Big refactor mostly builds. We now have a uniform backward compatible netconf.

This commit is contained in:
Adam Ierymenko 2016-06-16 12:28:43 -07:00
parent b104bb4762
commit e09c1a1c11
14 changed files with 738 additions and 795 deletions

View File

@ -412,6 +412,8 @@ enum ZT_VirtualNetworkRuleType
*/
ZT_NETWORK_RULE_ACTION_REDIRECT = 3,
// <32 == actions
/**
* Source ZeroTier address -- analogous to an Ethernet port ID on a switch
*/

View File

@ -295,7 +295,6 @@ public:
* @param s String to deserialize
*/
void fromString(const char *s);
inline void fromString(const std::string &s) { fromString(s.c_str()); }
#endif // ZT_SUPPORT_OLD_STYLE_NETCONF
/**

View File

@ -21,11 +21,12 @@
#include "Constants.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "Address.hpp"
#include <stdint.h>
#include <string>
// Can be increased if it's ever needed, but not too much.
#define ZT_DICTIONARY_MAX_SIZE 16384
namespace ZeroTier {
@ -45,7 +46,8 @@ namespace ZeroTier {
* Keys cannot contain binary data, CR/LF, nulls, or the equals (=) sign.
* Adding such a key will result in an invalid entry (but isn't dangerous).
*
* There is code to test and fuzz this in selftest.cpp.
* There is code to test and fuzz this in selftest.cpp. Fuzzing a blob of
* pointer tricks like this is important after any modifications.
*/
class Dictionary
{
@ -60,9 +62,32 @@ public:
Utils::scopy(_d,sizeof(_d),s);
}
inline void load(const char *s)
Dictionary(const char *s,unsigned int len)
{
Utils::scopy(_d,sizeof(_d),s);
memcpy(_d,s,(len > ZT_DICTIONARY_MAX_SIZE) ? (unsigned int)ZT_DICTIONARY_MAX_SIZE : len);
_d[ZT_DICTIONARY_MAX_SIZE-1] = (char)0;
}
Dictionary(const Dictionary &d)
{
Utils::scopy(_d,sizeof(_d),d._d);
}
inline Dictionary &operator=(const Dictionary &d)
{
Utils::scopy(_d,sizeof(_d),d._d);
return *this;
}
/**
* Load a dictionary from a C-string
*
* @param s Dictionary in string form
* @return False if 's' was longer than ZT_DICTIONARY_MAX_SIZE
*/
inline bool load(const char *s)
{
return Utils::scopy(_d,sizeof(_d),s);
}
/**
@ -103,9 +128,7 @@ public:
inline int get(const char *key,char *dest,unsigned int destlen) const
{
const char *p = _d;
const char *const eof = p + ZT_DICTIONARY_MAX_SIZE;
const char *k,*s;
unsigned int dptr = 0;
bool esc;
int j;
@ -185,34 +208,48 @@ public:
}
/**
* Get the contents of a key into a buffer
*
* @param key Key to get
* @param dest Destination buffer
* @return True if key was found (if false, dest will be empty)
*/
template<unsigned int C>
inline bool get(const char *key,Buffer<C> &dest) const
{
const int r = this->get(key,const_cast<char *>(reinterpret_cast<const char *>(dest.data())),C);
if (r >= 0) {
dest.setSize((unsigned int)r);
return true;
} else {
dest.clear();
return false;
}
}
/**
* Get a boolean value
*
* @param key Key to look up
* @param dfl Default value if not found in dictionary (a key with an empty value is considered not found)
* @param dfl Default value if not found in dictionary
* @return Boolean value of key or 'dfl' if not found
*/
bool getBoolean(const char *key,bool dfl = false) const
bool getB(const char *key,bool dfl = false) const
{
char tmp[128];
if (this->get(key,tmp,sizeof(tmp)) >= 1) {
switch(tmp[0]) {
case '1':
case 't':
case 'T':
case 'y':
case 'Y':
return true;
default:
return false;
}
}
char tmp[4];
if (this->get(key,tmp,sizeof(tmp)) >= 0)
return ((*tmp == '1')||(*tmp == 't')||(*tmp == 'T'));
return dfl;
}
/**
* Get an unsigned int64 stored as hex in the dictionary
*
* @param key Key to look up
* @param dfl Default value or 0 if unspecified
* @return Decoded hex UInt value or 'dfl' if not found
*/
inline uint64_t getHexUInt(const char *key,uint64_t dfl = 0) const
inline uint64_t getUI(const char *key,uint64_t dfl = 0) const
{
char tmp[128];
if (this->get(key,tmp,sizeof(tmp)) >= 1)
@ -227,6 +264,8 @@ public:
* will always be returned by get(). There is no erase(). This is designed
* to be generated and shipped, not as an editable data structure.
*
* Use the vlen parameter to add binary values. Nulls will be escaped.
*
* @param key Key -- nulls, CR/LF, and equals (=) are illegal characters
* @param value Value to set
* @param vlen Length of value in bytes or -1 to treat value[] as a C-string and look for terminating 0
@ -249,20 +288,22 @@ public:
int k = 0;
while ((*p)&&((vlen < 0)||(k < vlen))) {
switch(*p) {
case 0:
case '\r':
case '\n':
case '\0':
case '\t':
case '\\':
_d[j++] = '\\';
if (j == ZT_DICTIONARY_MAX_SIZE) {
_d[i] = (char)0;
return false;
}
switch(*p) {
case 0: _d[j++] = '0'; break;
case '\r': _d[j++] = 'r'; break;
case '\n': _d[j++] = 'n'; break;
case '\0': _d[j++] = '0'; break;
case '\t': _d[j++] = 't'; break;
case '\\': _d[j++] = '\\'; break;
}
if (j == ZT_DICTIONARY_MAX_SIZE) {
_d[i] = (char)0;
@ -290,19 +331,38 @@ public:
/**
* Add a boolean as a '1' or a '0'
*/
inline void add(const char *key,bool value)
inline bool add(const char *key,bool value)
{
this->add(key,(value) ? "1" : "0",1);
return this->add(key,(value) ? "1" : "0",1);
}
/**
* Add a 64-bit integer (unsigned) as a hex value
*/
inline void add(const char *key,uint64_t value)
inline bool add(const char *key,uint64_t value)
{
char tmp[128];
char tmp[32];
Utils::snprintf(tmp,sizeof(tmp),"%llx",(unsigned long long)value);
this->add(key,tmp,-1);
return this->add(key,tmp,-1);
}
/**
* Add a 64-bit integer (unsigned) as a hex value
*/
inline bool add(const char *key,const Address &a)
{
char tmp[32];
Utils::snprintf(tmp,sizeof(tmp),"%.10llx",(unsigned long long)a.toInt());
return this->add(key,tmp,-1);
}
/**
* Add a binary buffer
*/
template<unsigned int C>
inline bool add(const char *key,const Buffer<C> &value)
{
return this->add(key,(const char *)value.data(),(int)value.size());
}
/**

