0; } static int ShttpOnMessageComplete(http_parser *parser) { TcpConnection *tc = reinterpret_cast(parser->data); tc->shouldKeepAlive = (http_should_keep_alive(parser) != 0); tc->lastActivity = OSUtils::now(); if (tc->type == TcpConnection::TCP_HTTP_INCOMING) { tc->parent->onHttpRequestToServer(tc); } else { tc->parent->onHttpResponseFromClient(tc); } return 0; } } // anonymous namespace std::string OneService::platformDefaultHomePath() { #ifdef __UNIX_LIKE__ #ifdef __APPLE__ // /Library/... on Apple return std::string("/Library/Application Support/ZeroTier/One"); #else #ifdef __BSD__ // BSD likes /var/db instead of /var/lib return std::string("/var/db/zerotier-one"); #else // Use /var/lib for Linux and other *nix return std::string("/var/lib/zerotier-one"); #endif #endif #else // not __UNIX_LIKE__ #ifdef __WINDOWS__ // Look up app data folder on Windows, e.g. C:\ProgramData\... char buf[16384]; if (SUCCEEDED(SHGetFolderPathA(NULL,CSIDL_COMMON_APPDATA,NULL,0,buf))) return (std::string(buf) + "\\ZeroTier\\One"); else return std::string("C:\\ZeroTier\\One"); #else return std::string(); // UNKNOWN PLATFORM #endif #endif // __UNIX_LIKE__ or not... } std::string OneService::autoUpdateUrl() { #ifdef ZT_AUTO_UPDATE /* #if defined(__LINUX__) && ( defined(__i386__) || defined(__x86_64) || defined(__x86_64__) || defined(__amd64) || defined(__i386) ) if (sizeof(void *) == 8) return "http://download.zerotier.com/ZeroTierOneInstaller-linux-x64-LATEST.nfo"; else return "http://download.zerotier.com/ZeroTierOneInstaller-linux-x86-LATEST.nfo"; #endif */ #if defined(__APPLE__) && ( defined(__i386__) || defined(__x86_64) || defined(__x86_64__) || defined(__amd64) || defined(__i386) ) return "http://download.zerotier.com/update/mac_intel/"; #endif #ifdef __WINDOWS__ return "http://download.zerotier.com/update/win_intel/"; #endif #endif // ZT_AUTO_UPDATE return std::string(); } OneService *OneService::newInstance(const char *hp,unsigned int port) { return new OneServiceImpl(hp,port); } OneService::~OneService() {} } // namespace ZeroTier