/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifdef ZT_ENABLE_NETCON
#include
#include
#include
//#include
#include "NetconEthernetTap.hpp"
#include "../node/Utils.hpp"
#include "../osdep/OSUtils.hpp"
#include "../osdep/Phy.hpp"
#include "lwip/tcp_impl.h"
#include "netif/etharp.h"
#include "lwip/ip.h"
#include "lwip/ip_addr.h"
#include "lwip/ip_frag.h"
#include "lwip/tcp.h"
#include "LWIPStack.hpp"
#include "NetconService.hpp"
#include "Intercept.h"
#include "NetconUtilities.hpp"
#define APPLICATION_POLL_FREQ 1
namespace ZeroTier {
NetconEthernetTap::NetconEthernetTap(
const char *homePath,
const MAC &mac,
unsigned int mtu,
unsigned int metric,
uint64_t nwid,
const char *friendlyName,
void (*handler)(void *,uint64_t,const MAC &,const MAC &,unsigned int,unsigned int,const void *,unsigned int),
void *arg) :
_phy(this,false,true),
_unixListenSocket((PhySocket *)0),
_handler(handler),
_arg(arg),
_nwid(nwid),
_mac(mac),
_homePath(homePath),
_mtu(mtu),
_enabled(true),
_run(true)
{
char sockPath[4096];
Utils::snprintf(sockPath,sizeof(sockPath),"/tmp/.ztnc_%.16llx",(unsigned long long)nwid);
_dev = sockPath;
lwipstack = new LWIPStack("ext/bin/lwip/liblwip.so"); // ext/bin/liblwip.so.debug for debug symbols
if(!lwipstack) // TODO double check this check
throw std::runtime_error("unable to load lwip lib.");
lwipstack->lwip_init();
_unixListenSocket = _phy.unixListen(sockPath,(void *)this);
if (!_unixListenSocket)
throw std::runtime_error(std::string("unable to bind to ")+sockPath);
_thread = Thread::start(this);
}
NetconEthernetTap::~NetconEthernetTap()
{
_run = false;
_phy.whack();
_phy.whack();
Thread::join(_thread);
_phy.close(_unixListenSocket,false);
delete lwipstack;
}
void NetconEthernetTap::setEnabled(bool en)
{
_enabled = en;
}
bool NetconEthernetTap::enabled() const
{
return _enabled;
}
bool NetconEthernetTap::addIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
if (std::find(_ips.begin(),_ips.end(),ip) == _ips.end()) {
_ips.push_back(ip);
std::sort(_ips.begin(),_ips.end());
if (ip.isV4()) {
// Set IP
static ip_addr_t ipaddr, netmask, gw;
IP4_ADDR(&gw,192,168,0,1);
ipaddr.addr = *((u32_t *)ip.rawIpData());
netmask.addr = *((u32_t *)ip.netmask().rawIpData());
// Set up the lwip-netif for LWIP's sake
lwipstack->netif_add(&interface,&ipaddr, &netmask, &gw, NULL, tapif_init, lwipstack->_ethernet_input);
interface.state = this;
interface.output = lwipstack->_etharp_output;
_mac.copyTo(interface.hwaddr, 6);
interface.mtu = _mtu;
interface.name[0] = 't';
interface.name[1] = 'p';
interface.linkoutput = low_level_output;
interface.hwaddr_len = 6;
interface.flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_IGMP;
lwipstack->netif_set_default(&interface);
lwipstack->netif_set_up(&interface);
}
}
return true;
}
bool NetconEthernetTap::removeIp(const InetAddress &ip)
{
Mutex::Lock _l(_ips_m);
std::vector::iterator i(std::find(_ips.begin(),_ips.end(),ip));
if (i == _ips.end())
return false;
_ips.erase(i);
if (ip.isV4()) {
// TODO: dealloc from LWIP
}
return true;
}
std::vector NetconEthernetTap::ips() const
{
Mutex::Lock _l(_ips_m);
return _ips;
}
void NetconEthernetTap::put(const MAC &from,const MAC &to,unsigned int etherType,const void *data,unsigned int len)
{
fprintf(stderr, "__put(): len = %d\n", len);
struct pbuf *p,*q;
//fprintf(stderr, "_put(%s,%s,%.4x,[data],%u)\n",from.toString().c_str(),to.toString().c_str(),etherType,len);
if (!_enabled)
return;
//printf(">> %.4x %s\n",etherType,Utils::hex(data,len).c_str());
struct eth_hdr ethhdr;
from.copyTo(ethhdr.src.addr, 6);
to.copyTo(ethhdr.dest.addr, 6);
ethhdr.type = Utils::hton((uint16_t)etherType);
// We allocate a pbuf chain of pbufs from the pool.
