/* * ZeroTier One - Global Peer to Peer Ethernet * Copyright (C) 2012-2013 ZeroTier Networks LLC * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #ifndef _ZT_UTILS_HPP #define _ZT_UTILS_HPP #include #include #include #include #include #include #include #include #include #include "../ext/lz4/lz4.h" #include "../ext/lz4/lz4hc.h" #include "../ext/huffandpuff/huffman.h" #include "Constants.hpp" /** * Maximum compression/decompression block size (do not change) */ #define ZT_COMPRESSION_BLOCK_SIZE 16777216 namespace ZeroTier { /** * Miscellaneous utility functions and global constants */ class Utils { public: /** * @param data Data to convert to hex * @param len Length of data * @return Hexadecimal string */ static std::string hex(const void *data,unsigned int len); static inline std::string hex(const std::string &data) { return hex(data.data(),data.length()); } /** * @param hex Hexadecimal ASCII code (non-hex chars are ignored) * @return Binary data */ static std::string unhex(const char *hex); static inline std::string unhex(const std::string &hex) { return unhex(hex.c_str()); } /** * @param hex Hexadecimal ASCII * @param buf Buffer to fill * @param len Length of buffer * @return Number of characters actually written */ static unsigned int unhex(const char *hex,void *buf,unsigned int len); /** * @param buf Buffer to fill * @param bytes Number of random bytes to generate */ static void getSecureRandom(void *buf,unsigned int bytes); /** * Set modes on a file to something secure * * This locks a file so that only the owner can access it. What it actually * does varies by platform. * * @param path Path to lock * @param isDir True if this is a directory */ static void lockDownFile(const char *path,bool isDir); /** * Get file last modification time * * Resolution is often only second, not millisecond, but the return is * always in ms for comparison against now(). * * @param path Path to file to get time * @return Last modification time in ms since epoch or 0 if not found */ static uint64_t getLastModified(const char *path); /** * @param t64 Time in ms since epoch * @return RFC1123 date string */ static std::string toRfc1123(uint64_t t64); /** * @param tstr Time in RFC1123 string format * @return Time in ms since epoch */ static uint64_t fromRfc1123(const char *tstr); static inline uint64_t fromRfc1123(const std::string &tstr) { return fromRfc1123(tstr.c_str()); } /** * String append output function object for use with compress/decompress */ class StringAppendOutput { public: StringAppendOutput(std::string &s) : _s(s) {} inline void operator()(const void *data,unsigned int len) { _s.append((const char *)data,len); } private: std::string &_s; }; /** * STDIO FILE append output function object for compress/decompress * * Throws std::runtime_error on write error. */ class FILEAppendOutput { public: FILEAppendOutput(FILE *f) : _f(f) {} inline void operator()(const void *data,unsigned int len) throw(std::runtime_error) { if ((int)fwrite(data,1,len,_f) != (int)len) throw std::runtime_error("write failed"); } private: FILE *_f; }; /** * Compress data * * O must be a function or function object that takes the following * arguments: (const void *data,unsigned int len) * * @param in Input iterator that reads bytes (char, uint8_t, etc.) * @param out Output iterator that writes bytes */ template static inline void compress(I begin,I end,O out) { char huffheap[HUFFHEAP_SIZE]; unsigned int bufLen = LZ4_compressBound(ZT_COMPRESSION_BLOCK_SIZE); char *buf = new char[bufLen * 2]; char *buf2 = buf + bufLen; try { I inp(begin); for(;;) { unsigned int readLen = 0; while ((readLen < ZT_COMPRESSION_BLOCK_SIZE)&&(inp != end)) { buf[readLen++] = (char)*inp; ++inp; } if (!readLen) break; uint32_t l = hton((uint32_t)readLen); out((const void *)&l,4); // original size if (readLen < 32) { // don't bother compressing itty bitty blocks l = 0; // stored out((const void *)&l,4); out((const void *)buf,readLen); continue; } int lz4CompressedLen = LZ4_compressHC(buf,buf2,(int)readLen); if ((lz4CompressedLen <= 0)||(lz4CompressedLen >= (int)readLen)) { l = 0; // stored out((const void *)&l,4); out((const void *)buf,readLen); continue; } unsigned long huffCompressedLen = huffman_compress((const unsigned char *)buf2,lz4CompressedLen,(unsigned char *)buf,bufLen,huffheap); if ((!huffCompressedLen)||((int)huffCompressedLen >= lz4CompressedLen)) { l = hton((uint32_t)lz4CompressedLen); // lz4 only out((const