/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Constants.hpp" #include "Topology.hpp" #include "RuntimeEnvironment.hpp" #include "Node.hpp" #include "Network.hpp" #include "NetworkConfig.hpp" #include "Buffer.hpp" #include "Switch.hpp" namespace ZeroTier { #define ZT_DEFAULT_WORLD_LENGTH 570 static const unsigned char ZT_DEFAULT_WORLD[ZT_DEFAULT_WORLD_LENGTH] = {0x01,0x00,0x00,0x00,0x00,0x08,0xea,0xc9,0x0a,0x00,0x00,0x01,0x7e,0xe9,0x57,0x60,0xcd,0xb8,0xb3,0x88,0xa4,0x69,0x22,0x14,0x91,0xaa,0x9a,0xcd,0x66,0xcc,0x76,0x4c,0xde,0xfd,0x56,0x03,0x9f,0x10,0x67,0xae,0x15,0xe6,0x9c,0x6f,0xb4,0x2d,0x7b,0x55,0x33,0x0e,0x3f,0xda,0xac,0x52,0x9c,0x07,0x92,0xfd,0x73,0x40,0xa6,0xaa,0x21,0xab,0xa8,0xa4,0x89,0xfd,0xae,0xa4,0x4a,0x39,0xbf,0x2d,0x00,0x65,0x9a,0xc9,0xc8,0x18,0xeb,0x36,0x00,0x92,0x76,0x37,0xef,0x4d,0x14,0x04,0xa4,0x4d,0x54,0x46,0x84,0x85,0x13,0x79,0x75,0x1f,0xaa,0x79,0xb4,0xc4,0xea,0x85,0x04,0x01,0x75,0xea,0x06,0x58,0x60,0x48,0x24,0x02,0xe1,0xeb,0x34,0x20,0x52,0x00,0x0e,0x62,0x90,0x06,0x1a,0x9b,0xe0,0xcd,0x29,0x3c,0x8b,0x55,0xf1,0xc3,0xd2,0x52,0x48,0x08,0xaf,0xc5,0x49,0x22,0x08,0x0e,0x35,0x39,0xa7,0x5a,0xdd,0xc3,0xce,0xf0,0xf6,0xad,0x26,0x0d,0x58,0x82,0x93,0xbb,0x77,0x86,0xe7,0x1e,0xfa,0x4b,0x90,0x57,0xda,0xd9,0x86,0x7a,0xfe,0x12,0xdd,0x04,0xca,0xfe,0x9e,0xfe,0xb9,0x00,0xcc,0xde,0xf7,0x6b,0xc7,0xb9,0x7d,0xed,0x90,0x4e,0xab,0xc5,0xdf,0x09,0x88,0x6d,0x9c,0x15,0x14,0xa6,0x10,0x03,0x6c,0xb9,0x13,0x9c,0xc2,0x14,0x00,0x1a,0x29,0x58,0x97,0x8e,0xfc,0xec,0x15,0x71,0x2d,0xd3,0x94,0x8c,0x6e,0x6b,0x3a,0x8e,0x89,0x3d,0xf0,0x1f,0xf4,0x93,0xd1,0xf8,0xd9,0x80,0x6a,0x86,0x0c,0x54,0x20,0x57,0x1b,0xf0,0x00,0x02,0x04,0x68,0xc2,0x08,0x86,0x27,0x09,0x06,0x26,0x05,0x98,0x80,0x02,0x00,0x12,0x00,0x00,0x30,0x05,0x71,0x0e,0x34,0x00,0x51,0x27,0x09,0x77,0x8c,0xde,0x71,0x90,0x00,0x3f,0x66,0x81,0xa9,0x9e,0x5a,0xd1,0x89,0x5e,0x9f,0xba,0x33,0xe6,0x21,0x2d,0x44,0x54,0xe1,0x68,0xbc,0xec,0x71,0x12,0x10,0x1b,0xf0,0x00,0x95,0x6e,0xd8,0xe9,0x2e,0x42,0x89,0x2c,0xb6,0xf2,0xec,0x41,0x08,0x81,0xa8,0x4a,0xb1,0x9d,0xa5,0x0e,0x12,0x87,0xba,0x3d,0x92,0x6c,0x3a,0x1f,0x75,0x5c,0xcc,0xf2,0x99,0xa1,0x20,0x70,0x55,0x00,0x02,0x04,0x67,0xc3,0x67,0x42,0x27,0x09,0x06,0x26,0x05,0x98,0x80,0x04,0x00,0x00,0xc3,0x02,0x54,0xf2,0xbc,0xa1,0xf7,0x00,0x19,0x27,0x09,0x62,0xf8,0x65,0xae,0x71,0x00,0xe2,0x07,0x6c,0x57,0xde,0x87,0x0e,0x62,0x88,0xd7,0xd5,0xe7,0x40,0x44,0x08,0xb1,0x54,0x5e,0xfc,0xa3,0x7d,0x67,0xf7,0x7b,0x87,0xe9,0xe5,0x41,0x68,0xc2,0x5d,0x3e,0xf1,0xa9,0xab,0xf2,0x90,0x5e,0xa5,0xe7,0x85,0xc0,0x1d,0xff,0x23,0x88,0x7a,0xd4,0x23,0x2d,0x95,0xc7,0xa8,0xfd,0x2c,0x27,0x11,0x1a,0x72,0xbd,0x15,0x93,0x22,0xdc,0x00,0x02,0x04,0x32,0x07,0xfc,0x8a,0x27,0x09,0x06,0x20,0x01,0x49,0xf0,0xd0,0xdb,0x00,0x02,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x02,0x27,0x09,0xca,0xfe,0x04,0xeb,0xa9,0x00,0x6c,0x6a,0x9d,0x1d,0xea,0x55,0xc1,0x61,0x6b,0xfe,0x2a,0x2b,0x8f,0x0f,0xf9,0xa8,0xca,0xca,0xf7,0x03,0x74,0xfb,0x1f,0x39,0xe3,0xbe,0xf8,0x1c,0xbf,0xeb,0xef,0x17,0xb7,0x22,0x82,0x68,0xa0,0xa2,0xa2,0x9d,0x34,0x88,0xc7,0x52,0x56,0x5c,0x6c,0x96,0x5c,0xbd,0x65,0x06,0xec,0x24,0x39,0x7c,0xc8,0xa5,0xd9,0xd1,0x52,0x85,0xa8,0x7f,0x00,0x02,0x04,0x54,0x11,0x35,0x9b,0x27,0x09,0x06,0x2a,0x02,0x6e,0xa0,0xd4,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x99,0x93,0x27,0x09}; Topology::Topology(const RuntimeEnvironment *renv,void *tPtr) : RR(renv), _numConfiguredPhysicalPaths(0), _amUpstream(false) { uint8_t