p = lwipstack->pbuf_alloc(PBUF_RAW, len+sizeof(struct eth_hdr), PBUF_POOL);
if (p != NULL) {
const char *dataptr = reinterpret_cast(data);
// First pbuf gets ethernet header at start
q = p;
if (q->len < sizeof(ethhdr)) {
fprintf(stderr,"_put(): Dropped packet: first pbuf smaller than ethernet header\n");
return;
}
memcpy(q->payload,ðhdr,sizeof(ethhdr));
memcpy(q->payload + sizeof(ethhdr),dataptr,q->len - sizeof(ethhdr));
dataptr += q->len - sizeof(ethhdr);
// Remaining pbufs (if any) get rest of data
while ((q = q->next)) {
memcpy(q->payload,dataptr,q->len);
dataptr += q->len;
}
} else {
fprintf(stderr, "_put(): Dropped packet: no pbufs available\n");
return;
}
//printf("p->len == %u, p->payload == %s\n",p->len,Utils::hex(p->payload,p->len).c_str());
{
Mutex::Lock _l2(lwipstack->_lock);
if(interface.input(p, &interface) != ERR_OK) {
fprintf(stderr, "_put(): Error while RXing packet (netif->input)\n");
}
}
}
std::string NetconEthernetTap::deviceName() const
{
return _dev;
}
void NetconEthernetTap::setFriendlyName(const char *friendlyName)
{
}
void NetconEthernetTap::scanMulticastGroups(std::vector &added,std::vector &removed)
{
std::vector newGroups;
Mutex::Lock _l(_multicastGroups_m);
// TODO: get multicast subscriptions from LWIP
std::vector allIps(ips());
for(std::vector::iterator ip(allIps.begin());ip!=allIps.end();++ip)
newGroups.push_back(MulticastGroup::deriveMulticastGroupForAddressResolution(*ip));
std::sort(newGroups.begin(),newGroups.end());
std::unique(newGroups.begin(),newGroups.end());
for(std::vector::iterator m(newGroups.begin());m!=newGroups.end();++m) {
if (!std::binary_search(_multicastGroups.begin(),_multicastGroups.end(),*m))
added.push_back(*m);
}
for(std::vector::iterator m(_multicastGroups.begin());m!=_multicastGroups.end();++m) {
if (!std::binary_search(newGroups.begin(),newGroups.end(),*m))
removed.push_back(*m);
}
_multicastGroups.swap(newGroups);
}
NetconConnection *NetconEthernetTap::getConnectionByPCB(struct tcp_pcb *pcb)
{
NetconConnection *c;
for(size_t i=0; icontainsPCB(pcb);
if(c) return c;
}
return NULL;
}
NetconConnection *NetconEthernetTap::getConnectionByThisFD(int fd)
{
for(size_t i=0; iconnections.size(); j++) {
if(_phy.getDescriptor(clients[i]->connections[j]->sock) == fd)
return clients[i]->connections[j];
}
}
return NULL;
}
NetconClient *NetconEthernetTap::getClientByPCB(struct tcp_pcb *pcb)
{
for(size_t i=0; icontainsPCB(pcb))
return clients[i];
}
return NULL;
}
void NetconEthernetTap::closeAllClients()
{
for(size_t i=0; iowner;
if(conn->pcb == NULL) {
fprintf(stderr, "closeConnection(): PCB is null\n");
return;
}
lwipstack->_tcp_arg(conn->pcb, NULL);
lwipstack->_tcp_sent(conn->pcb, NULL);
lwipstack->_tcp_recv(conn->pcb, NULL);
