/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_AES_HPP #define ZT_AES_HPP #include "Constants.hpp" #include "Utils.hpp" #include "SHA512.hpp" // Uncomment to disable all hardware acceleration (usually for testing) //#define ZT_AES_NO_ACCEL #if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_X64) #define ZT_AES_AESNI 1 #endif #if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_ARM_HAS_NEON) && defined(ZT_ARCH_ARM_HAS_CRYPTO) #define ZT_AES_NEON 1 #endif #ifndef ZT_INLINE #define ZT_INLINE inline #endif namespace ZeroTier { /** * AES-256 and pals including GMAC, CTR, etc. * * This includes hardware acceleration for certain processors. The software * mode is fallback and is significantly slower. */ class AES { public: /** * @return True if this system has hardware AES acceleration */ static ZT_INLINE bool accelerated() { #ifdef ZT_AES_AESNI return Utils::CPUID.aes; #else #ifdef ZT_AES_NEON return Utils::ARMCAP.aes; #else return false; #endif #endif } /** * Create an un-initialized AES instance (must call init() before use) */ ZT_INLINE AES() noexcept {} /** * Create an AES instance with the given key * * @param key 256-bit key */ explicit ZT_INLINE AES(const void *const key) noexcept { this->init(key); } ZT_INLINE ~AES() { Utils::burn(&p_k, sizeof(p_k)); } /** * Set (or re-set) this AES256 cipher's key * * @param key 256-bit / 32-byte key */ ZT_INLINE void init(const void *const key) noexcept { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { p_init_aesni(reinterpret_cast<const uint8_t *>(key)); return; } #endif #ifdef ZT_AES_NEON if (Utils::ARMCAP.aes) { p_init_armneon_crypto(reinterpret_cast<const uint8_t *>(key)); return; } #endif p_initSW(reinterpret_cast<const uint8_t *>(key)); } /** * Encrypt a single AES block * * @param in Input block * @param out Output block (can be same as input) */ ZT_INLINE void encrypt(const void *const in, void *const out) const noexcept { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { p_encrypt_aesni(in, out); return; } #endif #ifdef ZT_AES_NEON if (Utils::ARMCAP.aes) { p_encrypt_armneon_crypto(in, out); return; } #endif p_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out)); } /** * Decrypt a single AES block * * @param in Input block * @param out Output block (can be same as input) */ ZT_INLINE void decrypt(const void *const in, void *const out) const noexcept { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { p_decrypt_aesni(in, out); return; } #endif #ifdef ZT_AES_NEON if (Utils::ARMCAP.aes) { p_decrypt_armneon_crypto(in, out); return; } #endif p_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out)); } class GMACSIVEncryptor; class GMACSIVDecryptor; /** * Streaming GMAC calculator */ class GMAC { friend class GMACSIVEncryptor; friend class GMACSIVDecryptor; public: /** * @return True if this system has hardware GMAC acceleration */ static ZT_INLINE bool accelerated() { #ifdef ZT_AES_AESNI return Utils::CPUID.aes; #else #ifdef ZT_AES_NEON return Utils::ARMCAP.pmull; #else return false; #endif #endif } /** * Create a new instance of GMAC (must be initialized with init() before use) * * @param aes Keyed AES instance to use */ ZT_INLINE GMAC(const AES &aes) : _aes(aes) {} /** * Reset and initialize for a new GMAC calculation * * @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter) */ ZT_INLINE void init(const uint8_t iv[12]) noexcept { _rp = 0; _len = 0; // We fill the least significant 32 bits in the _iv field with 1 since in GCM mode // this would hold the counter, but we're not doing GCM. The counter is therefore // always 1. #ifdef ZT_AES_AESNI // also implies an x64 processor *reinterpret_cast<uint64_t *>(_iv) = *reinterpret_cast<const uint64_t *>(iv); *reinterpret_cast<uint32_t *>(_iv + 8) = *reinterpret_cast<const uint64_t *>(iv + 8); *reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order #else for(int i=0;i<12;++i) { _iv[i] = iv[i]; } _iv[12] = 0; _iv[13] = 0; _iv[14] = 0; _iv[15] = 1; #endif _y[0] = 0; _y[1] = 0; } /** * Process data through GMAC * * @param data Bytes to process * @param len Length of input */ void update(const void *data, unsigned int len) noexcept; /** * Process any remaining cached bytes and generate tag * * Don't call finish() more than once or you'll get an invalid result. * * @param tag 128-bit GMAC tag (can be truncated) */ void finish(uint8_t tag[16]) noexcept; private: #ifdef ZT_AES_AESNI void p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept; void p_aesNIFinish(uint8_t tag[16]) noexcept; #endif #ifdef ZT_AES_NEON void p_armUpdate(const uint8_t *in, unsigned int len) noexcept; void p_armFinish(uint8_t tag[16]) noexcept; #endif