/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_BUFFER_HPP #define ZT_BUFFER_HPP #include #include #include #include #include #include #include "Constants.hpp" #include "Utils.hpp" #if defined(__GNUC__) && (!defined(ZT_NO_TYPE_PUNNING)) #define ZT_VAR_MAY_ALIAS __attribute__((__may_alias__)) #else #define ZT_VAR_MAY_ALIAS #endif namespace ZeroTier { /** * A variable length but statically allocated buffer * * Bounds-checking is done everywhere, since this is used in security * critical code. This supports construction and assignment from buffers * of differing capacities, provided the data actually in them fits. * It throws std::out_of_range on any boundary violation. * * The at(), append(), etc. methods encode integers larger than 8-bit in * big-endian (network) byte order. * * @tparam C Total capacity */ template class Buffer { // I love me! template friend class Buffer; public: // STL container idioms typedef unsigned char value_type; typedef unsigned char * pointer; typedef const char * const_pointer; typedef char & reference; typedef const char & const_reference; typedef char * iterator; typedef const char * const_iterator; typedef unsigned int size_type; typedef int difference_type; typedef std::reverse_iterator reverse_iterator; typedef std::reverse_iterator const_reverse_iterator; inline iterator begin() { return _b; } inline iterator end() { return (_b + _l); } inline const_iterator begin() const { return _b; } inline const_iterator end() const { return (_b + _l); } inline reverse_iterator rbegin() { return reverse_iterator(begin()); } inline reverse_iterator rend() { return reverse_iterator(end()); } inline const_reverse_iterator rbegin() const { return const_reverse_iterator(begin()); } inline const_reverse_iterator rend() const { return const_reverse_iterator(end()); } Buffer() : _l(0) { } Buffer(unsigned int l) { if (l > C) throw ZT_EXCEPTION_OUT_OF_BOUNDS; _l = l; } template Buffer(const Buffer &b) { *this = b; } Buffer(const void *b,unsigned int l) { copyFrom(b,l); } template inline Buffer &operator=(const Buffer &b) { if (unlikely(b._l > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; if (C2 == C) { memcpy(this,&b,sizeof(Buffer)); } else { memcpy(_b,b._b,_l = b._l); } return *this; } inline void copyFrom(const void *b,unsigned int l) { if (unlikely(l > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; memcpy(_b,b,l); _l = l; } unsigned char operator[](const unsigned int i) const { if (unlikely(i >= _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; return (unsigned char)_b[i]; } unsigned char &operator[](const unsigned int i) { if (unlikely(i >= _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; return ((unsigned char *)_b)[i]; } /** * Get a raw pointer to a field with bounds checking * * This isn't perfectly safe in that the caller could still overflow * the pointer, but its use provides both a sanity check and * documentation / reminder to the calling code to treat the returned * pointer as being of size [l]. * * @param i Index of field in buffer * @param l Length of field in bytes * @return Pointer to field data * @throws std::out_of_range Field extends beyond data size */ unsigned char *field(unsigned int i,unsigned int l) { if (unlikely((i + l) > _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; return (unsigned char *)(_b + i); } const unsigned char *field(unsigned int i,unsigned int l) const { if (unlikely((i + l) > _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; return (const unsigned char *)(_b + i); } /** * Place a primitive integer value at a given position * * @param i Index to place value * @param v Value * @tparam T Integer type (e.g. uint16_t, int64_t) */ template inline void setAt(unsigned int i,const T v) { if (unlikely((i + sizeof(T)) > _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; #ifdef ZT_NO_TYPE_PUNNING uint8_t *p = reinterpret_cast(_b + i); for(unsigned int x=1;x<=sizeof(T);++x) *(p++) = (uint8_t)(v >> (8 * (sizeof(T) - x))); #else T *const ZT_VAR_MAY_ALIAS p = reinterpret_cast(_b + i); *p = Utils::hton(v); #endif } /** * Get a primitive integer value at a given position * * @param i Index to get integer * @tparam T Integer type (e.g. uint16_t, int64_t) * @return Integer value */ template inline T at(unsigned int i) const { if (unlikely((i + sizeof(T)) > _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; #ifdef ZT_NO_TYPE_PUNNING T v = 0; const uint8_t *p = reinterpret_cast(_b + i); for(unsigned int x=0;x(_b + i); return Utils::ntoh(*p); #endif } /** * Append an integer type to this buffer * * @param v Value to append * @tparam T Integer type (e.g. uint16_t, int64_t) * @throws std::out_of_range Attempt to append beyond capacity */ template inline void append(const T v) { if (unlikely((_l + sizeof(T)) > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; #ifdef ZT_NO_TYPE_PUNNING uint8_t *p = reinterpret_cast(_b + _l); for(unsigned int x=1;x<=sizeof(T);++x) *(p++) = (uint8_t)(v >> (8 * (sizeof(T) - x))); #else T *const ZT_VAR_MAY_ALIAS p = reinterpret_cast(_b + _l); *p = Utils::hton(v); #endif _l += sizeof(T); } /** * Append a run of bytes * * @param c Character value to append * @param n Number of times to append * @throws std::out_of_range Attempt to append beyond capacity */ inline void append(unsigned char c,unsigned int n) { if (unlikely((_l + n) > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; for(unsigned int i=0;i C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; Utils::getSecureRandom(_b + _l,n); _l += n; } /** * Append a C-array of bytes * * @param b Data * @param l Length * @throws std::out_of_range Attempt to append beyond capacity */ inline void append(const void *b,unsigned int l) { if (unlikely((_l + l) > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; memcpy(_b + _l,b,l); _l += l; } /** * Append a C string including null termination byte * * @param s C string * @throws std::out_of_range Attempt to append beyond capacity */ inline void appendCString(const char *s) { for(;;) { if (unlikely(_l >= C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; if (!(_b[_l++] = *(s++))) break; } } /** * Append a buffer * * @param b Buffer to append * @tparam C2 Capacity of second buffer (typically inferred) * @throws std::out_of_range Attempt to append beyond capacity */ template inline void append(const Buffer &b) { append(b._b,b._l); } /** * Increment size and return pointer to field of specified size * * Nothing is actually written to the memory. This is a shortcut * for addSize() followed by field() to reference the previous * position and the new size. * * @param l Length of field to append * @return Pointer to beginning of appended field of length 'l' */ inline char *appendField(unsigned int l) { if (unlikely((_l + l) > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; char *r = _b + _l; _l += l; return r; } /** * Increment size by a given number of bytes * * The contents of new space are undefined. * * @param i Bytes to increment * @throws std::out_of_range Capacity exceeded */ inline void addSize(unsigned int i) { if (unlikely((i + _l) > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; _l += i; } /** * Set size of data in buffer * * The contents of new space are undefined. * * @param i New size * @throws std::out_of_range Size larger than capacity */ inline void setSize(const unsigned int i) { if (unlikely(i > C)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; _l = i; } /** * Move everything after 'at' to the buffer's front and truncate * * @param at Truncate before this position * @throws std::out_of_range Position is beyond size of buffer */ inline void behead(const unsigned int at) { if (!at) return; if (unlikely(at > _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; ::memmove(_b,_b + at,_l -= at); } /** * Erase something from the middle of the buffer * * @param start Starting position * @param length Length of block to erase * @throws std::out_of_range Position plus length is beyond size of buffer */ inline void erase(const unsigned int at,const unsigned int length) { const unsigned int endr = at + length; if (unlikely(endr > _l)) throw ZT_EXCEPTION_OUT_OF_BOUNDS; ::memmove(_b + at,_b + endr,_l - endr); _l -= length; } /** * Set buffer data length to zero */ inline void clear() { _l = 0; } /** * Zero buffer up to size() */ inline void zero() { memset(_b,0,_l); } /** * Zero unused capacity area */ inline void zeroUnused() { memset(_b + _l,0,C - _l); } /** * Unconditionally and securely zero buffer's underlying memory */ inline void burn() { Utils::burn(_b,sizeof(_b)); } /** * @return Constant pointer to data in buffer */ inline const void *data() const { return _b; } /** * @return Non-constant pointer to data in buffer */ inline void *unsafeData() { return _b; } /** * @return Size of data in buffer */ inline unsigned int size() const { return _l; } /** * @return Capacity of buffer */ inline unsigned int capacity() const { return C; } template inline bool operator==(const Buffer &b) const { return ((_l == b._l)&&(!memcmp(_b,b._b,_l))); } template inline bool operator!=(const Buffer &b) const { return ((_l != b._l)||(memcmp(_b,b._b,_l))); } template inline bool operator<(const Buffer &b) const { return (memcmp(_b,b._b,std::min(_l,b._l)) < 0); } template inline bool operator>(const Buffer &b) const { return (b < *this); } template inline bool operator<=(const Buffer &b) const { return !(b < *this); } template inline bool operator>=(const Buffer &b) const { return !(*this < b); } private: char ZT_VAR_MAY_ALIAS _b[C]; unsigned int _l; }; } // namespace ZeroTier #endif