lwipstack->_tcp_err(conn->pcb, NULL);
lwipstack->_tcp_poll(conn->pcb, NULL, 0);
close(_phy.getDescriptor(conn->sock));
_phy.close(conn->sock);
lwipstack->_tcp_close(conn->pcb);
client->removeConnection(conn->sock);
delete conn;
}
/*
* Closes a NetconClient and all associated NetconConnections (rpc, data, and unmapped)
*/
void NetconEthernetTap::closeClient(NetconClient *client)
{
{
Mutex::Lock _l(lwipstack->_lock);
closeConnection(client->rpc);
closeConnection(client->unmapped_conn);
}
while(client->connections.size()){
closeConnection(client->connections.front());
client->connections.erase(client->connections.begin());
}
}
#define ZT_LWIP_TCP_TIMER_INTERVAL 10
void NetconEthernetTap::threadMain()
throw()
{
uint64_t prev_tcp_time = 0;
uint64_t prev_etharp_time = 0;
/*
fprintf(stderr, "- MEM_SIZE = %dM\n", MEM_SIZE / (1024*1024));
fprintf(stderr, "- TCP_SND_BUF = %dK\n", TCP_SND_BUF / 1024);
fprintf(stderr, "- MEMP_NUM_PBUF = %d\n", MEMP_NUM_PBUF);
fprintf(stderr, "- MEMP_NUM_TCP_PCB = %d\n", MEMP_NUM_TCP_PCB);
fprintf(stderr, "- MEMP_NUM_TCP_PCB_LISTEN = %d\n", MEMP_NUM_TCP_PCB_LISTEN);
fprintf(stderr, "- MEMP_NUM_TCP_SEG = %d\n", MEMP_NUM_TCP_SEG);
fprintf(stderr, "- PBUF_POOL_SIZE = %d\n", PBUF_POOL_SIZE);
fprintf(stderr, "- TCP_SND_QUEUELEN = %d\n", TCP_SND_QUEUELEN);
fprintf(stderr, "- IP_REASSEMBLY = %d\n", IP_REASSEMBLY);
fprintf(stderr, "- TCP_WND = %d\n", TCP_WND);
fprintf(stderr, "- TCP_MSS = %d\n", TCP_MSS);
fprintf(stderr, "- NO_SYS = %d\n", NO_SYS);
fprintf(stderr, "- LWIP_SOCKET = %d\n", LWIP_SOCKET);
fprintf(stderr, "- LWIP_NETCONN = %d\n", LWIP_NETCONN);
fprintf(stderr, "- ARP_TMR_INTERVAL = %d\n", ARP_TMR_INTERVAL);
fprintf(stderr, "- TCP_TMR_INTERVAL = %d\n", TCP_TMR_INTERVAL);
fprintf(stderr, "- IP_TMR_INTERVAL = %d\n", IP_TMR_INTERVAL);
fprintf(stderr, "- DEFAULT_READ_BUFFER_SIZE = %d\n", DEFAULT_READ_BUFFER_SIZE);
*/
//fprintf(stderr, "- LWIP_DEBUG = %d\n", LWIP_DEBUG);
fprintf(stderr, "- TCP_DEBUG = %d\n", TCP_DEBUG);
// Main timer loop
while (_run) {
uint64_t now = OSUtils::now();
uint64_t since_tcp = now - prev_tcp_time;
uint64_t since_etharp = now - prev_etharp_time;
uint64_t tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL;
uint64_t etharp_remaining = ARP_TMR_INTERVAL;
if (since_tcp >= ZT_LWIP_TCP_TIMER_INTERVAL) {
prev_tcp_time = now;
lwipstack->tcp_tmr();
} else {
tcp_remaining = ZT_LWIP_TCP_TIMER_INTERVAL - since_tcp;
}
if (since_etharp >= ARP_TMR_INTERVAL) {
prev_etharp_time = now;
lwipstack->etharp_tmr();
} else {
etharp_remaining = ARP_TMR_INTERVAL - since_etharp;
}
_phy.poll((unsigned long)std::min(tcp_remaining,etharp_remaining));
}
closeAllClients();
// TODO: cleanup -- destroy LWIP state, kill any clients, unload .so, etc.