tmp[ZT_WORLD_MAX_SERIALIZED_LENGTH]; uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0; int n = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PLANET,idtmp,tmp,sizeof(tmp)); if (n > 0) { try { World cachedPlanet; cachedPlanet.deserialize(Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH>(tmp,(unsigned int)n),0); addWorld(tPtr,cachedPlanet,false); } catch ( ... ) {} // ignore invalid cached planets } World defaultPlanet; { Buffer<ZT_DEFAULT_WORLD_LENGTH> wtmp(ZT_DEFAULT_WORLD,ZT_DEFAULT_WORLD_LENGTH); defaultPlanet.deserialize(wtmp,0); // throws on error, which would indicate a bad static variable up top } addWorld(tPtr,defaultPlanet,false); } Topology::~Topology() { Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers); Address *a = (Address *)0; SharedPtr<Peer> *p = (SharedPtr<Peer> *)0; while (i.next(a,p)) { _savePeer((void *)0,*p); } } SharedPtr<Peer> Topology::addPeer(void *tPtr,const SharedPtr<Peer> &peer) { SharedPtr<Peer> np; { Mutex::Lock _l(_peers_m); SharedPtr<Peer> &hp = _peers[peer->address()]; if (!hp) { hp = peer; } np = hp; } return np; } SharedPtr<Peer> Topology::getPeer(void *tPtr,const Address &zta) { if (zta == RR->identity.address()) { return SharedPtr<Peer>(); } { Mutex::Lock _l(_peers_m); const SharedPtr<Peer> *const ap = _peers.get(zta); if (ap) { return *ap; } } try { Buffer<ZT_PEER_MAX_SERIALIZED_STATE_SIZE> buf; uint64_t idbuf[2]; idbuf[0] = zta.toInt(); idbuf[1] = 0; int len = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PEER,idbuf,buf.unsafeData(),ZT_PEER_MAX_SERIALIZED_STATE_SIZE); if (len > 0) { buf.setSize(len); Mutex::Lock _l(_peers_m); SharedPtr<Peer> &ap = _peers[zta]; if (ap) { return ap; } ap = Peer::deserializeFromCache(RR->node->now(),tPtr,buf,RR); if (!ap) { _peers.erase(zta); } return SharedPtr<Peer>(); } } catch ( ... ) {} // ignore invalid identities or other strange failures return SharedPtr<Peer>(); } Identity Topology::getIdentity(void *tPtr,const Address &zta) { if (zta == RR->identity.address()) { return RR->identity; } else { Mutex::Lock _l(_peers_m); const SharedPtr<Peer> *const ap = _peers.get(zta); if (ap) { return (*ap)->identity(); } } return Identity(); } SharedPtr<Peer> Topology::getUpstreamPeer() { const int64_t now = RR->node->now(); unsigned int bestq = ~((unsigned int)0); const SharedPtr<Peer> *best = (const SharedPtr<Peer> *)0; Mutex::Lock _l2(_peers_m); Mutex::Lock _l1(_upstreams_m); for(std::vector<Address>::const_iterator a(_upstreamAddresses.begin());a!=_upstreamAddresses.end();++a) { const SharedPtr<Peer> *p = _peers.get(*a); if (p) { const unsigned int q = (*p)->relayQuality(now); if (q <= bestq) { bestq = q; best = p; } } } if (!best) { return SharedPtr<Peer>(); } return *best; } bool Topology::isUpstream(const Identity &id) const { Mutex::Lock _l(_upstreams_m); return (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),id.address()) != _upstreamAddresses.end()); } bool Topology::shouldAcceptWorldUpdateFrom(const Address &addr) const { Mutex::Lock _l(_upstreams_m); if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),addr) != _upstreamAddresses.end()) { return true; } for(std::vector< std::pair< uint64_t,Address> >::const_iterator s(_moonSeeds.begin());s!