/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifdef __GNUC__ #pragma GCC diagnostic ignored "-Wrestrict" #endif #include "../node/Constants.hpp" #ifdef __LINUX__ #include "../node/Dictionary.hpp" #include "../node/Mutex.hpp" #include "../node/Utils.hpp" #include "LinuxEthernetTap.hpp" #include "LinuxNetLink.hpp" #include "OSUtils.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef IFNAMSIZ #define IFNAMSIZ 16 #endif #define ZT_TAP_BUF_SIZE (1024 * 16) // ff:ff:ff:ff:ff:ff with no ADI static const ZeroTier::MulticastGroup _blindWildcardMulticastGroup(ZeroTier::MAC(0xff), 0); namespace ZeroTier { // determine if we're running a really old linux kernel. // Kernels in the 2.6.x series don't behave the same when bringing up // the tap devices. // // Returns true if the kernel major version is < 3 bool isOldLinuxKernel() { struct utsname buffer; char* p; long ver[16]; int i = 0; if (uname(&buffer) != 0) { perror("uname"); exit(EXIT_FAILURE); } p = buffer.release; while (*p) { if (isdigit(*p)) { ver[i] = strtol(p, &p, 10); i++; } else { p++; } } return ver[0] < 3; } static const char _base32_chars[32] = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '2', '3', '4', '5', '6', '7' }; static void _base32_5_to_8(const uint8_t* in, char* out) { out[0] = _base32_chars[(in[0]) >> 3]; out[1] = _base32_chars[(in[0] & 0x07) << 2 | (in[1] & 0xc0) >> 6]; out[2] = _base32_chars[(in[1] & 0x3e) >> 1]; out[3] = _base32_chars[(in[1] & 0x01) << 4 | (in[2] & 0xf0) >> 4]; out[4] = _base32_chars[(in[2] & 0x0f) << 1 | (in[3] & 0x80) >> 7]; out[5] = _base32_chars[(in[3] & 0x7c) >> 2]; out[6] = _base32_chars[(in[3] & 0x03) << 3 | (in[4] & 0xe0) >> 5]; out[7] = _base32_chars[(in[4] & 0x1f)]; } LinuxEthernetTap::LinuxEthernetTap( const char* homePath, unsigned int concurrency, bool pinning, const MAC& mac, unsigned int mtu, unsigned int metric, uint64_t nwid, const char* friendlyName, void (*handler)(void*, void*, uint64_t, const MAC&, const MAC&, unsigned int, unsigned int, const void*, unsigned int), void* arg) : _handler(handler) , _arg(arg) , _nwid(nwid) , _mac(mac) , _homePath(homePath) , _mtu(mtu) , _fd(0) , _enabled(true) , _run(true) , _lastIfAddrsUpdate(0) { static std::mutex s_tapCreateLock; char procpath[128], nwids[32]; struct stat sbuf; // Create only one tap at a time globally. std::lock_guard tapCreateLock(s_tapCreateLock); // Make sure Linux netlink is initialized. (void)LinuxNetLink::getInstance(); OSUtils::ztsnprintf(nwids, sizeof(nwids), "%.16llx", nwid); _fd = ::open("/dev/net/tun", O_RDWR); if (_fd <= 0) { _fd = ::open("/dev/tun", O_RDWR); if (_fd <= 0) throw std::runtime_error(std::string("could not open TUN/TAP device: ") + strerror(errno)); } struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); // Restore device names from legacy devicemap, but for new devices we use a base32-based // canonical device name. std::map globalDeviceMap; FILE* devmapf = fopen((_homePath + ZT_PATH_SEPARATOR_S + "devicemap").c_str(), "r"); if (devmapf) { char buf[256]; while (fgets(buf, sizeof(buf), devmapf)) { char* x = (char*)0; char* y = (char*)0; char* saveptr = (char*)0; for (char* f = Utils::stok(buf, "\r\n=", &saveptr); (f); f = Utils::stok((char*)0, "\r\n=", &saveptr)) { if (! x) x = f; else if (! y) y = f; else break; } if ((x) && (y) && (x[0]) && (y[0])) globalDeviceMap[x] = y; } fclose(devmapf); } bool recalledDevice = false; std::map::const_iterator gdmEntry = globalDeviceMap.find(nwids); if (gdmEntry != globalDeviceMap.end()) { Utils::scopy(ifr.ifr_name, sizeof(ifr.ifr_name), gdmEntry->second.c_str()); OSUtils::ztsnprintf(procpath, sizeof(procpath), "/proc/sys/net/ipv4/conf/%s", ifr.ifr_name); recalledDevice = (stat(procpath, &sbuf) != 0); } if (! recalledDevice) { #ifdef __SYNOLOGY__ int devno = 50; do { OSUtils::ztsnprintf(ifr.ifr_name, sizeof(ifr.ifr_name), "eth%d", devno++); OSUtils::ztsnprintf(procpath, sizeof(procpath), "/proc/sys/net/ipv4/conf/%s", ifr.ifr_name); } while (stat(procpath, &sbuf) == 0); // try zt#++ until we find one that does not exist #else uint64_t trial = 0; // incremented in the very unlikely event of a name collision with another network do { const uint64_t nwid40 = (nwid ^ (nwid >> 24)) + trial++; uint8_t tmp2[5]; char tmp3[11]; tmp2[0] = (uint8_t)((nwid40 >> 32) & 0xff); tmp2[1] = (uint8_t)((nwid40 >> 24) & 0xff); tmp2[2] = (uint8_t)((nwid40 >> 16) & 0xff); tmp2[3] = (uint8_t)((nwid40 >> 8) & 0xff); tmp2[4] = (uint8_t)(nwid40 & 0xff); tmp3[0] = 'z'; tmp3[1] = 't'; _base32_5_to_8(tmp2, tmp3 + 2); tmp3[10] = (char)0; memcpy(ifr.ifr_name, tmp3, 11); OSUtils::ztsnprintf(procpath, sizeof(procpath), "/proc/sys/net/ipv4/conf/%s", ifr.ifr_name); } while (stat(procpath, &sbuf) == 0); #endif } ifr.ifr_flags = IFF_TAP | IFF_NO_PI; if (ioctl(_fd, TUNSETIFF, (void*)&ifr) < 0) { ::close(_fd); throw std::runtime_error("unable to configure TUN/TAP device for TAP operation"); } ::ioctl(_fd, TUNSETPERSIST, 0); // valgrind may generate a false alarm here _dev = ifr.ifr_name; ::fcntl(_fd, F_SETFD, fcntl(_fd, F_GETFD) | FD_CLOEXEC); (void)::pipe(_shutdownSignalPipe); for (unsigned int i = 0; i < concurrency; ++i) { _rxThreads.push_back(std::thread([this, i, concurrency, pinning] { if (pinning) { int pinCore = i % concurrency; fprintf(stderr, "Pinning tap thread %d to core %d\n", i, pinCore); pthread_t self = pthread_self(); cpu_set_t cpuset; CPU_ZERO(&cpuset); CPU_SET(pinCore, &cpuset); int rc = pthread_setaffinity_np(self, sizeof(cpu_set_t), &cpuset); if (rc != 0) { fprintf(stderr, "Failed to pin tap thread %d to core %d: %s\n", i, pinCore, strerror(errno)); exit(1); } } uint8_t b[ZT_TAP_BUF_SIZE]; fd_set readfds, nullfds; int n, nfds, r; if (i == 0) { struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, _dev.c_str()); const int sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock <= 0) return; if (ioctl(sock, SIOCGIFFLAGS, (void*)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (bring interface up)\n"); return; } ifr.ifr_ifru.ifru_hwaddr.sa_family = ARPHRD_ETHER; _mac.copyTo(ifr.ifr_ifru.ifru_hwaddr.sa_data, 6); if (ioctl(sock, SIOCSIFHWADDR, (void*)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (set MAC)\n"); return; } usleep(100000); if (isOldLinuxKernel()) { ifr.ifr_ifru.ifru_mtu = (int)_mtu; if (ioctl(sock, SIOCSIFMTU, (void*)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (set MTU)\n"); return; } usleep(100000); } ifr.ifr_flags |= IFF_MULTICAST; ifr.ifr_flags |= IFF_UP; if (ioctl(sock, SIOCSIFFLAGS, (void*)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (bring interface up)\n"); return; } usleep(100000); if (! isOldLinuxKernel()) { ifr.ifr_ifru.ifru_hwaddr.sa_family = ARPHRD_ETHER; _mac.copyTo(ifr.ifr_ifru.ifru_hwaddr.sa_data, 6); if (ioctl(sock, SIOCSIFHWADDR, (void*)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (set MAC)\n"); return; } ifr.ifr_ifru.ifru_mtu = (int)_mtu; if (ioctl(sock, SIOCSIFMTU, (void*)&ifr) < 0) { ::close(sock); printf("WARNING: ioctl() failed setting up Linux tap device (set MTU)\n"); return; } } fcntl(_fd, F_SETFL, O_NONBLOCK); ::close(sock); } if (! _run) { return; } FD_ZERO(&readfds); FD_ZERO(&nullfds); nfds = (int)std::max(_shutdownSignalPipe[0], _fd) + 1; r = 0; for (;;) { FD_SET(_shutdownSignalPipe[0], &readfds); FD_SET(_fd, &readfds); select(nfds, &readfds, &nullfds, &nullfds, (struct timeval*)0); if (FD_ISSET(_shutdownSignalPipe[0], &readfds)) { break; } if (FD_ISSET(_fd, &readfds)) { for (;;) { // read until there are no more packets, then return to outer select() loop n = (int)::read(_fd, b + r, ZT_TAP_BUF_SIZE - r); if (n > 0) { // Some tap drivers like to send the ethernet frame and the // payload in two chunks, so handle that by accumulating // data until we have at least a frame. r += n; if (r > 14) { if (r > ((int)_mtu + 14)) // sanity check for weird TAP behavior on some platforms r = _mtu + 14; if (_enabled) { MAC to(b, 6), from(b + 6, 6); unsigned int etherType = Utils::ntoh(((const uint16_t*)b)[6]); _handler(_arg, nullptr, _nwid, from, to, etherType, 0, (const void*)(b + 14), (unsigned int)(r - 14)); } r = 0; } } else { r = 0; break; } } } } })); } } LinuxEthernetTap::~LinuxEthernetTap() { _run = false; (void)::write(_shutdownSignalPipe[1], "\0", 1); ::close(_fd); ::close(_shutdownSignalPipe[0]); ::close(_shutdownSignalPipe[1]); for (std::thread& t : _rxThreads) { t.join(); } } void LinuxEthernetTap::setEnabled(bool en) { _enabled = en; } bool LinuxEthernetTap::enabled() const { return _enabled; } static bool ___removeIp(const std::string& _dev, const InetAddress& ip) { LinuxNetLink::getInstance().removeAddress(ip, _dev.c_str()); return true; } bool LinuxEthernetTap::addIps(std::vector ips) { #ifdef __SYNOLOGY__ std::string filepath = "/etc/sysconfig/network-scripts/ifcfg-" + _dev; std::string cfg_contents = "DEVICE=" + _dev + "\nBOOTPROTO=static"; int ip4 = 0, ip6 = 0, ip4_tot = 0, ip6_tot = 0; for (int i = 0; i < (int)ips.size(); i++) { if (ips[i].isV4()) ip4_tot++; else ip6_tot++; } // Assemble and write contents of ifcfg-dev file for (int i = 0; i < (int)ips.size(); i++) { if (ips[i].isV4()) { char iptmp[64], iptmp2[64]; std::string numstr4 = ip4_tot > 1 ? std::to_string(ip4) : ""; cfg_contents += "\nIPADDR" + numstr4 + "=" + ips[i].toIpString(iptmp) + "\nNETMASK" + numstr4 + "=" + ips[i].netmask().toIpString(iptmp2) + "\n"; ip4++; } else { char iptmp[64], iptmp2[64]; std::string numstr6 = ip6_tot > 1 ? std::to_string(ip6) : ""; cfg_contents += "\nIPV6ADDR" + numstr6 + "=" + ips[i].toIpString(iptmp) + "\nNETMASK" + numstr6 + "=" + ips[i].netmask().toIpString(iptmp2) + "\n"; ip6++; } } OSUtils::writeFile(filepath.c_str(), cfg_contents.c_str(), cfg_contents.length()); // Finally, add IPs for (int i = 0; i < (int)ips.size(); i++) { LinuxNetLink::getInstance().addAddress(ips[i], _dev.c_str()); } return true; #endif // __SYNOLOGY__ return false; } bool LinuxEthernetTap::addIp(const InetAddress& ip) { if (! ip) return false; std::vector allIps(ips()); if (std::binary_search(allIps.begin(), allIps.end(), ip)) return true; // Remove and reconfigure if address is the same but netmask is different for (std::vector::iterator i(allIps.begin()); i != allIps.end(); ++i) { if (i->ipsEqual(ip)) ___removeIp(_dev, *i); } LinuxNetLink::getInstance().addAddress(ip, _dev.c_str()); return true; } bool LinuxEthernetTap::removeIp(const InetAddress& ip) { if (! ip) return true; std::vector allIps(ips()); if (std::find(allIps.begin(), allIps.end(), ip) != allIps.end()) { if (___removeIp(_dev, ip)) return true; } return false; } std::vector LinuxEthernetTap::ips() const { uint64_t now = OSUtils::now(); if ((now - _lastIfAddrsUpdate) <= GETIFADDRS_CACHE_TIME) { return _ifaddrs; } _lastIfAddrsUpdate = now; struct