View File

@ -403,8 +403,12 @@ bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,const SharedPtr<Peer> &p
if ((nw)&&(nw->controller() == peer->address())) {
const unsigned int nclen = at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT_LEN);
if (nclen) {
nw->setConfiguration(field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,nclen),nclen,true);
TRACE("got network configuration for network %.16llx from %s",(unsigned long long)nw->id(),source().toString().c_str());
Dictionary dconf((const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST__OK__IDX_DICT,nclen),nclen);
NetworkConfig nconf;
if (nconf.fromDictionary(dconf)) {
nw->setConfiguration(nconf,true);
TRACE("got network configuration for network %.16llx from %s",(unsigned long long)nw->id(),source().toString().c_str());
}
}
}
} break;
@ -679,27 +683,8 @@ bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *RR,cons
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
const unsigned int metaDataLength = at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN);
const uint8_t *metaDataBytes = (const uint8_t *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength);
NetworkConfigRequestMetaData metaData;
bool haveNewStyleMetaData = false;
for(unsigned int i=0;i<metaDataLength;++i) {
if ((metaDataBytes[i] == 0)&&(i < (metaDataLength - 2))) {
haveNewStyleMetaData = true;
break;
}
}
if (haveNewStyleMetaData) {
Buffer<4096> md(metaDataBytes,metaDataLength);
metaData.deserialize(md,0); // the meta-data deserializer automatically skips old-style meta-data
} else {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
const Dictionary oldStyleMetaData((const char *)metaDataBytes,metaDataLength);
metaData.majorVersion = (unsigned int)oldStyleMetaData.getHexUInt(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,0);
metaData.minorVersion = (unsigned int)oldStyleMetaData.getHexUInt(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,0);
metaData.revision = (unsigned int)oldStyleMetaData.getHexUInt(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,0);
#endif
}
const char *metaDataBytes = (const char *)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT,metaDataLength);
const Dictionary metaData(metaDataBytes,metaDataLength);
//const uint64_t haveRevision = ((ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT + metaDataLength + 8) <= size()) ? at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT + metaDataLength) : 0ULL;
@ -708,22 +693,21 @@ bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment *RR,cons
peer->received(_localAddress,_remoteAddress,h,pid,Packet::VERB_NETWORK_CONFIG_REQUEST,0,Packet::VERB_NOP);
if (RR->localNetworkController) {
Buffer<8194> netconf;
NetworkConfig netconf;
switch(RR->localNetworkController->doNetworkConfigRequest((h > 0) ? InetAddress() : _remoteAddress,RR->identity,peer->identity(),nwid,metaData,netconf)) {
case NetworkController::NETCONF_QUERY_OK: {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(pid);
outp.append(nwid);
outp.append((uint16_t)netconf.size());
outp.append(netconf.data(),(unsigned int)netconf.size());
outp.compress();
outp.armor(peer->key(),true);
if (outp.size() > ZT_PROTO_MAX_PACKET_LENGTH) { // sanity check
//TRACE("NETWORK_CONFIG_REQUEST failed: internal error: netconf size %u is too large",(unsigned int)netconfStr.length());
} else {
RR->node->putPacket(_localAddress,_remoteAddress,outp.data(),outp.size());
Dictionary dconf;
if (netconf.toDictionary(dconf,metaData.getUI(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION,0) < 6)) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(pid);
outp.append(nwid);
const unsigned int dlen = dconf.sizeBytes();
outp.append((uint16_t)dlen);
outp.append((const void *)dconf.data(),dlen);
outp.compress();
RR->sw->send(outp,true,0);
}
} break;

View File

@ -64,9 +64,13 @@ Network::Network(const RuntimeEnvironment *renv,uint64_t nwid,void *uptr) :
try {
std::string conf(RR->node->dataStoreGet(confn));
if (conf.length()) {
this->setConfiguration((const void *)conf.data(),(unsigned int)conf.length(),false);
_lastConfigUpdate = 0; // we still want to re-request a new config from the network
gotConf = true;
Dictionary dconf(conf.c_str());
NetworkConfig nconf;
if (nconf.fromDictionary(dconf)) {
this->setConfiguration(nconf,false);
_lastConfigUpdate = 0; // we still want to re-request a new config from the network
gotConf = true;
}
}
} catch ( ... ) {} // ignore invalids, we'll re-request
@ -177,49 +181,21 @@ bool Network::applyConfiguration(const NetworkConfig &conf)
return false;
}
int Network::setConfiguration(const void *confBytes,unsigned int confLen,bool saveToDisk)
int Network::setConfiguration(const NetworkConfig &nconf,bool saveToDisk)
{
try {
if (confLen <= 1)
return 0;
NetworkConfig newConfig;
// Find the length of any string-serialized old-style Dictionary,
// including its terminating NULL (if any). If this is before
// the end of the config, that tells us there is a new-style
// binary config which is preferred.
unsigned int dictLen = 0;
while (dictLen < confLen) {
if (!(reinterpret_cast<const uint8_t *>(confBytes)[dictLen++]))
break;
}
if (dictLen < (confLen - 2)) {
Buffer<8194> tmp(reinterpret_cast<const uint8_t *>(confBytes) + dictLen,confLen - dictLen);
newConfig.deserialize(tmp,0);
} else {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
newConfig.fromDictionary(reinterpret_cast<const char *>(confBytes),confLen); // throws if invalid
#else
return 0;
#endif
}
if (!newConfig)
return 0;
{
Mutex::Lock _l(_lock);
if (_config == newConfig)
if (_config == nconf)
return 1; // OK config, but duplicate of what we already have
}
if (applyConfiguration(newConfig)) {
if (applyConfiguration(nconf)) {
if (saveToDisk) {
char n[128];
char n[64];
Utils::snprintf(n,sizeof(n),"networks.d/%.16llx.conf",_id);
RR->node->dataStorePut(n,confBytes,confLen,true);
Dictionary d;
if (nconf.toDictionary(d,false))
RR->node->dataStorePut(n,(const void *)d.data(),d.sizeBytes(),true);
}
return 2; // OK and configuration has changed
}
@ -234,12 +210,19 @@ void Network::requestConfiguration()
if (_id == ZT_TEST_NETWORK_ID) // pseudo-network-ID, uses locally generated static config
return;
Dictionary rmd;
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION,(uint64_t)ZT_NETWORKCONFIG_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,(uint64_t)ZT_PROTO_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MAJOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,(uint64_t)ZEROTIER_ONE_VERSION_MINOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,(uint64_t)ZEROTIER_ONE_VERSION_REVISION);
if (controller() == RR->identity.address()) {
if (RR->localNetworkController) {
Buffer<8194> tmp;
switch(RR->localNetworkController->doNetworkConfigRequest(InetAddress(),RR->identity,RR->identity,_id,NetworkConfigRequestMetaData(),tmp)) {
NetworkConfig nconf;
switch(RR->localNetworkController->doNetworkConfigRequest(InetAddress(),RR->identity,RR->identity,_id,rmd,nconf)) {
case NetworkController::NETCONF_QUERY_OK:
this->setConfiguration(tmp.data(),tmp.size(),true);
this->setConfiguration(nconf,true);
return;
case NetworkController::NETCONF_QUERY_OBJECT_NOT_FOUND:
this->setNotFound();
@ -258,16 +241,13 @@ void Network::requestConfiguration()
TRACE("requesting netconf for network %.16llx from controller %s",(unsigned long long)_id,controller().toString().c_str());
NetworkConfigRequestMetaData metaData;
metaData.initWithDefaults();
Buffer<4096> mds;
metaData.serialize(mds); // this always includes legacy fields to support old controllers
Packet outp(controller(),RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append((uint64_t)_id);
outp.append((uint16_t)mds.size());
outp.append(mds.data(),mds.size());
const unsigned int rmdSize = rmd.sizeBytes();
outp.append((uint16_t)rmdSize);
outp.append((const void *)rmd.data(),rmdSize);
outp.append((_config) ? (uint64_t)_config.revision : (uint64_t)0);
outp.compress();
RR->sw->send(outp,true,0);
}