const AES &_aes; unsigned int _rp; unsigned int _len; uint8_t _r[16]; // remainder uint8_t _iv[16]; uint64_t _y[2]; }; /** * Streaming AES-CTR encrypt/decrypt * * NOTE: this doesn't support overflow of the counter in the least significant 32 bits. * AES-GMAC-CTR doesn't need this, so we don't support it as an optimization. */ class CTR { friend class GMACSIVEncryptor; friend class GMACSIVDecryptor; public: ZT_INLINE CTR(const AES &aes) noexcept: _aes(aes) {} /** * Initialize this CTR instance to encrypt a new stream * * @param iv Unique initialization vector and initial 32-bit counter (least significant 32 bits, big-endian) * @param output Buffer to which to store output (MUST be large enough for total bytes processed!) */ ZT_INLINE void init(const uint8_t iv[16], void *const output) noexcept { Utils::copy< 16 >(_ctr, iv); _out = reinterpret_cast<uint8_t *>(output); _len = 0; } /** * Initialize this CTR instance to encrypt a new stream * * @param iv Unique initialization vector * @param ic Initial counter (must be in big-endian byte order!) * @param output Buffer to which to store output (MUST be large enough for total bytes processed!) */ ZT_INLINE void init(const uint8_t iv[12], const uint32_t ic, void *const output) noexcept { Utils::copy< 12 >(_ctr, iv); reinterpret_cast<uint32_t *>(_ctr)[3] = ic; _out = reinterpret_cast<uint8_t *>(output); _len = 0; } /** * Encrypt or decrypt data, writing result to the output provided to init() * * @param input Input data * @param len Length of input */ void crypt(const void *input, unsigned int len) noexcept; /** * Finish any remaining bytes if total bytes processed wasn't a multiple of 16 * * Don't call more than once for a given stream or data may be corrupted. */ void finish() noexcept; private: #ifdef ZT_AES_AESNI void p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept; #endif #ifdef ZT_AES_NEON void p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept; #endif const AES &_aes; uint64_t _ctr[2]; uint8_t *_out; unsigned int _len; }; /** * Encryptor for AES-GMAC-SIV. * * Encryption requires two passes. The first pass starts after init * with aad (if any) followed by update1() and finish1(). Then the * update2() and finish2() methods must be used over the same data * (but NOT AAD) again. * * This supports encryption of a maximum of 2^31 bytes of data per * call to init(). */ class GMACSIVEncryptor { public: /** * Create a new AES-GMAC-SIV encryptor keyed with the provided AES instances * * @param k0 First of two AES instances keyed with K0 * @param k1 Second of two AES instances keyed with K1 */ ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept : _gmac(k0), _ctr(k1) {} /** * Initialize AES-GMAC-SIV * * @param iv IV in network byte order (byte order in which it will appear on the wire) * @param output Pointer to buffer to receive ciphertext, must be large enough for all to-be-processed data! */ ZT_INLINE void init(const uint64_t iv, void *const output) noexcept { // Output buffer to receive the result of AES-CTR encryption. _output = output; // Initialize GMAC with 64-bit IV (and remaining 32 bits padded to zero). _tag[0] = iv; _tag[1] = 0; _gmac.init(reinterpret_cast<const uint8_t *>(_tag)); } /** * Process AAD (additional authenticated data) that is not being encrypted. * * If such data exists this must be called before update1() and finish1(). * * Note: current code only supports one single chunk of AAD. Don't call this * multiple times per message. * * @param aad Additional authenticated data * @param len Length of AAD in bytes */ ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept { // Feed ADD into GMAC first _gmac.update(aad, len); // End of AAD is padded to a multiple of 16 bytes to ensure unique encoding. len &= 0xfU; if (len != 0) { _gmac.update(Utils::ZERO256, 16 - len); } } /** * First pass plaintext input function * * @param input Plaintext chunk * @param len Length of plaintext chunk */ ZT_INLINE void update1(const void *const input, const unsigned int len) noexcept { _gmac.update(input, len); } /** * Finish first pass, compute CTR IV, initialize second pass. */ ZT_INLINE void finish1() noexcept { // Compute 128-bit GMAC tag. uint64_t tmp[2]; _gmac.finish(reinterpret_cast<uint8_t *>(tmp)); // Shorten to 64 bits, concatenate with message IV, and encrypt with AES to // yield the CTR IV and opaque IV/MAC blob. In ZeroTier's use of GMAC-SIV // this get split into the packet ID (64 bits) and the MAC (64 bits) in each // packet and then recombined on receipt for legacy reasons (but with no // cryptographic or performance impact). _tag[1] = tmp[0] ^ tmp[1]; _ctr._aes.encrypt(_tag, _tag); // Initialize