/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2015 ZeroTier, Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * -- * * ZeroTier may be used and distributed under the terms of the GPLv3, which * are available at: http://www.gnu.org/licenses/gpl-3.0.html * * If you would like to embed ZeroTier into a commercial application or * redistribute it in a modified binary form, please contact ZeroTier Networks * LLC. Start here: http://www.zerotier.com/ */ #include #include #include #include "Constants.hpp" #include "SelfAwareness.hpp" #include "RuntimeEnvironment.hpp" #include "Node.hpp" #include "Topology.hpp" #include "Packet.hpp" #include "Peer.hpp" namespace ZeroTier { class _ResetWithinScope { public: _ResetWithinScope(const RuntimeEnvironment *renv,uint64_t now,InetAddress::IpScope scope) : RR(renv), _now(now), _scope(scope) {} inline void operator()(Topology &t,const SharedPtr &p) { if (p->resetWithinScope(RR,_scope,_now)) peersReset.push_back(p); } std::vector< SharedPtr > peersReset; private: const RuntimeEnvironment *RR; uint64_t _now; InetAddress::IpScope _scope; }; SelfAwareness::SelfAwareness(const RuntimeEnvironment *renv) : RR(renv) { memset(_lastPhysicalAddress,0,sizeof(_lastPhysicalAddress)); } SelfAwareness::~SelfAwareness() { } void SelfAwareness::iam(const Address &reporter,const InetAddress &reporterPhysicalAddress,const InetAddress &myPhysicalAddress,bool trusted) { // This code depends on the numeric values assigned to scopes in InetAddress.hpp const unsigned int scope = (unsigned int)myPhysicalAddress.ipScope(); if ((scope > 0)&&(scope < (unsigned int)InetAddress::IP_SCOPE_LOOPBACK)) { if ( (!trusted) && ((scope == (unsigned int)InetAddress::IP_SCOPE_GLOBAL)||(scope != (unsigned int)reporterPhysicalAddress.ipScope())) ) { /* For now only trusted peers are permitted to inform us of changes to * our global Internet IP or to changes of NATed IPs. We'll let peers on * private, shared, or link-local networks inform us of changes as long * as they too are at the same scope. This discrimination avoids a DoS * attack in which an attacker could force us to reset our connections. */ return; } else { Mutex::Lock _l(_lock); InetAddress &lastPhy = _lastPhysicalAddress[scope - 1]; if (!lastPhy) { TRACE("learned physical address %s for scope %u from reporter %s(%s) (replaced )",myPhysicalAddress.toString().c_str(),scope,reporter.toString().c_str(),reporterPhysicalAddress.toString().c_str()); lastPhy = myPhysicalAddress; } else if (lastPhy != myPhysicalAddress) { TRACE("learned physical address %s for scope %u from reporter %s(%s) (replaced %s, resetting within scope)",myPhysicalAddress.toString().c_str(),scope,reporter.toString().c_str(),reporterPhysicalAddress.toString().c_str(),lastPhy.toString().c_str()); lastPhy = myPhysicalAddress; uint64_t now = RR->node->now(); _ResetWithinScope rset(RR,now,(InetAddress::IpScope)scope); RR->topology->eachPeer<_ResetWithinScope &>(rset); // For all peers for whom we forgot an address, send a packet indirectly if // they are still considered alive so that we will re-establish direct links. SharedPtr sn(RR->topology->getBestSupernode()); if (sn) { Path *snp = sn->getBestPath(now); if (snp) { for(std::vector< SharedPtr >::const_iterator p(rset.peersReset.begin());p!=rset.peersReset.end();++p) { if ((*p)->alive(now)) { TRACE("sending indirect NOP to %s via %s(%s) to re-establish link",(*p)->address().toString().c_str(),sn->address().toString().c_str(),snp->address().toString().c_str()); Packet outp((*p)->address(),RR->identity.address(),Packet::VERB_NOP); outp.armor((*p)->key(),true); snp->send(RR,outp.data(),outp.size(),now); } } } } } } } } } // namespace ZeroTier