View File

@ -151,12 +151,11 @@ public:
/**
* Set or update this network's configuration
*
* @param confBytes Network configuration in old-style Dictionary or new-style serialized format
* @param confLen Length of network configuration in bytes
* @param nconf Network configuration
* @param saveToDisk IF true (default), write config to disk
* @return 0 -- rejected, 1 -- accepted but not new, 2 -- accepted new config
*/
int setConfiguration(const void *confBytes,unsigned int confLen,bool saveToDisk);
int setConfiguration(const NetworkConfig &nconf,bool saveToDisk);
/**
* Set netconf failure to 'access denied' -- called in IncomingPacket when controller reports this

View File

@ -23,158 +23,460 @@
namespace ZeroTier {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
void NetworkConfig::fromDictionary(const char *ds,unsigned int dslen)
bool NetworkConfig::toDictionary(Dictionary &d,bool includeLegacy) const
{
static const std::string zero("0");
static const std::string one("1");
Buffer<ZT_DICTIONARY_MAX_SIZE> tmp;
Dictionary d(ds,dslen);
d.clear();
memset(this,0,sizeof(NetworkConfig));
// Try to put the more human-readable fields first
// NOTE: d.get(name) throws if not found, d.get(name,default) returns default
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_VERSION,(uint64_t)ZT_NETWORKCONFIG_VERSION)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID,this->networkId)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP,this->timestamp)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_REVISION,this->revision)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO,this->issuedTo)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_FLAGS,this->flags)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT,(uint64_t)this->multicastLimit)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_TYPE,(uint64_t)this->type)) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_NAME,this->name)) return false;
networkId = Utils::hexStrToU64(d.get(ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID,"0").c_str());
if (!networkId)
throw std::invalid_argument("configuration contains zero network ID");
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
if (includeLegacy) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING_OLD,this->allowPassiveBridging())) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST_OLD,this->enableBroadcast())) return false;
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_PRIVATE_OLD,this->isPrivate())) return false;
timestamp = Utils::hexStrToU64(d.get(ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP,"0").c_str());
revision = Utils::hexStrToU64(d.get(ZT_NETWORKCONFIG_DICT_KEY_REVISION,"1").c_str()); // older controllers don't send this, so default to 1
issuedTo = Address(d.get(ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO,"0"));
std::string v4s;
for(unsigned int i=0;i<staticIpCount;++i) {
if (this->staticIps[i].ss_family == AF_INET) {
if (v4s.length() > 0)
v4s.push_back(',');
v4s.append(this->staticIps[i].toString());
}
}
if (v4s.length() > 0) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC_OLD,v4s.c_str())) return false;
}
std::string v6s;
for(unsigned int i=0;i<staticIpCount;++i) {
if (this->staticIps[i].ss_family == AF_INET6) {
if (v6s.length() > 0)
v6s.push_back(',');
v6s.append(this->staticIps[i].toString());
}
}
if (v6s.length() > 0) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC_OLD,v6s.c_str())) return false;
}
multicastLimit = Utils::hexStrToUInt(d.get(ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT,zero).c_str());
if (multicastLimit == 0) multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT;
flags |= ((Utils::hexStrToUInt(d.get(ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING,zero).c_str()) != 0) ? ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING : 0);
flags |= ((Utils::hexStrToUInt(d.get(ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST,one).c_str()) != 0) ? ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST : 0);
this->type = (Utils::hexStrToUInt(d.get(ZT_NETWORKCONFIG_DICT_KEY_PRIVATE,one).c_str()) != 0) ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC;
std::string nametmp(d.get(ZT_NETWORKCONFIG_DICT_KEY_NAME,""));
for(unsigned long i=0;((i<ZT_MAX_NETWORK_SHORT_NAME_LENGTH)&&(i<nametmp.length()));++i)
name[i] = (char)nametmp[i];
// we zeroed the entire structure above and _name is ZT_MAX_NETWORK_SHORT_NAME_LENGTH+1, so it will always null-terminate
std::vector<std::string> activeBridgesSplit(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES,"").c_str(),",","",""));
for(std::vector<std::string>::const_iterator a(activeBridgesSplit.begin());a!=activeBridgesSplit.end();++a) {
if (a->length() == ZT_ADDRESS_LENGTH_HEX) { // ignore empty or garbage fields
Address tmp(*a);
if (!tmp.isReserved()) {
uint64_t specialist = tmp.toInt();
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & 0xffffffffffULL) == specialist) {
specialists[i] |= ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE;
specialist = 0;
break;
}
std::string ets;
unsigned int et = 0;
ZT_VirtualNetworkRuleType lastrt = ZT_NETWORK_RULE_ACTION_ACCEPT;
for(unsigned int i=0;i<ruleCount;++i) {
ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f);
if (rt == ZT_NETWORK_RULE_MATCH_ETHERTYPE) {
et = rules[i].v.etherType;
} else if (rt == ZT_NETWORK_RULE_ACTION_ACCEPT) {
if (((int)lastrt < 32)||(lastrt == ZT_NETWORK_RULE_MATCH_ETHERTYPE)) {
if (ets.length() > 0)
ets.push_back(',');
char tmp[16];
Utils::snprintf(tmp,sizeof(tmp),"%x",et);
ets.append(tmp);
}
if ((specialist)&&(specialistCount < ZT_MAX_NETWORK_SPECIALISTS))
specialists[specialistCount++] = specialist | ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE;
et = 0;
}
lastrt = rt;
}
if (ets.length() > 0) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES_OLD,ets.c_str())) return false;
}
if (this->com) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP_OLD,this->com.toString().c_str())) return false;
}
std::string ab;
for(unsigned int i=0;i<this->specialistCount;++i) {
if ((this->specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0) {
if (ab.length() > 0)
ab.push_back(',');
ab.append(Address(this->specialists[i]).toString().c_str());
}
}
}
std::string ipAddrs(d.get(ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC,std::string()));
{
std::string v6s(d.get(ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC,std::string()));
if (v6s.length()) {
if (ipAddrs.length())
ipAddrs.push_back(',');
ipAddrs.append(v6s);
if (ab.length() > 0) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES_OLD,ab.c_str())) return false;
}
}
std::vector<std::string> ipAddrsSplit(Utils::split(ipAddrs.c_str(),",","",""));
for(std::vector<std::string>::const_iterator ipstr(ipAddrsSplit.begin());ipstr!=ipAddrsSplit.end();++ipstr) {
InetAddress addr(*ipstr);
switch(addr.ss_family) {
case AF_INET:
if ((!addr.netmaskBits())||(addr.netmaskBits() > 32))
continue;
break;
case AF_INET6:
if ((!addr.netmaskBits())||(addr.netmaskBits() > 128))
continue;
break;
default: // ignore unrecognized address types or junk/empty fields
continue;
}
if (!addr.isNetwork()) {
