/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
#include
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Multicaster.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
#include "Packet.hpp"
#include "Peer.hpp"
#include "C25519.hpp"
#include "CertificateOfMembership.hpp"
#include "Node.hpp"
#include "Network.hpp"
namespace ZeroTier {
Multicaster::Multicaster(const RuntimeEnvironment *renv) :
RR(renv),
_groups(32)
{
}
Multicaster::~Multicaster()
{
}
void Multicaster::addMultiple(void *tPtr,int64_t now,uint64_t nwid,const MulticastGroup &mg,const void *addresses,unsigned int count,unsigned int totalKnown)
{
const unsigned char *p = (const unsigned char *)addresses;
const unsigned char *e = p + (5 * count);
Mutex::Lock _l(_groups_m);
MulticastGroupStatus &gs = _groups[Multicaster::Key(nwid,mg)];
while (p != e) {
_add(tPtr,now,nwid,mg,gs,Address(p,5));
p += 5;
}
}
void Multicaster::remove(uint64_t nwid,const MulticastGroup &mg,const Address &member)
{
Mutex::Lock _l(_groups_m);
MulticastGroupStatus *s = _groups.get(Multicaster::Key(nwid,mg));
if (s) {
for(std::vector::iterator m(s->members.begin());m!=s->members.end();++m) {
if (m->address == member) {
s->members.erase(m);
break;
}
}
}
}
unsigned int Multicaster::gather(const Address &queryingPeer,uint64_t nwid,const MulticastGroup &mg,Buffer &appendTo,unsigned int limit) const
{
unsigned char *p;
unsigned int added = 0,i,k,rptr,totalKnown = 0;
uint64_t a,picked[(ZT_PROTO_MAX_PACKET_LENGTH / 5) + 2];
if (!limit)
return 0;
else if (limit > 0xffff)
limit = 0xffff;
const unsigned int totalAt = appendTo.size();
appendTo.addSize(4); // sizeof(uint32_t)
const unsigned int addedAt = appendTo.size();
appendTo.addSize(2); // sizeof(uint16_t)
{ // Return myself if I am a member of this group
SharedPtr network(RR->node->network(nwid));
if ((network)&&(network->subscribedToMulticastGroup(mg,true))) {
RR->identity.address().appendTo(appendTo);
++totalKnown;
++added;
}
}
Mutex::Lock _l(_groups_m);
const MulticastGroupStatus *s = _groups.get(Multicaster::Key(nwid,mg));
if ((s)&&(!s->members.empty())) {
totalKnown += (unsigned int)s->members.size();
// Members are returned in random order so that repeated gather queries
// will return different subsets of a large multicast group.
k = 0;
while ((added < limit)&&(k < s->members.size())&&((appendTo.size() + ZT_ADDRESS_LENGTH) <= ZT_PROTO_MAX_PACKET_LENGTH)) {
rptr = (unsigned int)Utils::random();
restart_member_scan:
a = s->members[rptr % (unsigned int)s->members.size()].address.toInt();
for(i=0;i> 32) & 0xff);
*(p++) = (unsigned char)((a >> 24) & 0xff);
*(p++) = (unsigned char)((a >> 16) & 0xff);
*(p++) = (unsigned char)((a >> 8) & 0xff);
*p = (unsigned char)(a & 0xff);
++added;
}
}
}
appendTo.setAt(totalAt,(uint32_t)totalKnown);
appendTo.setAt(addedAt,(uint16_t)added);
return added;
}
std::vector Multicaster::getMembers(uint64_t nwid,const MulticastGroup &mg,unsigned int limit) const
{
std::vector ls;
Mutex::Lock _l(_groups_m);
const MulticastGroupStatus *s = _groups.get(Multicaster::Key(nwid,mg));
if (!s)
return ls;
for(std::vector::const_reverse_iterator m(s->members.rbegin());m!=s->members.rend();++m) {
ls.push_back(m->address);
if (ls.size() >= limit)
break;
}
return ls;
}
void Multicaster::send(
void *tPtr,
int64_t now,
const SharedPtr &network,
const Address &origin,
const MulticastGroup &mg,
const MAC &src,
unsigned int etherType,
const void *data,
unsigned int len)
{
unsigned long idxbuf[4096];
unsigned long *indexes = idxbuf;
try {
Mutex::Lock _l(_groups_m);
MulticastGroupStatus &gs = _groups[Multicaster::Key(network->id(),mg)];
if (!gs.members.empty()) {
// Allocate a memory buffer if group is monstrous
if (gs.members.size() > (sizeof(idxbuf) / sizeof(unsigned long)))
indexes = new unsigned long[gs.members.size()];
// Generate a random permutation of member indexes
for(unsigned long i=0;i0;--i) {
unsigned long j = (unsigned long)Utils::random() % (i + 1);
unsigned long tmp = indexes[j];
indexes[j] = indexes[i];
indexes[i] = tmp;
}
}
Address activeBridges[ZT_MAX_NETWORK_SPECIALISTS];
const unsigned int activeBridgeCount = network->config().activeBridges(activeBridges);
const unsigned int limit = network->config().multicastLimit;
if (gs.members.size() >= limit) {
// Skip queue if we already have enough members to complete the send operation
OutboundMulticast out;
out.init(
RR,
now,
network->id(),
network->config().disableCompression(),
limit,
1, // we'll still gather a little from peers to keep multicast list fresh
src,
mg,
etherType,
data,
len);
unsigned int count = 0;