}
void NetconEthernetTap::phyOnUnixClose(PhySocket *sock,void **uptr)
{
fprintf(stderr, "phyOnUnixClose()\n");
//close(_phy.getDescriptor(sock));
closeClient((NetconClient*)*uptr);
}
/*
* Handles data on a client's data buffer. Data is sent to LWIP to be enqueued.
*/
void NetconEthernetTap::phyOnFileDescriptorActivity(PhySocket *sock,void **uptr,bool readable,bool writable)
{
if(readable) {
int r;
NetconConnection *c = ((NetconClient*)*uptr)->getConnection(sock);
if(c->idx < DEFAULT_READ_BUFFER_SIZE) {
int read_fd = _phy.getDescriptor(sock);
fprintf(stderr, "phyOnFileDescriptorActivity(): read_fd = %d\n", read_fd);
if((r = read(read_fd, (&c->buf)+c->idx, DEFAULT_READ_BUFFER_SIZE-(c->idx))) > 0) {
c->idx += r;
Mutex::Lock _l(lwipstack->_lock);
handle_write(c);
}
}
}
}
// Unused -- no UDP or TCP from this thread/Phy<>
void NetconEthernetTap::phyOnDatagram(PhySocket *sock,void **uptr,const struct sockaddr *from,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpConnect(PhySocket *sock,void **uptr,bool success) {}
void NetconEthernetTap::phyOnTcpAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN,const struct sockaddr *from) {}
void NetconEthernetTap::phyOnTcpClose(PhySocket *sock,void **uptr) {}
void NetconEthernetTap::phyOnTcpData(PhySocket *sock,void **uptr,void *data,unsigned long len) {}
void NetconEthernetTap::phyOnTcpWritable(PhySocket *sock,void **uptr) {}
/*
* Creates a new NetconClient for the accepted RPC connection (unix domain socket)
*
* Subsequent socket connections from this client will be associated with this
* NetconClient object.
*/
void NetconEthernetTap::phyOnUnixAccept(PhySocket *sockL,PhySocket *sockN,void **uptrL,void **uptrN)
{
NetconClient *newClient = new NetconClient();
newClient->rpc = newClient->addConnection(RPC, sockN);
*uptrN = newClient;
clients.push_back(newClient);
}
/*
* Processes incoming data on a client-specific RPC connection
*/
void NetconEthernetTap::phyOnUnixData(PhySocket *sock,void **uptr,void *data,unsigned long len)
{
unsigned char *buf = (unsigned char*)data;
NetconClient *client = (NetconClient*)*uptr;
switch(buf[0])
{
case RPC_SOCKET:
fprintf(stderr, "RPC_SOCKET\n");
struct socket_st socket_rpc;
memcpy(&socket_rpc, &buf[1], sizeof(struct socket_st));
client->tid = socket_rpc.__tid;
handle_socket(client, &socket_rpc);
break;
case RPC_LISTEN:
fprintf(stderr, "RPC_LISTEN\n");
struct listen_st listen_rpc;
memcpy(&listen_rpc, &buf[1], sizeof(struct listen_st));
client->tid = listen_rpc.__tid;
handle_listen(client, &listen_rpc);
break;
case RPC_BIND:
fprintf(stderr, "RPC_BIND\n");
struct bind_st bind_rpc;
memcpy(&bind_rpc, &buf[1], sizeof(struct bind_st));
client->tid = bind_rpc.__tid;
handle_bind(client, &bind_rpc);
break;
case RPC_KILL_INTERCEPT:
fprintf(stderr, "RPC_KILL_INTERCEPT\n");
closeClient(client);
break;
case RPC_CONNECT:
fprintf(stderr, "RPC_CONNECT\n");
struct connect_st connect_rpc;
memcpy(&connect_rpc, &buf[1], sizeof(struct connect_st));
client->tid = connect_rpc.__tid;
handle_connect(client, &connect_rpc);
break;
case RPC_FD_MAP_COMPLETION:
fprintf(stderr, "RPC_FD_MAP_COMPLETION\n");
handle_retval(client, buf);
break;
default:
break;
}
}
/*
* Send a return value to the client for an RPC
*/
int NetconEthernetTap::send_return_value(NetconClient *client, int retval)
{
char retmsg[4];
memset(&retmsg, '\0', sizeof(retmsg));