if ((staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES)&&(std::find(&(staticIps[0]),&(staticIps[staticIpCount]),addr) == &(staticIps[staticIpCount])))
staticIps[staticIpCount++] = addr;
}
}
std::sort(&(staticIps[0]),&(staticIps[staticIpCount]));
/* Old versions don't support gateways anyway, so ignore this in old netconfs
std::vector<std::string> gatewaysSplit(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_GATEWAYS,"").c_str(),",","",""));
for(std::vector<std::string>::const_iterator gwstr(gatewaysSplit.begin());gwstr!=gatewaysSplit.end();++gwstr) {
InetAddress gw(*gwstr);
if ((gw)&&(_gatewayCount < ZT_MAX_NETWORK_GATEWAYS)&&(std::find(&(_gateways[0]),&(_gateways[_gatewayCount]),gw) == &(_gateways[_gatewayCount])))
_gateways[_gatewayCount++] = gw;
}
std::sort(&(_gateways[0]),&(_gateways[_gatewayCount]));
*/
std::vector<std::string> relaysSplit(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_RELAYS,"").c_str(),",","",""));
for(std::vector<std::string>::const_iterator r(relaysSplit.begin());r!=relaysSplit.end();++r) {
if (r->length() >= ZT_ADDRESS_LENGTH_HEX) {
Address zt(r->substr(0,ZT_ADDRESS_LENGTH_HEX).c_str());
InetAddress phy[2];
unsigned int phyCount = 0;
const std::size_t semi(r->find(';'));
if ((semi > ZT_ADDRESS_LENGTH_HEX)&&(semi < (r->length() - 2))) {
std::vector<std::string> phySplit(Utils::split(r->substr(semi+1).c_str(),",","",""));
for(std::vector<std::string>::const_iterator p(phySplit.begin());((p!=phySplit.end())&&(phyCount < 2));++p) {
phy[phyCount] = InetAddress(*p);
if (phy[phyCount])
++phyCount;
else phy[phyCount].zero();
}
}
uint64_t specialist = zt.toInt();
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & 0xffffffffffULL) == specialist) {
specialists[i] |= ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY;
specialist = 0;
break;
}
}
if ((specialist)&&(specialistCount < ZT_MAX_NETWORK_SPECIALISTS))
specialists[specialistCount++] = specialist | ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY;
if ((phy[0])&&(pinnedCount < ZT_MAX_NETWORK_PINNED)) {
pinned[pinnedCount].zt = zt;
pinned[pinnedCount].phy = phy[0];
++pinnedCount;
}
if ((phy[1])&&(pinnedCount < ZT_MAX_NETWORK_PINNED)) {
pinned[pinnedCount].zt = zt;
pinned[pinnedCount].phy = phy[0];
++pinnedCount;
std::vector<Relay> rvec(this->relays());
std::string rl;
for(std::vector<Relay>::const_iterator i(rvec.begin());i!=rvec.end();++i) {
if (rl.length() > 0)
rl.push_back(',');
rl.append(i->address.toString());
if (i->phy4) {
rl.push_back(';');
rl.append(i->phy4.toString());
} else if (i->phy6) {
rl.push_back(';');
rl.append(i->phy6.toString());
}
}
}
std::vector<std::string> ets(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES,"").c_str(),",","",""));
for(std::vector<std::string>::const_iterator et(ets.begin());et!=ets.end();++et) {
unsigned int et2 = Utils::hexStrToUInt(et->c_str()) & 0xffff;
if ((ruleCount + 1) < ZT_MAX_NETWORK_RULES) {
if (et2) {
rules[ruleCount].t = ZT_NETWORK_RULE_MATCH_ETHERTYPE;
rules[ruleCount].v.etherType = (uint16_t)et2;
++ruleCount;
}
rules[ruleCount++].t = ZT_NETWORK_RULE_ACTION_ACCEPT;
if (rl.length() > 0) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_RELAYS_OLD,rl.c_str())) return false;
}
}
this->com.fromString(d.get(ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP,std::string()));
}
#endif // ZT_SUPPORT_OLD_STYLE_NETCONF
// Then add binary blobs
if (this->com) {
tmp.clear();
this->com.serialize(tmp);
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_COM,tmp)) return false;
}
tmp.clear();
for(unsigned int i=0;i<this->specialistCount;++i) {
tmp.append((uint64_t)this->specialists[i]);
}
if (tmp.size()) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_SPECIALISTS,tmp)) return false;
}
tmp.clear();
for(unsigned int i=0;i<this->routeCount;++i) {
reinterpret_cast<const InetAddress *>(&(this->routes[i].target))->serialize(tmp);
reinterpret_cast<const InetAddress *>(&(this->routes[i].via))->serialize(tmp);
tmp.append((uint16_t)this->routes[i].flags);
tmp.append((uint16_t)this->routes[i].metric);
}
if (tmp.size()) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_ROUTES,tmp)) return false;
}
tmp.clear();
for(unsigned int i=0;i<this->staticIpCount;++i) {
this->staticIps[i].serialize(tmp);
}
if (tmp.size()) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_STATIC_IPS,tmp)) return false;
}
tmp.clear();
for(unsigned int i=0;i<this->pinnedCount;++i) {
this->pinned[i].zt.appendTo(tmp);
this->pinned[i].phy.serialize(tmp);
}
if (tmp.size()) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_PINNED,tmp)) return false;
}
tmp.clear();
for(unsigned int i=0;i<this->ruleCount;++i) {
tmp.append((uint8_t)rules[i].t);
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
tmp.append((uint8_t)0);
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
tmp.append((uint8_t)5);
Address(rules[i].v.zt).appendTo(tmp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
tmp.append((uint8_t)2);
tmp.append((uint16_t)rules[i].v.vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
tmp.append((uint8_t)1);
tmp.append((uint8_t)rules[i].v.vlanPcp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
tmp.append((uint8_t)1);
tmp.append((uint8_t)rules[i].v.vlanDei);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
tmp.append((uint8_t)2);
tmp.append((uint16_t)rules[i].v.etherType);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
tmp.append((uint8_t)6);
tmp.append(rules[i].v.mac,6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
tmp.append((uint8_t)5);
tmp.append(&(rules[i].v.ipv4.ip),4);
tmp.append((uint8_t)rules[i].v.ipv4.mask);
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
tmp.append((uint8_t)17);
tmp.append(rules[i].v.ipv6.ip,16);
tmp.append((uint8_t)rules[i].v.ipv6.mask);
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
tmp.append((uint8_t)1);
tmp.append((uint8_t)rules[i].v.ipTos);
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
tmp.append((uint8_t)1);
tmp.append((uint8_t)rules[i].v.ipProtocol);
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
tmp.append((uint8_t)4);
tmp.append((uint16_t)rules[i].v.port[0]);
tmp.append((uint16_t)rules[i].v.port[1]);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
tmp.append((uint8_t)8);
tmp.append((uint64_t)rules[i].v.characteristics);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
tmp.append((uint8_t)4);
tmp.append((uint16_t)rules[i].v.frameSize[0]);
tmp.append((uint16_t)rules[i].v.frameSize[1]);
break;
case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE:
tmp.append((uint8_t)8);
tmp.append((uint32_t)rules[i].v.tcpseq[0]);
tmp.append((uint32_t)rules[i].v.tcpseq[1]);
break;
}
}
if (tmp.size()) {
if (!d.add(ZT_NETWORKCONFIG_DICT_KEY_RULES,tmp)) return false;
}
return true;
}
bool NetworkConfig::fromDictionary(const Dictionary &d)
{
try {
Buffer<ZT_DICTIONARY_MAX_SIZE> tmp;
char tmp2[ZT_DICTIONARY_MAX_SIZE];
memset(this,0,sizeof(NetworkConfig));
const uint64_t ver = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_VERSION,0);
// Fields that are always present, new or old
this->networkId = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID,0);
if (this->networkId)
return false;
this->timestamp = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_TIMESTAMP,0);
