/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_MULTICASTGROUP_HPP #define ZT_MULTICASTGROUP_HPP #include #include "Constants.hpp" #include "MAC.hpp" #include "InetAddress.hpp" #include "Utils.hpp" namespace ZeroTier { /** * A multicast group composed of a multicast MAC and a 32-bit ADI field * * ADI stands for additional distinguishing information. ADI is primarily for * adding additional information to broadcast (ff:ff:ff:ff:ff:ff) memberships, * since straight-up broadcast won't scale. Right now it's zero except for * IPv4 ARP, where it holds the IPv4 address itself to make ARP into a * selective multicast query that can scale. * * In the future we might add some kind of plugin architecture that can add * ADI for things like mDNS (multicast DNS) to improve the selectivity of * those protocols. * * MulticastGroup behaves as an immutable value object. */ class MulticastGroup { public: ZT_ALWAYS_INLINE MulticastGroup() : _mac(), _adi(0) {} ZT_ALWAYS_INLINE MulticastGroup(const MAC &m,uint32_t a) : _mac(m), _adi(a) {} /** * Derive the multicast group used for address resolution (ARP/NDP) for an IP * * @param ip IP address (port field is ignored) * @return Multicast group for ARP/NDP */ static ZT_ALWAYS_INLINE MulticastGroup deriveMulticastGroupForAddressResolution(const InetAddress &ip) { if (ip.isV4()) { // IPv4 wants broadcast MACs, so we shove the V4 address itself into // the Multicast Group ADI field. Making V4 ARP work is basically why // ADI was added, as well as handling other things that want mindless // Ethernet broadcast to all. return MulticastGroup(MAC(0xffffffffffffULL),Utils::ntoh(*((const uint32_t *)ip.rawIpData()))); } else if (ip.isV6()) { // IPv6 is better designed in this respect. We can compute the IPv6 // multicast address directly from the IP address, and it gives us // 24 bits of uniqueness. Collisions aren't likely to be common enough // to care about. const unsigned char *a = (const unsigned char *)ip.rawIpData(); return MulticastGroup(MAC(0x33,0x33,0xff,a[13],a[14],a[15]),0); } return MulticastGroup(); } ZT_ALWAYS_INLINE const MAC &mac() const { return _mac; } ZT_ALWAYS_INLINE uint32_t adi() const { return _adi; } ZT_ALWAYS_INLINE unsigned long hashCode() const { return (_mac.hashCode() + (unsigned long)_adi); } ZT_ALWAYS_INLINE bool operator==(const MulticastGroup &g) const { return ((_mac == g._mac)&&(_adi == g._adi)); } ZT_ALWAYS_INLINE bool operator!=(const MulticastGroup &g) const { return ((_mac != g._mac)||(_adi != g._adi)); } ZT_ALWAYS_INLINE bool operator<(const MulticastGroup &g) const { if (_mac < g._mac) return true; else if (_mac == g._mac) return (_adi < g._adi); return false; } ZT_ALWAYS_INLINE bool operator>(const MulticastGroup &g) const { return (g < *this); } ZT_ALWAYS_INLINE bool operator<=(const MulticastGroup &g) const { return !(g < *this); } ZT_ALWAYS_INLINE bool operator>=(const MulticastGroup &g) const { return !(*this < g); } /** * Compute a 32-bit fnv1a hash of a multicast group and a network ID * * @param mg Multicast group * @param nwid Network ID * @return 32-bit relatively-unique ID */ static ZT_ALWAYS_INLINE uint32_t id(const MulticastGroup &mg,const uint64_t nwid) { const uint32_t fnv1aPrime = 0x01000193; uint32_t i = 0x811c9dc5; i = (((uint32_t)(nwid >> 56) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(nwid >> 48) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(nwid >> 40) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(nwid >> 32) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(nwid >> 24) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(nwid >> 16) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(nwid >> 8) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)nwid & 0xff) ^ i) * fnv1aPrime; const uint64_t mac = mg._mac.toInt(); i = (((uint32_t)(mac >> 56) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(mac >> 48) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(mac >> 40) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(mac >> 32) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(mac >> 24) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(mac >> 16) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)(mac >> 8) & 0xff) ^ i) * fnv1aPrime; i = (((uint32_t)mac & 0xff) ^ i) * fnv1aPrime; const uint32_t adi = mg._adi; i = (((adi >> 24) & 0xff) ^ i) * fnv1aPrime; i = (((adi >> 16) & 0xff) ^ i) * fnv1aPrime; i = (((adi >> 8) & 0xff) ^ i) * fnv1aPrime; i = ((adi & 0xff) ^ i) * fnv1aPrime; return i; } private: MAC _mac; uint32_t _adi; }; } // namespace ZeroTier #endif