=_moonSeeds.end();++s) { if (s->second == addr) { return true; } } return false; } ZT_PeerRole Topology::role(const Address &ztaddr) const { Mutex::Lock _l(_upstreams_m); if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),ztaddr) != _upstreamAddresses.end()) { for(std::vector<World::Root>::const_iterator i(_planet.roots().begin());i!=_planet.roots().end();++i) { if (i->identity.address() == ztaddr) { return ZT_PEER_ROLE_PLANET; } } return ZT_PEER_ROLE_MOON; } return ZT_PEER_ROLE_LEAF; } bool Topology::isProhibitedEndpoint(const Address &ztaddr,const InetAddress &ipaddr) const { Mutex::Lock _l(_upstreams_m); // For roots the only permitted addresses are those defined. This adds just a little // bit of extra security against spoofing, replaying, etc. if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),ztaddr) != _upstreamAddresses.end()) { for(std::vector<World::Root>::const_iterator r(_planet.roots().begin());r!=_planet.roots().end();++r) { if (r->identity.address() == ztaddr) { if (r->stableEndpoints.empty()) { return false; // no stable endpoints specified, so allow dynamic paths } for(std::vector<InetAddress>::const_iterator e(r->stableEndpoints.begin());e!=r->stableEndpoints.end();++e) { if (ipaddr.ipsEqual(*e)) { return false; } } } } for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) { for(std::vector<World::Root>::const_iterator r(m->roots().begin());r!=m->roots().end();++r) { if (r->identity.address() == ztaddr) { if (r->stableEndpoints.empty()) { return false; // no stable endpoints specified, so allow dynamic paths } for(std::vector<InetAddress>::const_iterator e(r->stableEndpoints.begin());e!=r->stableEndpoints.end();++e) { if (ipaddr.ipsEqual(*e)) { return false; } } } } } return true; } return false; } bool Topology::addWorld(void *tPtr,const World &newWorld,bool alwaysAcceptNew) { if ((newWorld.type() != World::TYPE_PLANET)&&(newWorld.type() != World::TYPE_MOON)) { return false; } Mutex::Lock _l2(_peers_m); Mutex::Lock _l1(_upstreams_m); World *existing = (World *)0; switch(newWorld.type()) { case World::TYPE_PLANET: existing = &_planet; break; case World::TYPE_MOON: for(std::vector< World >::iterator m(_moons.begin());m!=_moons.end();++m) { if (m->id() == newWorld.id()) { existing = &(*m); break; } } break; default: return false; } if (existing) { if (existing->shouldBeReplacedBy(newWorld)) { *existing = newWorld; } else { return false; } } else if (newWorld.type() == World::TYPE_MOON) { if (alwaysAcceptNew) { _moons.push_back(newWorld); existing = &(_moons.back()); } else { for(std::vector< std::pair<uint64_t,Address> >::iterator m(_moonSeeds.begin());m!=_moonSeeds.end();++m) { if (m->first == newWorld.id()) { for(std::vector<World::Root>::const_iterator r(newWorld.roots().begin());r!=newWorld.roots().end();++r) { if (r->identity.address() == m->second) { _moonSeeds.erase(m); _moons.push_back(newWorld); existing = &(_moons.back()); break; } } if (existing) { break; } } } } if (!existing) { return false; } } else { return false; } try { Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH> sbuf; existing->serialize(sbuf,false); uint64_t idtmp[2]; idtmp[0] = existing->id(); idtmp[1] = 0; RR->node->stateObjectPut(tPtr,(existing->type() == World::TYPE_PLANET) ? ZT_STATE_OBJECT_PLANET : ZT_STATE_OBJECT_MOON,idtmp,sbuf.data(),sbuf.size()); } catch ( ... ) {} _memoizeUpstreams(tPtr); return true; } void Topology::addMoon(void *tPtr,const uint64_t id,const Address &seed) { char tmp[ZT_WORLD_MAX_SERIALIZED_LENGTH]; uint64_t idtmp[2]; idtmp[0] = id; idtmp[1] = 0; int n = RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_MOON,idtmp,tmp,sizeof(tmp)); if (n > 0) { try { World w; w.deserialize(Buffer<ZT_WORLD_MAX_SERIALIZED_LENGTH>(tmp,(unsigned int)n)); if ((w.type() == World::TYPE_MOON)&&(w.id() == id)) { addWorld(tPtr,w,true); return; } } catch ( ... ) {} } if (seed) { Mutex::Lock _l(_upstreams_m); if (std::find(_moonSeeds.begin(),_moonSeeds.end(),std::pair<uint64_t,Address>(id,seed)) == _moonSeeds.end()) { _moonSeeds.push_back(std::pair<uint64_t,Address>(id,seed)); } } } void Topology::removeMoon(void *tPtr,const uint64_t id) { Mutex::Lock _l2(_peers_m); Mutex::Lock _l1(_upstreams_m); std::vector<World> nm; for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) { if (m->id() != id) { nm.push_back(*m); } else { uint64_t idtmp[2]; idtmp[0] = id; idtmp[1] = 0; RR->node->stateObjectDelete(tPtr,ZT_STATE_OBJECT_MOON,idtmp); } } _moons.swap(nm); std::vector< std::pair<uint64_t,Address> > cm; for(std::vector< std::pair<uint64_t,Address> >::const_iterator m(_moonSeeds.begin());m!=_moonSeeds.end();++m) { if (m->first != id) { cm.push_back(*m); } } _moonSeeds.swap(cm); _memoizeUpstreams(tPtr); } void Topology::doPeriodicTasks(void *tPtr,int64_t now) { { Mutex::Lock _l1(_peers_m); Mutex::Lock _l2(_upstreams_m); Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers); Address *a = (Address *)0; SharedPtr<Peer> *p = (SharedPtr<Peer> *)0; while (i.next(a,p)) { if ( (!(*p)->isAlive(now)) && (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),*a) == _upstreamAddresses.end()) ) { _savePeer(tPtr,*p); _peers.erase(*a); } } } { Mutex::Lock _l(_paths_m); Hashtable< Path::HashKey,SharedPtr<Path> >::Iterator i(_paths); Path::HashKey *k = (Path::HashKey *)0; SharedPtr<Path> *p = (SharedPtr<Path> *)0; while (i.next(k,p)) { if (p->references() <= 1) { _paths.erase(*k); } } } } void Topology::_memoizeUpstreams(void *tPtr) { // assumes _upstreams_m and _peers_m are locked _upstreamAddresses.clear(); _amUpstream = false; for(std::vector<World::Root>::const_iterator i(_planet.roots().begin());i!=_planet.roots().end();++i) { const Identity &id = i->identity; if (id == RR->identity) { _amUpstream = true; } else if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),id.address()) == _upstreamAddresses.end()) { _upstreamAddresses.push_back(id.address()); SharedPtr<Peer> &hp = _peers[id.address()]; if (!hp) { hp = new Peer(RR,RR->identity,id); } } } for(std::vector<World>::const_iterator m(_moons.begin());m!=_moons.end();++m) { for(std::vector<World::Root>::const_iterator i(m->roots().begin());i!=m->roots().end();++i) { if (i->identity == RR->identity) { _amUpstream = true; } else if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),i->identity.address()) == _upstreamAddresses.end()) { _upstreamAddresses.push_back(i->identity.address()); SharedPtr<Peer> &hp = _peers[i->identity.address()]; if (!hp) { hp = new Peer(RR,RR->identity,i->identity); } } } } std::sort(_upstreamAddresses.begin(),_upstreamAddresses.end()); } void Topology::_savePeer(void *tPtr,const SharedPtr<Peer> &peer) { try { Buffer<ZT_PEER_MAX_SERIALIZED_STATE_SIZE> buf; peer->serializeForCache(buf); uint64_t tmpid[2]; tmpid[0] = peer->address().toInt(); tmpid[1] = 0; RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,tmpid,buf.data(),buf.size()); } catch ( ... ) {} // sanity check, discard invalid entries } } // namespace ZeroTier