this->revision = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_REVISION,0);
this->issuedTo = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO,0);
if (!this->issuedTo)
return false;
this->multicastLimit = (unsigned int)d.getUI(ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT,0);
d.get(ZT_NETWORKCONFIG_DICT_KEY_NAME,this->name,sizeof(this->name));
if (ver < ZT_NETWORKCONFIG_VERSION) {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
// Decode legacy fields if version is old
if (d.getB(ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING_OLD))
this->flags |= ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING;
if (d.getB(ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST_OLD))
this->flags |= ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST;
this->type = (d.getB(ZT_NETWORKCONFIG_DICT_KEY_PRIVATE_OLD,true)) ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC;
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC_OLD,tmp2,sizeof(tmp2)) > 0) {
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp2,",",&saveptr);(f);f=Utils::stok((char *)0,",",&saveptr)) {
if (this->staticIpCount >= ZT_MAX_ZT_ASSIGNED_ADDRESSES) break;
this->staticIps[this->staticIpCount++] = InetAddress(f);
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC_OLD,tmp2,sizeof(tmp2)) > 0) {
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp2,",",&saveptr);(f);f=Utils::stok((char *)0,",",&saveptr)) {
if (this->staticIpCount >= ZT_MAX_ZT_ASSIGNED_ADDRESSES) break;
this->staticIps[this->staticIpCount++] = InetAddress(f);
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP_OLD,tmp2,sizeof(tmp2)) > 0) {
this->com.fromString(tmp2);
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES_OLD,tmp2,sizeof(tmp2)) > 0) {
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp2,",",&saveptr);(f);f=Utils::stok((char *)0,",",&saveptr)) {
unsigned int et = Utils::hexStrToUInt(f) & 0xffff;
if ((this->ruleCount + 2) > ZT_MAX_NETWORK_RULES) break;
if (et > 0) {
this->rules[this->ruleCount].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE;
this->rules[this->ruleCount].v.etherType = (uint16_t)et;
++this->ruleCount;
}
this->rules[this->ruleCount++].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
}
} else {
this->rules[0].t = ZT_NETWORK_RULE_ACTION_ACCEPT;
this->ruleCount = 1;
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES_OLD,tmp2,sizeof(tmp2)) > 0) {
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp2,",",&saveptr);(f);f=Utils::stok((char *)0,",",&saveptr)) {
this->addSpecialist(Address(f),ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE);
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_RELAYS_OLD,tmp2,sizeof(tmp2)) > 0) {
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp2,",",&saveptr);(f);f=Utils::stok((char *)0,",",&saveptr)) {
char tmp3[256];
Utils::scopy(tmp3,sizeof(tmp3),f);
InetAddress phy;
char *semi = tmp3;
while (*semi) {
if (*semi == ';') {
*semi = (char)0;
++semi;
phy = InetAddress(semi);
} else ++semi;
}
Address zt(tmp3);
this->addSpecialist(zt,ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY);
if ((phy)&&(this->pinnedCount < ZT_MAX_NETWORK_PINNED)) {
this->pinned[this->pinnedCount].zt = zt;
this->pinned[this->pinnedCount].phy = phy;
++this->pinnedCount;
}
}
}
#else
return false;
#endif // ZT_SUPPORT_OLD_STYLE_NETCONF
} else {
// Otherwise we can use the new fields
this->flags = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_FLAGS,0);
this->type = (ZT_VirtualNetworkType)d.getUI(ZT_NETWORKCONFIG_DICT_KEY_TYPE,(uint64_t)ZT_NETWORK_TYPE_PRIVATE);
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_COM,tmp)) {
this->com.deserialize(tmp,0);
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_SPECIALISTS,tmp)) {
unsigned int p = 0;
while (((p + 8) <= tmp.size())&&(specialistCount < ZT_MAX_NETWORK_SPECIALISTS)) {
this->specialists[this->specialistCount++] = tmp.at<uint64_t>(p);
p += 8;
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_ROUTES,tmp)) {
unsigned int p = 0;
while ((p < tmp.size())&&(routeCount < ZT_MAX_NETWORK_ROUTES)) {
p += reinterpret_cast<InetAddress *>(&(this->routes[this->routeCount].target))->deserialize(tmp,p);
p += reinterpret_cast<InetAddress *>(&(this->routes[this->routeCount].via))->deserialize(tmp,p);
this->routes[this->routeCount].flags = tmp.at<uint16_t>(p); p += 2;
this->routes[this->routeCount].metric = tmp.at<uint16_t>(p); p += 2;
++this->routeCount;
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_STATIC_IPS,tmp)) {
unsigned int p = 0;
while ((p < tmp.size())&&(staticIpCount < ZT_MAX_ZT_ASSIGNED_ADDRESSES)) {
p += this->staticIps[this->staticIpCount++].deserialize(tmp,p);
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_PINNED,tmp)) {
unsigned int p = 0;
while ((p < tmp.size())&&(pinnedCount < ZT_MAX_NETWORK_PINNED)) {
this->pinned[this->pinnedCount].zt.setTo(tmp.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
p += this->pinned[this->pinnedCount].phy.deserialize(tmp,p);
++this->pinnedCount;
}
}
if (d.get(ZT_NETWORKCONFIG_DICT_KEY_RULES,tmp)) {
unsigned int p = 0;
while ((p < tmp.size())&&(ruleCount < ZT_MAX_NETWORK_RULES)) {
rules[ruleCount].t = (uint8_t)tmp[p++];
unsigned int fieldLen = (unsigned int)tmp[p++];
switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x7f)) {
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
rules[ruleCount].v.zt = Address(tmp.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt();
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
rules[ruleCount].v.vlanId = tmp.at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
rules[ruleCount].v.vlanPcp = (uint8_t)tmp[p];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
rules[ruleCount].v.vlanDei = (uint8_t)tmp[p];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
rules[ruleCount].v.etherType = tmp.at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
memcpy(rules[ruleCount].v.mac,tmp.field(p,6),6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
memcpy(&(rules[ruleCount].v.ipv4.ip),tmp.field(p,4),4);
rules[ruleCount].v.ipv4.mask = (uint8_t)tmp[p + 4];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
memcpy(rules[ruleCount].v.ipv6.ip,tmp.field(p,16),16);
rules[ruleCount].v.ipv6.mask = (uint8_t)tmp[p + 16];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
rules[ruleCount].v.ipTos = (uint8_t)tmp[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
rules[ruleCount].v.ipProtocol = (uint8_t)tmp[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
rules[ruleCount].v.port[0] = tmp.at<uint16_t>(p);
rules[ruleCount].v.port[1] = tmp.at<uint16_t>(p + 2);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
rules[ruleCount].v.characteristics = tmp.at<uint64_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
rules[ruleCount].v.frameSize[0] = tmp.at<uint16_t>(p);
rules[ruleCount].v.frameSize[0] = tmp.at<uint16_t>(p + 2);
break;
case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE:
rules[ruleCount].v.tcpseq[0] = tmp.at<uint32_t>(p);
rules[ruleCount].v.tcpseq[1] = tmp.at<uint32_t>(p + 4);
break;
}
p += fieldLen;
++ruleCount;
}
}
}
return true;
} catch ( ... ) {
return false;
}
}
} // namespace ZeroTier