CTR with 96-bit CTR nonce and 32-bit counter. The counter // incorporates 31 more bits of entropy which should raise our security margin // a bit, but this is not included in the worst case analysis of GMAC-SIV. // The most significant bit of the counter is masked to zero to allow up to // 2^31 bytes to be encrypted before the counter loops. Some CTR implementations // increment the whole big-endian 128-bit integer in which case this could be // used for more than 2^31 bytes, but ours does not for performance reasons // and so 2^31 should be considered the input limit. tmp[0] = _tag[0]; tmp[1] = _tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL); _ctr.init(reinterpret_cast<const uint8_t *>(tmp), _output); } /** * Second pass plaintext input function * * The same plaintext must be fed in the second time in the same order, * though chunk boundaries do not have to be the same. * * @param input Plaintext chunk * @param len Length of plaintext chunk */ ZT_INLINE void update2(const void *const input, const unsigned int len) noexcept { _ctr.crypt(input, len); } /** * Finish second pass and return a pointer to the opaque 128-bit IV+MAC block * * The returned pointer remains valid as long as this object exists and init() * is not called again. * * @return Pointer to 128-bit opaque IV+MAC (packed into two 64-bit integers) */ ZT_INLINE const uint64_t *finish2() { _ctr.finish(); return _tag; } private: void *_output; uint64_t _tag[2]; AES::GMAC _gmac; AES::CTR _ctr; }; /** * Decryptor for AES-GMAC-SIV. * * GMAC-SIV decryption is single-pass. AAD (if any) must be processed first. */ class GMACSIVDecryptor { public: ZT_INLINE GMACSIVDecryptor(const AES &k0, const AES &k1) noexcept: _ctr(k1), _gmac(k0) {} /** * Initialize decryptor for a new message * * @param tag 128-bit combined IV/MAC originally created by GMAC-SIV encryption * @param output Buffer in which to write output plaintext (must be large enough!) */ ZT_INLINE void init(const uint64_t tag[2], void *const output) noexcept { uint64_t tmp[2]; tmp[0] = tag[0]; tmp[1] = tag[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL); _ctr.init(reinterpret_cast<const uint8_t *>(tmp), output); _ctr._aes.decrypt(tag, _ivMac); tmp[0] = _ivMac[0]; tmp[1] = 0; _gmac.init(reinterpret_cast<const uint8_t *>(tmp)); _output = output; _decryptedLen = 0; } /** * Process AAD (additional authenticated data) that wasn't encrypted * * @param aad Additional authenticated data * @param len Length of AAD in bytes */ ZT_INLINE void aad(const void *const aad, unsigned int len) noexcept { _gmac.update(aad, len); len &= 0xfU; if (len != 0) { _gmac.update(Utils::ZERO256, 16 - len); } } /** * Feed ciphertext into the decryptor * * Unlike encryption, GMAC-SIV decryption requires only one pass. * * @param input Input ciphertext * @param len Length of ciphertext */ ZT_INLINE void update(const void *const input, const unsigned int len) noexcept { _ctr.crypt(input, len); _decryptedLen += len; } /** * Flush decryption, compute MAC, and verify * * @return True if resulting plaintext (and AAD) pass message authentication check */ ZT_INLINE bool finish() noexcept { _ctr.finish(); uint64_t gmacTag[2]; _gmac.update(_output, _decryptedLen); _gmac.finish(reinterpret_cast<uint8_t *>(gmacTag)); return (gmacTag[0] ^ gmacTag[1]) == _ivMac[1]; } private: uint64_t _ivMac[2]; AES::CTR _ctr; AES::GMAC _gmac; void *_output; unsigned int _decryptedLen; }; private: static const uint32_t Te0[256]; static const uint32_t Te4[256]; static const uint32_t Td0[256]; static const uint8_t Td4[256]; static const uint32_t rcon[15]; void p_initSW(const uint8_t *key) noexcept; void p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept; void p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept; union { #ifdef ZT_AES_AESNI struct { __m128i k[28]; __m128i h[4]; // h, hh, hhh, hhhh __m128i h2[4]; // _mm_xor_si128(_mm_shuffle_epi32(h, 78), h), etc. } ni; #endif #ifdef ZT_AES_NEON struct { uint64_t hsw[2]; // in case it has AES but not PMULL, not sure if that ever happens uint8x16_t ek[15]; uint8x16_t dk[15]; uint8x16_t h; } neon; #endif struct { uint64_t h[2]; uint32_t ek[60]; uint32_t dk[60]; } sw; } p_k; #ifdef ZT_AES_AESNI void p_init_aesni(const uint8_t *key) noexcept; void p_encrypt_aesni(const void *in, void *out) const noexcept; void p_decrypt_aesni(const void *in, void *out) const noexcept; #endif #ifdef ZT_AES_NEON void p_init_armneon_crypto(const uint8_t *key) noexcept; void p_encrypt_armneon_crypto(const void *in, void *out) const noexcept; void p_decrypt_armneon_crypto(const void *in, void *out) const noexcept; #endif }; } // namespace ZeroTier #endif