ifaddrs* ifa = (struct ifaddrs*)0; if (getifaddrs(&ifa)) return std::vector(); std::vector r; struct ifaddrs* p = ifa; while (p) { if ((! strcmp(p->ifa_name, _dev.c_str())) && (p->ifa_addr) && (p->ifa_netmask) && (p->ifa_addr->sa_family == p->ifa_netmask->sa_family)) { switch (p->ifa_addr->sa_family) { case AF_INET: { struct sockaddr_in* sin = (struct sockaddr_in*)p->ifa_addr; struct sockaddr_in* nm = (struct sockaddr_in*)p->ifa_netmask; r.push_back(InetAddress(&(sin->sin_addr.s_addr), 4, Utils::countBits((uint32_t)nm->sin_addr.s_addr))); } break; case AF_INET6: { struct sockaddr_in6* sin = (struct sockaddr_in6*)p->ifa_addr; struct sockaddr_in6* nm = (struct sockaddr_in6*)p->ifa_netmask; uint32_t b[4]; memcpy(b, nm->sin6_addr.s6_addr, sizeof(b)); r.push_back(InetAddress(sin->sin6_addr.s6_addr, 16, Utils::countBits(b[0]) + Utils::countBits(b[1]) + Utils::countBits(b[2]) + Utils::countBits(b[3]))); } break; } } p = p->ifa_next; } if (ifa) freeifaddrs(ifa); std::sort(r.begin(), r.end()); r.erase(std::unique(r.begin(), r.end()), r.end()); _ifaddrs = r; return r; } void LinuxEthernetTap::put(const MAC& from, const MAC& to, unsigned int etherType, const void* data, unsigned int len) { char putBuf[ZT_MAX_MTU + 64]; if ((_fd > 0) && (len <= _mtu) && (_enabled)) { to.copyTo(putBuf, 6); from.copyTo(putBuf + 6, 6); *((uint16_t*)(putBuf + 12)) = htons((uint16_t)etherType); memcpy(putBuf + 14, data, len); len += 14; (void)::write(_fd, putBuf, len); } } std::string LinuxEthernetTap::deviceName() const { return _dev; } void LinuxEthernetTap::setFriendlyName(const char* friendlyName) { } void LinuxEthernetTap::scanMulticastGroups(std::vector& added, std::vector& removed) { char *ptr, *ptr2; unsigned char mac[6]; std::vector newGroups; int fd = ::open("/proc/net/dev_mcast", O_RDONLY); if (fd > 0) { char buf[131072]; int n = (int)::read(fd, buf, sizeof(buf)); if ((n > 0) && (n < (int)sizeof(buf))) { buf[n] = (char)0; for (char* l = strtok_r(buf, "\r\n", &ptr); (l); l = strtok_r((char*)0, "\r\n", &ptr)) { int fno = 0; char* devname = (char*)0; char* mcastmac = (char*)0; for (char* f = strtok_r(l, " \t", &ptr2); (f); f = strtok_r((char*)0, " \t", &ptr2)) { if (fno == 1) devname = f; else if (fno == 4) mcastmac = f; ++fno; } if ((devname) && (! strcmp(devname, _dev.c_str())) && (mcastmac) && (Utils::unhex(mcastmac, mac, 6) == 6)) newGroups.push_back(MulticastGroup(MAC(mac, 6), 0)); } } ::close(fd); } std::vector allIps(ips()); for (std::vector::iterator ip(allIps.begin()); ip != allIps.end(); ++ip) newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip)); std::sort(newGroups.begin(), newGroups.end()); newGroups.erase(std::unique(newGroups.begin(), newGroups.end()), newGroups.end()); for (std::vector::iterator m(newGroups.begin()); m != newGroups.end(); ++m) { if (! std::binary_search(_multicastGroups.begin(), _multicastGroups.end(), *m)) added.push_back(*m); } for (std::vector::iterator m(_multicastGroups.begin()); m != _multicastGroups.end(); ++m) { if (! std::binary_search(newGroups.begin(), newGroups.end(), *m)) removed.push_back(*m); } _multicastGroups.swap(newGroups); } void LinuxEthernetTap::setMtu(unsigned int mtu) { if (_mtu != mtu) { _mtu = mtu; int sock = socket(AF_INET, SOCK_DGRAM, 0); if (sock > 0) { struct ifreq ifr; memset(&ifr, 0, sizeof(ifr)); strcpy(ifr.ifr_name, _dev.c_str()); ifr.ifr_ifru.ifru_mtu = (int)mtu; if (ioctl(sock, SIOCSIFMTU, (void*)&ifr) < 0) { printf("WARNING: ioctl() failed updating existing Linux tap device (set MTU)\n"); } close(sock); } } } } // namespace ZeroTier #endif // __LINUX__