View File

@ -35,21 +35,17 @@
#include "MulticastGroup.hpp"
#include "Address.hpp"
#include "CertificateOfMembership.hpp"
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
#include "Dictionary.hpp"
#include <string>
#endif
/**
* Flag: allow passive bridging (experimental)
*/
#define ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING 0x0001
#define ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING 0x0000000000000001ULL
/**
* Flag: enable broadcast
*/
#define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0002
#define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0000000000000002ULL
/**
* Device is a network preferred relay
@ -68,18 +64,20 @@
namespace ZeroTier {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
// Network config version
#define ZT_NETWORKCONFIG_VERSION 6
// Fields for meta-data sent with network config requests
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_VERSION "v"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION "pv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION "majv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION "minv"
#define ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION "revv"
// These dictionary keys are short so they don't take up much room in
// netconf response packets.
// These dictionary keys are short so they don't take up much room.
// integer(hex)[,integer(hex),...]
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES "et"
// network config version
#define ZT_NETWORKCONFIG_DICT_KEY_VERSION "v"
// network ID
#define ZT_NETWORKCONFIG_DICT_KEY_NETWORK_ID "nwid"
// integer(hex)
@ -88,34 +86,49 @@ namespace ZeroTier {
#define ZT_NETWORKCONFIG_DICT_KEY_REVISION "r"
// address of member
#define ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO "id"
// flags(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_FLAGS "f"
// integer(hex)
#define ZT_NETWORKCONFIG_DICT_KEY_MULTICAST_LIMIT "ml"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_PRIVATE "p"
// network type (hex)
#define ZT_NETWORKCONFIG_DICT_KEY_TYPE "t"
// text
#define ZT_NETWORKCONFIG_DICT_KEY_NAME "n"
// text
#define ZT_NETWORKCONFIG_DICT_KEY_DESC "d"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC "v4s"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC "v6s"
// serialized CertificateOfMembership
#define ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP "com"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST "eb"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING "pb"
// node[,node,...]
#define ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES "ab"
// node;IP/port[,node;IP/port]
#define ZT_NETWORKCONFIG_DICT_KEY_RELAYS "rl"
// IP/metric[,IP/metric,...]
#define ZT_NETWORKCONFIG_DICT_KEY_GATEWAYS "gw"
// binary serialized certificate of membership
#define ZT_NETWORKCONFIG_DICT_KEY_COM "C"
// specialists (binary array of uint64_t)
#define ZT_NETWORKCONFIG_DICT_KEY_SPECIALISTS "S"
// routes (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_ROUTES "RT"
// static IPs (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_STATIC_IPS "I"
// pinned address physical route mappings (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_PINNED "P"
// rules (binary blob)
#define ZT_NETWORKCONFIG_DICT_KEY_RULES "R"
#endif // ZT_SUPPORT_OLD_STYLE_NETCONF
// Legacy fields -- these are obsoleted but are included when older clients query
// boolean (now a flag)
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOW_PASSIVE_BRIDGING_OLD "pb"
// boolean (now a flag)
#define ZT_NETWORKCONFIG_DICT_KEY_ENABLE_BROADCAST_OLD "eb"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC_OLD "v4s"
// IP/bits[,IP/bits,...]
// Note that IPs that end in all zeroes are routes with no assignment in them.
#define ZT_NETWORKCONFIG_DICT_KEY_IPV6_STATIC_OLD "v6s"
// 0/1
#define ZT_NETWORKCONFIG_DICT_KEY_PRIVATE_OLD "p"
// integer(hex)[,integer(hex),...]
#define ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES_OLD "et"
// string-serialized CertificateOfMembership
#define ZT_NETWORKCONFIG_DICT_KEY_CERTIFICATE_OF_MEMBERSHIP_OLD "com"
// node[,node,...]
#define ZT_NETWORKCONFIG_DICT_KEY_ACTIVE_BRIDGES_OLD "ab"
// node;IP/port[,node;IP/port]
#define ZT_NETWORKCONFIG_DICT_KEY_RELAYS_OLD "rl"
/**
* Network configuration received from network controller nodes
@ -214,6 +227,23 @@ public:
return false;
}
/**
* Write this network config to a dictionary for transport
*
* @param d Dictionary
* @param includeLegacy If true, include legacy fields for old node versions
* @return True if dictionary was successfully created, false if e.g. overflow
*/
bool toDictionary(Dictionary &d,bool includeLegacy) const;
/**
* Read this network config from a dictionary
*
* @param d Dictionary
* @return True if dictionary was valid and network config successfully initialized
*/
bool fromDictionary(const Dictionary &d);
/**
* @return True if passive bridging is allowed (experimental)
*/
@ -350,269 +380,6 @@ public:
inline bool operator==(const NetworkConfig &nc) const { return (memcmp(this,&nc,sizeof(NetworkConfig)) == 0); }
inline bool operator!=(const NetworkConfig &nc) const { return (!(*this == nc)); }
template<unsigned int C>
inline void serialize(Buffer<C> &b) const
{
b.append((uint16_t)1); // version
b.append((uint64_t)networkId);
b.append((uint64_t)timestamp);
b.append((uint64_t)revision);
issuedTo.appendTo(b);
b.append((uint64_t)flags);
b.append((uint32_t)multicastLimit);
b.append((uint8_t)type);
unsigned int nl = (unsigned int)strlen(name);
if (nl > 255) nl = 255; // sanity check
b.append((uint8_t)nl);
b.append((const void *)name,nl);
b.append((uint16_t)specialistCount);
for(unsigned int i=0;i<specialistCount;++i)
b.append((uint64_t)specialists[i]);
b.append((uint16_t)routeCount);
for(unsigned int i=0;i<routeCount;++i) {
reinterpret_cast<const InetAddress *>(&(routes[i].target))->serialize(b);
reinterpret_cast<const InetAddress *>(&(routes[i].via))->serialize(b);
b.append((uint16_t)routes[i].flags);
b.append((uint16_t)routes[i].metric);
}
b.append((uint16_t)staticIpCount);
for(unsigned int i=0;i<staticIpCount;++i)
staticIps[i].serialize(b);
b.append((uint16_t)pinnedCount);
for(unsigned int i=0;i<pinnedCount;++i) {
pinned[i].zt.appendTo(b);
pinned[i].phy.serialize(b);
}
b.append((uint16_t)ruleCount);
for(unsigned int i=0;i<ruleCount;++i) {
b.append((uint8_t)rules[i].t);
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
b.append((uint8_t)0);
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
b.append((uint8_t)5);
Address(rules[i].v.zt).appendTo(b);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanPcp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanDei);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.etherType);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
