/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include #include #include #include "Constants.hpp" #include "InetAddress.hpp" #include "Utils.hpp" namespace ZeroTier { const InetAddress InetAddress::LO4((const void *)("\x7f\x00\x00\x01"),4,0); const InetAddress InetAddress::LO6((const void *)("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"),16,0); const InetAddress InetAddress::NIL; InetAddress::IpScope InetAddress::ipScope() const { switch(ss_family) { case AF_INET: { const uint32_t ip = Utils::ntoh((uint32_t)reinterpret_cast(this)->sin_addr.s_addr); switch(ip >> 24) { case 0x00: return IP_SCOPE_NONE; // 0.0.0.0/8 (reserved, never used) case 0x06: return IP_SCOPE_PSEUDOPRIVATE; // 6.0.0.0/8 (US Army) case 0x0a: return IP_SCOPE_PRIVATE; // 10.0.0.0/8 case 0x0b: return IP_SCOPE_PSEUDOPRIVATE; // 11.0.0.0/8 (US DoD) case 0x15: return IP_SCOPE_PSEUDOPRIVATE; // 21.0.0.0/8 (US DDN-RVN) case 0x16: return IP_SCOPE_PSEUDOPRIVATE; // 22.0.0.0/8 (US DISA) case 0x19: return IP_SCOPE_PSEUDOPRIVATE; // 25.0.0.0/8 (UK Ministry of Defense) case 0x1a: return IP_SCOPE_PSEUDOPRIVATE; // 26.0.0.0/8 (US DISA) case 0x1c: return IP_SCOPE_PSEUDOPRIVATE; // 28.0.0.0/8 (US DSI-North) case 0x1d: return IP_SCOPE_PSEUDOPRIVATE; // 29.0.0.0/8 (US DISA) case 0x1e: return IP_SCOPE_PSEUDOPRIVATE; // 30.0.0.0/8 (US DISA) case 0x33: return IP_SCOPE_PSEUDOPRIVATE; // 51.0.0.0/8 (UK Department of Social Security) case 0x37: return IP_SCOPE_PSEUDOPRIVATE; // 55.0.0.0/8 (US DoD) case 0x38: return IP_SCOPE_PSEUDOPRIVATE; // 56.0.0.0/8 (US Postal Service) case 0x64: if ((ip & 0xffc00000) == 0x64400000) return IP_SCOPE_PRIVATE; // 100.64.0.0/10 break; case 0x7f: return IP_SCOPE_LOOPBACK; // 127.0.0.0/8 case 0xa9: if ((ip & 0xffff0000) == 0xa9fe0000) return IP_SCOPE_LINK_LOCAL; // 169.254.0.0/16 break; case 0xac: if ((ip & 0xfff00000) == 0xac100000) return IP_SCOPE_PRIVATE; // 172.16.0.0/12 break; case 0xc0: if ((ip & 0xffff0000) == 0xc0a80000) return IP_SCOPE_PRIVATE; // 192.168.0.0/16 break; case 0xff: return IP_SCOPE_NONE; // 255.0.0.0/8 (broadcast, or unused/unusable) } switch(ip >> 28) { case 0xe: return IP_SCOPE_MULTICAST; // 224.0.0.0/4 case 0xf: return IP_SCOPE_PSEUDOPRIVATE; // 240.0.0.0/4 ("reserved," usually unusable) } return IP_SCOPE_GLOBAL; } break; case AF_INET6: { const unsigned char *ip = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); if ((ip[0] & 0xf0) == 0xf0) { if (ip[0] == 0xff) return IP_SCOPE_MULTICAST; // ff00::/8 if ((ip[0] == 0xfe)&&((ip[1] & 0xc0) == 0x80)) { unsigned int k = 2; while ((!ip[k])&&(k < 15)) ++k; if ((k == 15)&&(ip[15] == 0x01)) return IP_SCOPE_LOOPBACK; // fe80::1/128 else return IP_SCOPE_LINK_LOCAL; // fe80::/10 } if ((ip[0] & 0xfe) == 0xfc) return IP_SCOPE_PRIVATE; // fc00::/7 } unsigned int k = 0; while ((!ip[k])&&(k < 15)) ++k; if (k == 15) { // all 0's except last byte if (ip[15] == 0x01) return IP_SCOPE_LOOPBACK; // ::1/128 if (ip[15] == 0x00) return IP_SCOPE_NONE; // ::/128 } return IP_SCOPE_GLOBAL; } break; } return IP_SCOPE_NONE; } void InetAddress::set(const void *ipBytes,unsigned int ipLen,unsigned int port) { memset(this,0,sizeof(InetAddress)); if (ipLen == 4) { uint32_t ipb[1]; memcpy(ipb,ipBytes,4); ss_family = AF_INET; reinterpret_cast(this)->sin_addr.s_addr = ipb[0]; reinterpret_cast(this)->sin_port = Utils::hton((uint16_t)port); } else if (ipLen == 16) { ss_family = AF_INET6; memcpy(reinterpret_cast(this)->sin6_addr.s6_addr,ipBytes,16); reinterpret_cast(this)->sin6_port = Utils::hton((uint16_t)port); } } char *InetAddress::toString(char buf[64]) const { char *p = toIpString(buf); if (*p) { while (*p) ++p; *(p++) = '/'; Utils::decimal(port(),p); } return buf; } char *InetAddress::toIpString(char buf[64]) const { buf[0] = (char)0; switch(ss_family) { case AF_INET: { #ifdef _WIN32 inet_ntop(AF_INET, (void*)&reinterpret_cast(this)->sin_addr.s_addr, buf, INET_ADDRSTRLEN); #else inet_ntop(AF_INET, &reinterpret_cast(this)->sin_addr.s_addr, buf, INET_ADDRSTRLEN); #endif } break; case AF_INET6: { #ifdef _WIN32 inet_ntop(AF_INET6, (void*)reinterpret_cast(this)->sin6_addr.s6_addr, buf, INET6_ADDRSTRLEN); #else inet_ntop(AF_INET6, reinterpret_cast(this)->sin6_addr.s6_addr, buf, INET6_ADDRSTRLEN); #endif } break; } return buf; } bool InetAddress::fromString(const char *ipSlashPort) { char buf[64]; memset(this,0,sizeof(InetAddress)); if (!*ipSlashPort) return true; if (!Utils::scopy(buf,sizeof(buf),ipSlashPort)) return false; char *portAt = buf; while ((*portAt)&&(*portAt != '/')) ++portAt; unsigned int port = 0; if (*portAt) { *(portAt++) = (char)0; port = Utils::strToUInt(portAt) & 0xffff; } if (strchr(buf,':')) { struct sockaddr_in6 *const in6 = reinterpret_cast(this); inet_pton(AF_INET6, buf, &in6->sin6_addr.s6_addr); in6->sin6_family = AF_INET6; in6->sin6_port = Utils::hton((uint16_t)port); return true; } else if (strchr(buf,'.')) { struct sockaddr_in *const in = reinterpret_cast(this); inet_pton(AF_INET, buf, &in->sin_addr.s_addr); in->sin_family = AF_INET; in->sin_port = Utils::hton((uint16_t)port); return true; } else { return false; } } InetAddress InetAddress::netmask() const { InetAddress r(*this); switch(r.ss_family) { case AF_INET: reinterpret_cast(&r)->sin_addr.s_addr = Utils::hton((uint32_t)(0xffffffff << (32 - netmaskBits()))); break; case AF_INET6: { uint64_t nm[2]; const unsigned int bits = netmaskBits(); if(bits) { nm[0] = Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits)))); nm[1] = Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits)))); } else { nm[0] = 0; nm[1] = 0; } memcpy(reinterpret_cast(&r)->sin6_addr.s6_addr,nm,16); } break; } return r; } InetAddress InetAddress::broadcast() const { if (ss_family == AF_INET) { InetAddress r(*this); reinterpret_cast(&r)->sin_addr.s_addr |= Utils::hton((uint32_t)(0xffffffff >> netmaskBits())); return r; } return InetAddress(); } InetAddress InetAddress::network() const { InetAddress r(*this); switch(r.ss_family) { case AF_INET: reinterpret_cast(&r)->sin_addr.s_addr &= Utils::hton((uint32_t)(0xffffffff << (32 - netmaskBits()))); break; case AF_INET6: { uint64_t nm[2]; const unsigned int bits = netmaskBits(); memcpy(nm,reinterpret_cast(&r)->sin6_addr.s6_addr,16); nm[0] &= Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits)))); nm[1] &= Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits)))); memcpy(reinterpret_cast(&r)->sin6_addr.s6_addr,nm,16); } break; } return r; } bool InetAddress::isEqualPrefix(const InetAddress &addr) const { if (addr.ss_family == ss_family) { switch(ss_family) { case AF_INET6: { const InetAddress mask(netmask()); InetAddress addr_mask(addr.netmask()); const uint8_t *n = reinterpret_cast(reinterpret_cast(&addr_mask)->sin6_addr.s6_addr); const uint8_t *m = reinterpret_cast(reinterpret_cast(&mask)->sin6_addr.s6_addr); const uint8_t *a = reinterpret_cast(reinterpret_cast(&addr)->sin6_addr.s6_addr); const uint8_t *b = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); for(unsigned int i=0;i<16;++i) { if ((a[i] & m[i]) != (b[i] & n[i])) return false; } return true; } } } return false; } bool InetAddress::containsAddress(const InetAddress &addr) const { if (addr.ss_family == ss_family) { switch(ss_family) { case AF_INET: { const unsigned int bits = netmaskBits(); if (bits == 0) return true; return ( (Utils::ntoh((uint32_t)reinterpret_cast(&addr)->sin_addr.s_addr) >> (32 - bits)) == (Utils::ntoh((uint32_t)reinterpret_cast(this)->sin_addr.s_addr) >> (32 - bits)) ); } case AF_INET6: { const InetAddress mask(netmask()); const uint8_t *m = reinterpret_cast(reinterpret_cast(&mask)->sin6_addr.s6_addr); const uint8_t *a = reinterpret_cast(reinterpret_cast(&addr)->sin6_addr.s6_addr); const uint8_t *b = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); for(unsigned int i=0;i<16;++i) { if ((a[i] & m[i]) != b[i]) return false; } return true; } } } return false; } bool InetAddress::isNetwork() const { switch(ss_family) { case AF_INET: { unsigned int bits = netmaskBits(); if (bits <= 0) return false; if (bits >= 32) return false; uint32_t ip = Utils::ntoh((uint32_t)reinterpret_cast(this)->sin_addr.s_addr); return ((ip & (0xffffffff >> bits)) == 0); } case AF_INET6: { unsigned int bits = netmaskBits(); if (bits <= 0) return false; if (bits >= 128) return false; const unsigned char *ip = reinterpret_cast(reinterpret_cast(this)->sin6_addr.s6_addr); unsigned int p = bits / 8; if ((ip[p++] & (0xff >> (bits % 8))) != 0) return false; while (p < 16) { if (ip[p++]) return false; } return true; } } return false; } bool InetAddress::operator==(const InetAddress &a) const { if (ss_family == a.ss_family) { switch(ss_family) { case AF_INET: return ( (reinterpret_cast(this)->sin_port == reinterpret_cast(&a)->sin_port)&& (reinterpret_cast(this)->sin_addr.s_addr == reinterpret_cast(&a)->sin_addr.s_addr)); break; case AF_INET6: return ( (reinterpret_cast(this)->sin6_port == reinterpret_cast(&a)->sin6_port)&& (reinterpret_cast(this)->sin6_flowinfo == reinterpret_cast(&a)->sin6_flowinfo)&& (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,16) == 0)&& (reinterpret_cast(this)->sin6_scope_id == reinterpret_cast(&a)->sin6_scope_id)); break; default: return (memcmp(this,&a,sizeof(InetAddress)) == 0); } } return false; } bool InetAddress::operator<(const InetAddress &a) const { if (ss_family < a.ss_family) return true; else if (ss_family == a.ss_family) { switch(ss_family) { case AF_INET: if (reinterpret_cast(this)->sin_port < reinterpret_cast(&a)->sin_port) return true; else if (reinterpret_cast(this)->sin_port == reinterpret_cast(&a)->sin_port) { if (reinterpret_cast(this)->sin_addr.s_addr < reinterpret_cast(&a)->sin_addr.s_addr) return true; } break; case AF_INET6: if (reinterpret_cast(this)->sin6_port < reinterpret_cast(&a)->sin6_port) return true; else if (reinterpret_cast(this)->sin6_port == reinterpret_cast(&a)->sin6_port) { if (reinterpret_cast(this)->sin6_flowinfo < reinterpret_cast(&a)->sin6_flowinfo) return true; else if (reinterpret_cast(this)->sin6_flowinfo == reinterpret_cast(&a)->sin6_flowinfo) { if (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,16) < 0) return true; else if (memcmp(reinterpret_cast(this)->sin6_addr.s6_addr,reinterpret_cast(&a)->sin6_addr.s6_addr,16) == 0) { if (reinterpret_cast(this)->sin6_scope_id < reinterpret_cast(&a)->sin6_scope_id) return true; } } } break; default: return (memcmp(this,&a,sizeof(InetAddress)) < 0); } } return false; } InetAddress InetAddress::makeIpv6LinkLocal(const MAC &mac) { struct sockaddr_in6 sin6; sin6.sin6_family = AF_INET6; sin6.sin6_addr.s6_addr[0] = 0xfe; sin6.sin6_addr.s6_addr[1] = 0x80; sin6.sin6_addr.s6_addr[2] = 0x00; sin6.sin6_addr.s6_addr[3] = 0x00; sin6.sin6_addr.s6_addr[4] = 0x00; sin6.sin6_addr.s6_addr[5] = 0x00; sin6.sin6_addr.s6_addr[6] = 0x00; sin6.sin6_addr.s6_addr[7] = 0x00; sin6.sin6_addr.s6_addr[8] = mac[0] & 0xfd; sin6.sin6_addr.s6_addr[9] = mac[1]; sin6.sin6_addr.s6_addr[10] = mac[2]; sin6.sin6_addr.s6_addr[11] = 0xff; sin6.sin6_addr.s6_addr[12] = 0xfe; sin6.sin6_addr.s6_addr[13] = mac[3]; sin6.sin6_addr.s6_addr[14] = mac[4]; sin6.sin6_addr.s6_addr[15] = mac[5]; sin6.sin6_port = Utils::hton((uint16_t)64); return InetAddress(sin6); } InetAddress InetAddress::makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress) { InetAddress r; struct sockaddr_in6 *const sin6 = reinterpret_cast(&r); sin6->sin6_family = AF_INET6; sin6->sin6_addr.s6_addr[0] = 0xfd; sin6->sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 56); sin6->sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 48); sin6->sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 40); sin6->sin6_addr.s6_addr[4] = (uint8_t)(nwid >> 32); sin6->sin6_addr.s6_addr[5] = (uint8_t)(nwid >> 24); sin6->sin6_addr.s6_addr[6] = (uint8_t)(nwid >> 16); sin6->sin6_addr.s6_addr[7] = (uint8_t)(nwid >> 8); sin6->sin6_addr.s6_addr[8] = (uint8_t)nwid; sin6->sin6_addr.s6_addr[9] = 0x99; sin6->sin6_addr.s6_addr[10] = 0x93; sin6->sin6_addr.s6_addr[11] = (uint8_t)(zeroTierAddress >> 32); sin6->sin6_addr.s6_addr[12] = (uint8_t)(zeroTierAddress >> 24); sin6->sin6_addr.s6_addr[13] = (uint8_t)(zeroTierAddress >> 16); sin6->sin6_addr.s6_addr[14] = (uint8_t)(zeroTierAddress >> 8); sin6->sin6_addr.s6_addr[15] = (uint8_t)zeroTierAddress; sin6->sin6_port = Utils::hton((uint16_t)88); // /88 includes 0xfd + network ID, discriminating by device ID below that return r; } InetAddress InetAddress::makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress) { nwid ^= (nwid >> 32); InetAddress r; struct sockaddr_in6 *const sin6 = reinterpret_cast(&r); sin6->sin6_family = AF_INET6; sin6->sin6_addr.s6_addr[0] = 0xfc; sin6->sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 24); sin6->sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 16); sin6->sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 8); sin6->sin6_addr.s6_addr[4] = (uint8_t)nwid; sin6->sin6_addr.s6_addr[5] = (uint8_t)(zeroTierAddress >> 32); sin6->sin6_addr.s6_addr[6] = (uint8_t)(zeroTierAddress >> 24); sin6->sin6_addr.s6_addr[7] = (uint8_t)(zeroTierAddress >> 16); sin6->sin6_addr.s6_addr[8] = (uint8_t)(zeroTierAddress >> 8); sin6->sin6_addr.s6_addr[9] = (uint8_t)zeroTierAddress; sin6->sin6_addr.s6_addr[15] = 0x01; sin6->sin6_port = Utils::hton((uint16_t)40); return r; } } // namespace ZeroTier