for(unsigned int i=0;iidentity.address())&&(activeBridges[i] != origin)) {
out.sendOnly(RR,tPtr,activeBridges[i]); // optimization: don't use dedup log if it's a one-pass send
if (++count >= limit)
break;
}
}
unsigned long idx = 0;
while ((count < limit)&&(idx < gs.members.size())) {
const Address ma(gs.members[indexes[idx++]].address);
if ((std::find(activeBridges,activeBridges + activeBridgeCount,ma) == (activeBridges + activeBridgeCount))&&(ma != origin)) {
out.sendOnly(RR,tPtr,ma); // optimization: don't use dedup log if it's a one-pass send
++count;
}
}
} else {
if (gs.txQueue.size() >= ZT_TX_QUEUE_SIZE) {
RR->t->outgoingNetworkFrameDropped(tPtr,network,src,mg.mac(),etherType,0,len,"multicast TX queue is full");
return;
}
const unsigned int gatherLimit = (limit - (unsigned int)gs.members.size()) + 1;
if ((gs.members.empty())||((now - gs.lastExplicitGather) >= ZT_MULTICAST_EXPLICIT_GATHER_DELAY)) {
gs.lastExplicitGather = now;
Address explicitGatherPeers[16];
unsigned int numExplicitGatherPeers = 0;
explicitGatherPeers[numExplicitGatherPeers++] = network->controller();
Address ac[ZT_MAX_NETWORK_SPECIALISTS];
const unsigned int accnt = network->config().alwaysContactAddresses(ac);
unsigned int shuffled[ZT_MAX_NETWORK_SPECIALISTS];
for(unsigned int i=0;i>1;i> 32) % accnt];
const unsigned int tmp = shuffled[x1];
shuffled[x1] = shuffled[x2];
shuffled[x2] = tmp;
}
for(unsigned int i=0;i anchors(network->config().anchors());
for(std::vector::const_iterator a(anchors.begin());a!=anchors.end();++a) {
if (*a != RR->identity.address()) {
explicitGatherPeers[numExplicitGatherPeers++] = *a;
if (numExplicitGatherPeers == 16)
break;
}
}
for(unsigned int k=0;kconfig().com) ? &(network->config().com) : (const CertificateOfMembership *)0) : (const CertificateOfMembership *)0;
Packet outp(explicitGatherPeers[k],RR->identity.address(),Packet::VERB_MULTICAST_GATHER);
outp.append(network->id());
outp.append((uint8_t)((com) ? 0x01 : 0x00));
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
outp.append((uint32_t)gatherLimit);
if (com)
com->serialize(outp);
RR->node->expectReplyTo(outp.packetId());
RR->sw->send(tPtr,outp,true);
}
}
gs.txQueue.push_back(OutboundMulticast());
OutboundMulticast &out = gs.txQueue.back();
out.init(
RR,
now,
network->id(),
network->config().disableCompression(),
limit,
gatherLimit,
src,
mg,
etherType,
data,
len);
if (origin)
out.logAsSent(origin);
unsigned int count = 0;
for(unsigned int i=0;iidentity.address()) {
out.sendAndLog(RR,tPtr,activeBridges[i]);
if (++count >= limit)
break;
}
}
unsigned long idx = 0;
while ((count < limit)&&(idx < gs.members.size())) {
Address ma(gs.members[indexes[idx++]].address);
if (std::find(activeBridges,activeBridges + activeBridgeCount,ma) == (activeBridges + activeBridgeCount)) {
out.sendAndLog(RR,tPtr,ma);
++count;
}
}
}
} catch ( ... ) {} // this is a sanity check to catch any failures and make sure indexes[] still gets deleted
// Free allocated memory buffer if any
if (indexes != idxbuf)
delete [] indexes;
}
void Multicaster::clean(int64_t now)
{
{
Mutex::Lock _l(_groups_m);
Multicaster::Key *k = (Multicaster::Key *)0;
MulticastGroupStatus *s = (MulticastGroupStatus *)0;
Hashtable::Iterator mm(_groups);
while (mm.next(k,s)) {
for(std::list::iterator tx(s->txQueue.begin());tx!=s->txQueue.end();) {
if ((tx->expired(now))||(tx->atLimit()))
s->txQueue.erase(tx++);
else ++tx;
}
unsigned long count = 0;
{
std::vector::iterator reader(s->members.begin());
std::vector::iterator writer(reader);
while (reader != s->members.end()) {
if ((now - reader->timestamp) < ZT_MULTICAST_LIKE_EXPIRE) {
*writer = *reader;
++writer;
++count;
}
++reader;
}
}
if (count) {
s->members.resize(count);
} else if (s->txQueue.empty()) {
_groups.erase(*k);
} else {
s->members.clear();
}
}
}
}
void Multicaster::_add(void *tPtr,int64_t now,uint64_t nwid,const MulticastGroup &mg,MulticastGroupStatus &gs,const Address &member)
{
// assumes _groups_m is locked
// Do not add self -- even if someone else returns it
if (member == RR->identity.address())
return;
std::vector::iterator m(std::lower_bound(gs.members.begin(),gs.members.end(),member));
if (m != gs.members.end()) {
if (m->address == member) {
m->timestamp = now;
return;
}
gs.members.insert(m,MulticastGroupMember(member,now));
} else {
gs.members.push_back(MulticastGroupMember(member,now));
}
for(std::list::iterator tx(gs.txQueue.begin());tx!=gs.txQueue.end();) {
if (tx->atLimit())
gs.txQueue.erase(tx++);
else {
tx->sendIfNew(RR,tPtr,member);
if (tx->atLimit())
gs.txQueue.erase(tx++);
else ++tx;
}
}
}
} // namespace ZeroTier