b.append((uint8_t)6);
b.append(rules[i].v.mac,6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
b.append((uint8_t)5);
b.append(&(rules[i].v.ipv4.ip),4);
b.append((uint8_t)rules[i].v.ipv4.mask);
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
b.append((uint8_t)17);
b.append(rules[i].v.ipv6.ip,16);
b.append((uint8_t)rules[i].v.ipv6.mask);
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.ipTos);
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.ipProtocol);
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.port[0]);
b.append((uint16_t)rules[i].v.port[1]);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
b.append((uint8_t)8);
b.append((uint64_t)rules[i].v.characteristics);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.frameSize[0]);
b.append((uint16_t)rules[i].v.frameSize[1]);
break;
case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE:
b.append((uint8_t)8);
b.append((uint32_t)rules[i].v.tcpseq[0]);
b.append((uint32_t)rules[i].v.tcpseq[1]);
break;
}
}
this->com.serialize(b);
b.append((uint16_t)0); // extended bytes, currently 0 since unused
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
memset(this,0,sizeof(NetworkConfig));
unsigned int p = startAt;
if (b.template at<uint16_t>(p) != 1)
throw std::invalid_argument("unrecognized version");
p += 2;
networkId = b.template at<uint64_t>(p); p += 8;
timestamp = b.template at<uint64_t>(p); p += 8;
revision = b.template at<uint64_t>(p); p += 8;
issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
flags = b.template at<uint64_t>(p); p += 8;
multicastLimit = (unsigned int)b.template at<uint32_t>(p); p += 4;
type = (ZT_VirtualNetworkType)b[p++];
unsigned int nl = (unsigned int)b[p++];
memcpy(this->name,b.field(p,nl),std::min(nl,(unsigned int)ZT_MAX_NETWORK_SHORT_NAME_LENGTH));
p += nl;
// _name will always be null terminated since field size is ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1
specialistCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (specialistCount > ZT_MAX_NETWORK_SPECIALISTS)
throw std::invalid_argument("overflow (specialists)");
for(unsigned int i=0;i<specialistCount;++i) {
specialists[i] = b.template at<uint64_t>(p); p += 8;
}
routeCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (routeCount > ZT_MAX_NETWORK_ROUTES)
throw std::invalid_argument("overflow (routes)");
for(unsigned int i=0;i<routeCount;++i) {
p += reinterpret_cast<InetAddress *>(&(routes[i].target))->deserialize(b,p);
p += reinterpret_cast<InetAddress *>(&(routes[i].via))->deserialize(b,p);
routes[i].flags = b.template at<uint16_t>(p); p += 2;
routes[i].metric = b.template at<uint16_t>(p); p += 2;
}
staticIpCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (staticIpCount > ZT_MAX_ZT_ASSIGNED_ADDRESSES)
throw std::invalid_argument("overflow (static IPs)");
for(unsigned int i=0;i<staticIpCount;++i) {
p += staticIps[i].deserialize(b,p);
}
pinnedCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (pinnedCount > ZT_MAX_NETWORK_PINNED)
throw std::invalid_argument("overflow (static addresses)");
for(unsigned int i=0;i<pinnedCount;++i) {
pinned[i].zt.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
p += pinned[i].phy.deserialize(b,p);
}
ruleCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (ruleCount > ZT_MAX_NETWORK_RULES)
throw std::invalid_argument("overflow (rules)");
for(unsigned int i=0;i<ruleCount;++i) {
rules[i].t = (uint8_t)b[p++];
unsigned int rlen = (unsigned int)b[p++];
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: {
Address tmp;
tmp.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
rules[i].v.zt = tmp.toInt();
} break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
rules[i].v.vlanId = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
rules[i].v.vlanPcp = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
rules[i].v.vlanDei = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
rules[i].v.etherType = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
memcpy(rules[i].v.mac,b.field(p,6),6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
memcpy(&(rules[i].v.ipv4.ip),b.field(p,4),4);
rules[i].v.ipv4.mask = (uint8_t)b[p+4];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
memcpy(rules[i].v.ipv6.ip,b.field(p,16),16);
rules[i].v.ipv6.mask = (uint8_t)b[p+16];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
rules[i].v.ipTos = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
rules[i].v.ipProtocol = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
rules[i].v.port[0] = b.template at<uint16_t>(p);
rules[i].v.port[1] = b.template at<uint16_t>(p+2);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
rules[i].v.characteristics = b.template at<uint64_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
rules[i].v.frameSize[0] = b.template at<uint16_t>(p);
rules[i].v.frameSize[1] = b.template at<uint16_t>(p+2);
break;
case ZT_NETWORK_RULE_MATCH_TCP_RELATIVE_SEQUENCE_NUMBER_RANGE:
rules[i].v.tcpseq[0] = b.template at<uint32_t>(p);
rules[i].v.tcpseq[1] = b.template at<uint32_t>(p + 4);
break;
}
p += rlen;
}
p += this->com.deserialize(b,p);
p += b.template at<uint16_t>(p) + 2;
return (p - startAt);
}
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
void fromDictionary(const char *ds,unsigned int dslen);
#endif
/*
inline void dump() const
{
@ -629,6 +396,8 @@ public:
for(unsigned int i=0;i<routeCount;++i) {
printf(" routes[i].target==%s\n",reinterpret_cast<const struct sockaddr_storage *>(&(routes[i].target))->toString().c_str());
printf(" routes[i].via==%s\n",reinterpret_cast<const struct sockaddr_storage *>(&(routes[i].via))->toIpString().c_str());
printf(" routes[i].flags==%.4x\n",(unsigned int)routes[i].flags);
printf(" routes[i].metric==%u\n",(unsigned int)routes[i].metric);
}
printf("staticIpCount==%u\n",staticIpCount);
for(unsigned int i=0;i<staticIpCount;++i)
@ -644,6 +413,32 @@ public:
}
*/
/**
* Add a specialist or mask flags if already present
*
* This masks the existing flags if the specialist is already here or adds
* it otherwise.
*
* @param a Address of specialist
* @param f Flags (OR of specialist role/type flags)
* @return True if successfully masked or added
*/
inline bool addSpecialist(const Address &a,const uint64_t f)
{
const uint64_t aint = a.toInt();
for(unsigned int i=0;i<specialistCount;++i) {
if ((specialists[i] & 0xffffffffffULL) == aint) {
specialists[i] |= f;
return true;
}
}
if (specialistCount >= ZT_MAX_NETWORK_SPECIALISTS) {
specialists[specialistCount++] = f | aint;
return true;
}
return false;
}
/**
* Network ID that this configuration applies to
*/