retmsg[0]=RPC_RETVAL;
memcpy(&retmsg[1], &retval, sizeof(retval));
int n = write(_phy.getDescriptor(client->rpc->sock), &retmsg, sizeof(retmsg));
if(n > 0) {
// signal that we've satisfied this requirement
client->waiting_for_retval = false;
}
else {
fprintf(stderr, "unable to send return value to the intercept\n");
closeClient(client);
}
return n;
}
/*------------------------------------------------------------------------------
--------------------------------- LWIP callbacks -------------------------------
------------------------------------------------------------------------------*/
// NOTE: these are called from within LWIP, meaning that lwipstack->_lock is ALREADY
// locked in this case!
/*
* Callback from LWIP to do whatever work we might need to do.
*
* @param associated service state object
* @param PCB we're polling on
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_poll(void* arg, struct tcp_pcb *tpcb)
{
//fprintf(stderr, "nc_poll\n");
Larg *l = (Larg*)arg;
NetconConnection *c = l->tap->getConnectionByPCB(tpcb);
NetconEthernetTap *tap = l->tap;
if(c && c->idx) // if valid connection and non-zero index (indicating data present)
tap->handle_write(c);
return ERR_OK;
}
/*
* Callback from LWIP for when a connection has been accepted and the PCB has been
* put into an ACCEPT state.
*
* A socketpair is created, one end is kept and wrapped into a PhySocket object
* for use in the main ZT I/O loop, and one end is sent to the client. The client
* is then required to tell the service what new file descriptor it has allocated
* for this connection. After the mapping is complete, the accepted socket can be
* used.
*
* @param associated service state object
* @param newly allocated PCB
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_accept(void *arg, struct tcp_pcb *newpcb, err_t err)
{
Larg *l = (Larg*)arg;
int larg_fd = l->tap->_phy.getDescriptor(l->sock);
NetconEthernetTap *tap = l->tap;
NetconConnection *c = tap->getConnectionByThisFD(larg_fd);
if(c) {
NetconClient *client = c->owner;
if(!client){
fprintf(stderr, "nc_accpet(%d): unable to locate client for this PCB\n", larg_fd);
return -1;
}
ZT_PHY_SOCKFD_TYPE fds[2];
socketpair(PF_LOCAL, SOCK_STREAM, 0, fds);
NetconConnection *new_conn = client->addConnection(BUFFER, tap->_phy.wrapSocket(fds[0], client));
client->connections.push_back(new_conn);
new_conn->pcb = newpcb;
int send_fd = tap->_phy.getDescriptor(client->rpc->sock);
int n = write(larg_fd, "z", 1);
if(n > 0) {
if(sock_fd_write(send_fd, fds[1]) > 0) {
client->unmapped_conn = new_conn;
fprintf(stderr, "nc_accept(): socketpair = { our=%d, their=%d}\n", fds[0], fds[1]);
}
else {
fprintf(stderr, "nc_accept(%d): unable to send fd to client\n", larg_fd);
}
}
else {
fprintf(stderr, "nc_accept(%d): error writing signal byte (send_fd = %d, their_fd = %d)\n", larg_fd, send_fd, fds[1]);
return -1;
}
tap->lwipstack->_tcp_arg(newpcb, new Larg(tap, new_conn->sock));
tap->lwipstack->_tcp_recv(newpcb, nc_recved);
tap->lwipstack->_tcp_err(newpcb, nc_err);
tap->lwipstack->_tcp_sent(newpcb, nc_sent);
tap->lwipstack->_tcp_poll(newpcb, nc_poll, 1);
tcp_accepted(c->pcb);
return ERR_OK;
}
else {
fprintf(stderr, "nc_accept(%d): can't locate Connection object for PCB.\n", larg_fd);
}
return -1;
}
/*
* Callback from LWIP for when data is available to be read from the network.