void *)&l,4); out((const void *)buf2,(unsigned int)lz4CompressedLen); } else { l = hton((uint32_t)0x80000000 | (uint32_t)huffCompressedLen); // lz4 with huffman out((const void *)&l,4); out((const void *)buf,(unsigned int)huffCompressedLen); } } delete [] buf; } catch ( ... ) { delete [] buf; throw; } } /** * Decompress data * * O must be a function or function object that takes the following * arguments: (const void *data,unsigned int len) * * @param in Input iterator that reads bytes (char, uint8_t, etc.) * @param out Output iterator that writes bytes * @return False on decompression error */ template static inline bool decompress(I begin,I end,O out) { char huffheap[HUFFHEAP_SIZE]; volatile char i32c[4]; void *const i32cp = (void *)i32c; unsigned int bufLen = LZ4_compressBound(ZT_COMPRESSION_BLOCK_SIZE); char *buf = new char[bufLen * 2]; char *buf2 = buf + bufLen; try { I inp(begin); while (inp != end) { i32c[0] = (char)*inp; if (++inp == end) { delete [] buf; return false; } i32c[1] = (char)*inp; if (++inp == end) { delete [] buf; return false; } i32c[2] = (char)*inp; if (++inp == end) { delete [] buf; return false; } i32c[3] = (char)*inp; if (++inp == end) { delete [] buf; return false; } unsigned int originalSize = ntoh(*((const uint32_t *)i32cp)); i32c[0] = (char)*inp; if (++inp == end) { delete [] buf; return false; } i32c[1] = (char)*inp; if (++inp == end) { delete [] buf; return false; } i32c[2] = (char)*inp; if (++inp == end) { delete [] buf; return false; } i32c[3] = (char)*inp; if (++inp == end) { delete [] buf; return false; } uint32_t _compressedSize = ntoh(*((const uint32_t *)i32cp)); unsigned int compressedSize = _compressedSize & 0x7fffffff; if (compressedSize) { if (compressedSize > bufLen) { delete [] buf; return false; } unsigned int readLen = 0; while ((readLen < compressedSize)&&(inp != end)) { buf[readLen++] = (char)*inp; ++inp; } if (readLen != compressedSize) { delete [] buf; return false; } if ((_compressedSize & 0x80000000)) { // lz4 and huffman unsigned long lz4CompressedSize = huffman_decompress((const unsigned char *)buf,compressedSize,(unsigned char *)buf2,bufLen,huffheap); if (lz4CompressedSize) { if (LZ4_uncompress_unknownOutputSize(buf2,buf,lz4CompressedSize,bufLen) != (int)originalSize) { delete [] buf; return false; } else out((const void *)buf,(unsigned int)originalSize); } else { delete [] buf; return false; } } else { // lz4 only if (LZ4_uncompress_unknownOutputSize(buf,buf2,compressedSize,bufLen) != (int)originalSize) { delete [] buf; return false; } else out((const void *)buf2,(unsigned int)originalSize); } } else { // stored if (originalSize > bufLen) { delete [] buf; return false; } unsigned int readLen = 0; while ((readLen < originalSize)&&(inp != end)) { buf[readLen++] = (char)*inp; ++inp; } if (readLen != originalSize) { delete [] buf; return false; } out((const void *)buf,(unsigned int)originalSize); } } delete [] buf; return true; } catch ( ... ) { delete [] buf; throw; } } /** * @return Current time in milliseconds since epoch */ static inline uint64_t now() throw() { struct timeval tv; gettimeofday(&tv,(struct timezone *)0); return ( (1000ULL * (uint64_t)tv.tv_sec) + (uint64_t)(tv.tv_usec / 1000) ); }; /** * Read the full contents of a file into a string buffer * * The buffer isn't cleared, so if it already contains data the file's data will * be appended. * * @param path Path of file to read * @param buf Buffer to fill * @return True if open and read successful */ static bool readFile(const char *path,std::string &buf); /** * Write a block of data to disk, replacing any current file contents * * @param path Path to write * @param buf Buffer containing data * @param len Length of buffer * @return True if entire file was successfully written */ static bool writeFile(const char *path,const void *buf,unsigned int len); /** * Write a block of data to disk, replacing any current file contents * * @param path Path to write * @param s Data to write * @return True if entire file was successfully written */ static inline bool writeFile(const char *path,const std::string &s) { return writeFile(path,s.data(),s.length()); } /** * @param data Binary data to encode * @param len Length of data * @return Base64-encoded string */ static std::string base64Encode(const void *data,unsigned int len); inline static std::string base64Encode(const std::string &data) { return base64Encode(data.data(),data.length()); } /** * @param