/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2018 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * You can be released from the requirements of the license by purchasing * a commercial license. Buying such a license is mandatory as soon as you * develop commercial closed-source software that incorporates or links * directly against ZeroTier software without disclosing the source code * of your own application. */ #ifndef ZT_RINGBUFFER_H #define ZT_RINGBUFFER_H #include #include #include #include #include #include namespace ZeroTier { /** * A circular buffer * * For fast handling of continuously-evolving variables (such as path quality metrics). * Using this, we can maintain longer sliding historical windows for important path * metrics without the need for potentially expensive calls to memcpy/memmove. * * Some basic statistical functionality is implemented here in an attempt * to reduce the complexity of code needed to interact with this type of buffer. */ template class RingBuffer { private: T * buf; size_t size; size_t begin; size_t end; bool wrap; public: /** * create a RingBuffer with space for up to size elements. */ explicit RingBuffer(size_t size) : size(size), begin(0), end(0), wrap(false) { buf = new T[size]; memset(buf, 0, sizeof(T) * size); } /** * @return A pointer to the underlying buffer */ T* get_buf() { return buf + begin; } /** * Adjust buffer index pointer as if we copied data in * @param n Number of elements to copy in * @return Number of elements we copied in */ size_t produce(size_t n) { n = std::min(n, getFree()); if (n == 0) { return n; } const size_t first_chunk = std::min(n, size - end); end = (end + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; end = (end + second_chunk) % size; } if (begin == end) { wrap = true; } return n; } /** * Fast erase, O(1). * Merely reset the buffer pointer, doesn't erase contents */ void reset() { consume(count()); } /** * adjust buffer index pointer as if we copied data out * @param n Number of elements we copied from the buffer * @return Number of elements actually available from the buffer */ size_t consume(size_t n) { n = std::min(n, count()); if (n == 0) { return n; } if (wrap) { wrap = false; } const size_t first_chunk = std::min(n, size - begin); begin = (begin + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; begin = (begin + second_chunk) % size; } return n; } /** * @param data Buffer that is to be written to the ring * @param n Number of elements to write to the buffer */ size_t write(const T * data, size_t n) { n = std::min(n, getFree()); if (n == 0) { return n; } const size_t first_chunk = std::min(n, size - end); memcpy(buf + end, data, first_chunk * sizeof(T)); end = (end + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; memcpy(buf + end, data + first_chunk, second_chunk * sizeof(T)); end = (end + second_chunk) % size; } if (begin == end) { wrap = true; } return n; } /** * Place a single value on the buffer. If the buffer is full, consume a value first. * * @param value A single value to be placed in the buffer */ void push(const T value) { if (count() == size) { consume(1); } const size_t first_chunk = std::min((size_t)1, size - end); *(buf + end) = value; end = (end + first_chunk) % size; if (begin == end) { wrap = true; } } /** * @return The most recently pushed element on the buffer */ T get_most_recent() { return *(buf + end); } /** * @param dest Destination buffer * @param n Size (in terms of number of elements) of the destination buffer * @return Number of elements read from the buffer */ size_t read(T * dest, size_t n) { n = std::min(n, count()); if (n == 0) { return n; } if (wrap) { wrap = false; } const size_t first_chunk = std::min(n, size - begin); memcpy(dest, buf + begin, first_chunk * sizeof(T)); begin = (begin + first_chunk) % size; if (first_chunk < n) { const size_t second_chunk = n - first_chunk; memcpy(dest + first_chunk, buf + begin, second_chunk * sizeof(T)); begin = (begin + second_chunk) % size; } return n; } /** * Return how many elements are in the buffer, O(1). * * @return The number of elements in the buffer */ size_t count() { if (end == begin) { return wrap ? size : 0; } else if (end > begin) { return end - begin; } else { return size + end - begin; } } /** * @return The number of slots that are unused in the buffer */ size_t getFree() { return size - count(); } /** * @return The arithmetic mean of the contents of the buffer */ float mean() { size_t iterator = begin; float subtotal = 0; size_t curr_cnt = count(); for (size_t i=0; i