*
* Data is in the form of a linked list of struct pbufs, it is then recombined and
* send to the client over the associated unix socket.
*
* @param associated service state object
* @param allocated PCB
* @param chain of pbufs
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_recved(void *arg, struct tcp_pcb *tpcb, struct pbuf *p, err_t err)
{
Larg *l = (Larg*)arg;
NetconConnection *c = l->tap->getConnectionByPCB(tpcb);
NetconEthernetTap *tap = l->tap;
int n;
struct pbuf* q = p;
if(!c) {
fprintf(stderr, "nc_recved(): no connection object\n");
return ERR_OK; // ?
}
if(p == NULL) {
if(c) {
fprintf(stderr, "nc_recved(): closing connection\n");
tap->_phy.close(c->sock);
tap->closeConnection(c);
}
else {
fprintf(stderr, "nc_recved(): can't locate connection via (arg)\n");
}
return err;
}
q = p;
while(p != NULL) { // Cycle through pbufs and write them to the socket
if(p->len <= 0)
break; // ?
if((n = tap->_phy.streamSend(c->sock,p->payload, p->len)) > 0) {
if(n < p->len) {
fprintf(stderr, "nc_recved(): unable to write entire pbuf to buffer\n");
}
tap->lwipstack->_tcp_recved(tpcb, n); // TODO: would it be more efficient to call this once at the end?
}
else {
fprintf(stderr, "nc_recved(): No data written to intercept buffer\n");
}
p = p->next;
}
tap->lwipstack->_pbuf_free(q); // free pbufs
return ERR_OK;
}
/*
* Callback from LWIP when an internal error is associtated with the given (arg)
*
* Since the PCB related to this error might no longer exist, only its perviously
* associated (arg) is provided to us.
*
* @param associated service state object
* @param error code
*
*/
void NetconEthernetTap::nc_err(void *arg, err_t err)
{
fprintf(stderr, "nc_err\n");
Larg *l = (Larg*)arg;
NetconEthernetTap *tap = l->tap;
NetconConnection *c = tap->getConnectionByThisFD(tap->_phy.getDescriptor(l->sock));
if(c) {
tap->closeConnection(c);
}
else {
fprintf(stderr, "can't locate connection object for PCB\n");
}
}
/*
* Callback from LWIP
*
* This could be used to track the amount of data sent by a connection.