data Base64-encoded string * @param len Length of encoded string * @return Decoded binary date */ static std::string base64Decode(const char *data,unsigned int len); inline static std::string base64Decode(const std::string &data) { return base64Decode(data.data(),data.length()); } /** * Split a string by delimiter, with optional escape and quote characters * * @param s String to split * @param sep One or more separators * @param esc Zero or more escape characters * @param quot Zero or more quote characters * @return Vector of tokens */ static std::vector split(const char *s,const char *const sep,const char *esc,const char *quot); /** * Trim whitespace from the start and end of a string * * @param s String to trim * @return Trimmed string */ static std::string trim(const std::string &s); /** * Like sprintf, but appends to std::string * * @param s String to append to * @param fmt Printf format string * @param ... Format arguments * @throws std::bad_alloc Memory allocation failure * @throws std::length_error Format + args exceeds internal buffer maximum */ static void stdsprintf(std::string &s,const char *fmt,...) throw(std::bad_alloc,std::length_error); /** * Count the number of bits set in an integer * * @param v 32-bit integer * @return Number of bits set in this integer (0-32) */ static inline uint32_t countBits(uint32_t v) throw() { v = v - ((v >> 1) & (uint32_t)0x55555555); v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333); return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24); } /** * Check if a memory buffer is all-zero * * @param p Memory to scan * @param len Length of memory * @return True if memory is all zero */ static inline bool isZero(const void *p,unsigned int len) throw() { for(unsigned int i=0;i= 8)&&(bbits >= 8)) { if (*aptr++ != *bptr++) return false; abits -= 8; bbits -= 8; } unsigned char mask = 0xff << (8 - ((abits > bbits) ? bbits : abits)); return ((*aptr & mask) == (*aptr & mask)); } /** * Compute CRC64 * * @param crc Previous CRC (0 to start) * @param s String to add to crc * @param l Length of string in bytes * @return New CRC */ static inline uint64_t crc64(uint64_t crc,const void *s,unsigned int l) throw() { for(unsigned int i=0;i> 8); return crc; } static inline uint8_t hton(uint8_t n) throw() { return n; } static inline int8_t hton(int8_t n) throw() { return n; } static inline uint16_t hton(uint16_t n) throw() { return htons(n); } static inline int16_t hton(int16_t n) throw() { return (int16_t)htons((uint16_t)n); } static inline uint32_t hton(uint32_t n) throw() { return htonl(n); } static inline int32_t hton(int32_t n) throw() { return (int32_t)htonl((uint32_t)n); } static inline uint64_t hton(uint64_t n) throw() { #if __BYTE_ORDER == __LITTLE_ENDIAN #ifdef __GNUC__ return __builtin_bswap64(n); #else return ( ((n & 0x00000000000000FFULL) << 56) | ((n & 0x000000000000FF00ULL) << 40) | ((n & 0x0000000000FF0000ULL) << 24) | ((n & 0x00000000FF000000ULL) << 8) | ((n & 0x000000FF00000000ULL) >> 8) | ((n & 0x0000FF0000000000ULL) >> 24) | ((n & 0x00FF000000000000ULL) >> 40) | ((n & 0xFF00000000000000ULL) >> 56) ); #endif #else return n; #endif } static inline int64_t hton(int64_t n) throw() { return (int64_t)hton((uint64_t)n); } static inline uint8_t ntoh(uint8_t n) throw() { return n; } static inline int8_t ntoh(int8_t n) throw() { return n; } static inline uint16_t ntoh(uint16_t n) throw() { return ntohs(n); } static inline int16_t ntoh(int16_t n) throw() { return (int16_t)ntohs((uint16_t)n); } static inline uint32_t ntoh(uint32_t n) throw() { return ntohl(n); } static inline int32_t ntoh(int32_t n) throw() { return (int32_t)ntohl((uint32_t)n); } static inline uint64_t ntoh(uint64_t n) throw() { #if __BYTE_ORDER == __LITTLE_ENDIAN #ifdef __GNUC__ return __builtin_bswap64(n); #else return ( ((n & 0x00000000000000FFULL) << 56) | ((n & 0x000000000000FF00ULL) << 40) | ((n & 0x0000000000FF0000ULL) << 24) | ((n & 0x00000000FF000000ULL) << 8) | ((n & 0x000000FF00000000ULL) >> 8) | ((n & 0x0000FF0000000000ULL) >> 24) | ((n & 0x00FF000000000000ULL) >> 40) | ((n & 0xFF00000000000000ULL) >> 56) ); #endif #else return n; #endif } static inline int64_t ntoh(int64_t n) throw() { return (int64_t)ntoh((uint64_t)n); } /** * Hexadecimal characters 0-f */ static const char HEXCHARS[16]; private: static const uint64_t crc64Table[256]; static const char base64EncMap[64]; static const char base64DecMap[128]; }; } // namespace ZeroTier #endif