*
* @param associated service state object
* @param relevant PCB
* @param length of data sent
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_sent(void* arg, struct tcp_pcb *tpcb, u16_t len)
{
//fprintf(stderr, "nc_sent\n");
return ERR_OK;
}
/*
* Callback from LWIP which sends a return value to the client to signal that
* a connection was established for this PCB
*
* @param associated service state object
* @param relevant PCB
* @param error code
* @return ERR_OK if everything is ok, -1 otherwise
*
*/
err_t NetconEthernetTap::nc_connected(void *arg, struct tcp_pcb *tpcb, err_t err)
{
fprintf(stderr, "nc_connected\n");
Larg *l = (Larg*)arg;
NetconEthernetTap *tap = l->tap;
for(size_t i=0; iclients.size(); i++) {
if(tap->clients[i]->containsPCB(tpcb)) {
tap->send_return_value(tap->clients[i],err);
}
}
return ERR_OK;
}
/*------------------------------------------------------------------------------
----------------------------- RPC Handler functions ----------------------------
------------------------------------------------------------------------------*/
/*
* Handles an RPC to bind an LWIP PCB to a given address and port
*
* @param Client that is making the RPC
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_bind(NetconClient *client, struct bind_st *bind_rpc)
{
struct sockaddr_in *connaddr;
connaddr = (struct sockaddr_in *) &bind_rpc->addr;
int conn_port = lwipstack->ntohs(connaddr->sin_port);
ip_addr_t conn_addr;
conn_addr.addr = *((u32_t *)_ips[0].rawIpData());
NetconConnection *c = client->getConnectionByTheirFD(bind_rpc->sockfd);
if(c) {
if(c->pcb->state == CLOSED){
int err = lwipstack->tcp_bind(c->pcb, &conn_addr, conn_port);
if(err != ERR_OK) {
int ip = connaddr->sin_addr.s_addr;
unsigned char d[4];
d[0] = ip & 0xFF;
d[1] = (ip >> 8) & 0xFF;
d[2] = (ip >> 16) & 0xFF;
d[3] = (ip >> 24) & 0xFF;
fprintf(stderr, "handle_bind(): error binding to %d.%d.%d.%d : %d\n", d[0],d[1],d[2],d[3], conn_port);
}
}
else fprintf(stderr, "handle_bind(): PCB not in CLOSED state. Ignoring BIND request.\n");
}
else fprintf(stderr, "handle_bind(): can't locate connection for PCB\n");
}
/*
* Handles an RPC to put an LWIP PCB into LISTEN mode
*
* @param Client that is making the RPC
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_listen(NetconClient *client, struct listen_st *listen_rpc)
{
NetconConnection *c = client->getConnectionByTheirFD(listen_rpc->sockfd);
if(c) {
if(c->pcb->state == LISTEN) {
fprintf(stderr, "handle_listen(): PCB is already in listening state.\n");
return;
}
struct tcp_pcb* listening_pcb = lwipstack->tcp_listen(c->pcb);
if(listening_pcb != NULL) {
c->pcb = listening_pcb;
lwipstack->tcp_accept(listening_pcb, nc_accept);
lwipstack->tcp_arg(listening_pcb, new Larg(this, c->sock));
/* we need to wait for the client to send us the fd allocated on their end
for this listening socket */
client->waiting_for_retval=true;
}
else {
fprintf(stderr, "handle_listen(): unable to allocate memory for new listening PCB\n");
}
}
else {
fprintf(stderr, "handle_listen(): can't locate connection for PCB\n");
}
}
/**
* Handles a return value (client's perceived fd) and completes a mapping
* so that we know what connection an RPC call should be associated with.
*
* @param Client that is making the RPC
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_retval(NetconClient *client, unsigned char* buf)
{
if(client->unmapped_conn != NULL) {
memcpy(&(client->unmapped_conn->their_fd), &buf[1], sizeof(int));
fprintf(stderr, "handle_retval(): Mapping [our=%d -> their=%d]\n", _phy.getDescriptor(client->unmapped_conn->sock), client->unmapped_conn->their_fd);
client->connections.push_back(client->unmapped_conn);
client->unmapped_conn = NULL;
}
}
/*
* Handles an RPC to create a socket (LWIP PCB and associated socketpair)
*
* A socketpair is created, one end is kept and wrapped into a PhySocket object
* for use in the main ZT I/O loop, and one end is sent to the client. The client
* is then required to tell the service what new file descriptor it has allocated
* for this connection. After the mapping is complete, the socket can be used.
*
* @param Client that is making the RPC
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_socket(NetconClient *client, struct socket_st* socket_rpc)
{
struct tcp_pcb *pcb = lwipstack->tcp_new();
if(pcb != NULL) {
ZT_PHY_SOCKFD_TYPE fds[2];
socketpair(PF_LOCAL, SOCK_STREAM, 0, fds);
NetconConnection *new_conn = client->addConnection(BUFFER, _phy.wrapSocket(fds[0], client));
new_conn->pcb = pcb;
PhySocket *sock = client->rpc->sock;
sock_fd_write(_phy.getDescriptor(sock), fds[1]);
fprintf(stderr, "handle_socket(): socketpair = { our=%d, their=%d}\n", fds[0], fds[1]);
/* Once the client tells us what its fd is for the other end,
we can then complete the mapping */
client->unmapped_conn = new_conn;
}
else {
fprintf(stderr, "handle_socket(): Memory not available for new PCB\n");
}
}
/*
* Handles an RPC to connect to a given address and port
*
* @param Client that is making the RPC
* @param structure containing the data and parameters for this client's RPC
*
*/
void NetconEthernetTap::handle_connect(NetconClient *client, struct connect_st* connect_rpc)
{
struct sockaddr_in *connaddr;
connaddr = (struct sockaddr_in *) &connect_rpc->__addr;
int conn_port = lwipstack->ntohs(connaddr->sin_port);
ip_addr_t conn_addr = convert_ip((struct sockaddr_in *)&connect_rpc->__addr);
NetconConnection *c = client->getConnectionByTheirFD(connect_rpc->__fd);
if(c != NULL) {
lwipstack->tcp_sent(c->pcb, nc_sent); // FIXME: Move?
lwipstack->tcp_recv(c->pcb, nc_recved);
lwipstack->tcp_err(c->pcb, nc_err);
lwipstack->tcp_poll(c->pcb, nc_poll, APPLICATION_POLL_FREQ);
lwipstack->tcp_arg(c->pcb, new Larg(this, c->sock));
int err = 0;
if((err = lwipstack->tcp_connect(c->pcb,&conn_addr,conn_port, nc_connected)) < 0)
{
fprintf(stderr, "handle_connect(): unable to connect\n");
// We should only return a value if failure happens immediately
// Otherwise, we still need to wait for a callback from lwIP.
// - This is because an ERR_OK from tcp_connect() only verifies
// that the SYN packet was enqueued onto the stack properly,
// that's it!
// - Most instances of a retval for a connect() should happen
// in the nc_connect() and nc_err() callbacks!
send_return_value(client, err);
}
// Everything seems to be ok, but we don't have enough info to retval
client->waiting_for_retval=true;
}
else {
fprintf(stderr, "could not locate PCB based on their fd\n");
}
}
/*
* Writes data pulled from the client's socket buffer to LWIP. This merely sends the
* data to LWIP to be enqueued and eventually sent to the network.
* *
* @param Client that is making the RPC
* @param structure containing the data and parameters for this client's RPC
*
* TODO: Optimize write logic (should we stop using poll?)
*/
void NetconEthernetTap::handle_write(NetconConnection *c)
{
if(c) {
int sndbuf = c->pcb->snd_buf;
float avail = (float)sndbuf;
float max = (float)TCP_SND_BUF;
float load = 1.0 - (avail / max);
if(load >= 0.9) {
return;
}
int sz, write_allowance = sndbuf < c->idx ? sndbuf : c->idx;
fprintf(stderr, "handle_write(): allow = %d\n", write_allowance);
if(write_allowance > 0) {
// NOTE: this assumes that lwipstack->_lock is locked, either
// because we are in a callback or have locked it manually.
int err = lwipstack->_tcp_write(c->pcb, &c->buf, write_allowance, TCP_WRITE_FLAG_COPY);
if(err != ERR_OK) {
fprintf(stderr, "handle_write(): error while writing to PCB\n");
return;
}
else {
sz = (c->idx)-write_allowance;
if(sz) {
memmove(&c->buf, (c->buf+write_allowance), sz);
}
c->idx -= write_allowance;
return;
}
}
else {
fprintf(stderr, "handle_write(): LWIP stack full\n");
return;
}
}
else {
fprintf(stderr, "handle_write(): could not locate connection for this fd\n");
}
}
} // namespace ZeroTier
#endif // ZT_ENABLE_NETCON