View File

@ -1,196 +0,0 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ZT_NETWORKCONFIGREQUESTMETADATA_HPP
#define ZT_NETWORKCONFIGREQUESTMETADATA_HPP
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "Constants.hpp"
#include "NetworkConfig.hpp"
#include "Buffer.hpp"
#include "Packet.hpp"
#include "../version.h"
/**
* Maximum length of the auth field (including terminating NULL, since it's a C-style string)
*
* Actual max length not including NULL is this minus one.
*/
#define ZT_NETWORK_CONFIG_REQUEST_METADATA_MAX_AUTH_LENGTH 2048
namespace ZeroTier {
/**
* Network configuration request meta data
*/
class NetworkConfigRequestMetaData
{
public:
/**
* Construct an empty meta-data object with zero/null values
*/
NetworkConfigRequestMetaData()
{
memset(this,0,sizeof(NetworkConfigRequestMetaData));
}
/**
* Initialize with defaults from this node's config and version
*/
inline void initWithDefaults()
{
memset(this,0,sizeof(NetworkConfigRequestMetaData));
vendor = ZT_VENDOR_ZEROTIER;
platform = ZT_PLATFORM_UNSPECIFIED;
architecture = ZT_ARCHITECTURE_UNSPECIFIED;
majorVersion = ZEROTIER_ONE_VERSION_MAJOR;
minorVersion = ZEROTIER_ONE_VERSION_MINOR;
revision = ZEROTIER_ONE_VERSION_REVISION;
protocolVersion = ZT_PROTO_VERSION;
}
/**
* Zero/null everything
*/
inline void clear()
{
memset(this,0,sizeof(NetworkConfigRequestMetaData));
}
template<unsigned int C>
inline void serialize(Buffer<C> &b) const
{
/* Unlike network config we always send the old fields. Newer network
* controllers will detect the presence of the new serialized data by
* detecting extra data after the terminating NULL. But always sending
* these maintains backward compatibility with old controllers. This
* appends a terminating NULL which seperates the old legacy meta-data
* from the new packed binary format that we send after. */
b.appendCString("majv=" ZEROTIER_ONE_VERSION_MAJOR_S_HEX "\nminv=" ZEROTIER_ONE_VERSION_MINOR_S_HEX "\nrevv=" ZEROTIER_ONE_VERSION_REVISION_S_HEX "\n");
b.append((uint16_t)1); // serialization version
b.append((uint64_t)buildId);
b.append((uint64_t)flags);
b.append((uint16_t)vendor);
b.append((uint16_t)platform);
b.append((uint16_t)architecture);
b.append((uint16_t)majorVersion);
b.append((uint16_t)minorVersion);
b.append((uint16_t)revision);
b.append((uint16_t)protocolVersion);
const unsigned int tl = strlen(auth);
b.append((uint16_t)tl);
b.append((const void *)auth,tl);
b.append((uint16_t)0); // extended bytes, currently 0 since unused
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
memset(this,0,sizeof(NetworkConfigRequestMetaData));
unsigned int p = startAt;
// Seek past old style meta-data
while (b[p]) ++p;
++p;
if (b.template at<uint16_t>(p) != 1)
throw std::invalid_argument("unrecognized version");
p += 2;
buildId = b.template at<uint64_t>(p); p += 8;
flags = b.template at<uint64_t>(p); p += 8;
vendor = (ZT_Vendor)b.template at<uint16_t>(p); p += 2;
platform = (ZT_Platform)b.template at<uint16_t>(p); p += 2;
architecture = (ZT_Architecture)b.template at<uint16_t>(p); p += 2;
majorVersion = b.template at<uint16_t>(p); p += 2;
minorVersion = b.template at<uint16_t>(p); p += 2;
revision = b.template at<uint16_t>(p); p += 2;
protocolVersion = b.template at<uint16_t>(p); p += 2;
const unsigned int tl = b.template at<uint16_t>(p); p += 2;
memcpy(auth,b.field(p,tl),std::max(tl,(unsigned int)(ZT_NETWORK_CONFIG_REQUEST_METADATA_MAX_AUTH_LENGTH - 1)));
p += tl;
p += b.template at<uint16_t>(p) + 2;
return (p - startAt);
}
/**
* Authentication data (e.g. bearer=<token>) as a C-style string (always null terminated)
*/
char auth[ZT_NETWORK_CONFIG_REQUEST_METADATA_MAX_AUTH_LENGTH];
/**
* Build ID (currently unused, must be 0)
*/
uint64_t buildId;
/**
* Flags (currently unused, must be 0)
*/
uint64_t flags;
/**
* ZeroTier vendor or 0 for unspecified
*/
ZT_Vendor vendor;
/**
* ZeroTier platform or 0 for unspecified
*/
ZT_Platform platform;
/**
* ZeroTier architecture or 0 for unspecified
*/
ZT_Architecture architecture;
/**
* ZeroTier software major version
*/
unsigned int majorVersion;
/**
* ZeroTier software minor version
*/
unsigned int minorVersion;
/**
* ZeroTier software revision
*/
unsigned int revision;
/**
* ZeroTier protocol version
*/
unsigned int protocolVersion;
};
} // namespace ZeroTier
#endif

View File

@ -22,15 +22,15 @@
#include <stdint.h>
#include "Constants.hpp"
#include "InetAddress.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "NetworkConfigRequestMetaData.hpp"
#include "Buffer.hpp"
namespace ZeroTier {
class RuntimeEnvironment;
class NetworkConfig;
class Dictionary;
class Identity;
class Address;
struct InetAddress;
/**
* Interface for network controller implementations
@ -67,16 +67,16 @@ public:
* @param identity Originating peer ZeroTier identity
* @param nwid 64-bit network ID
* @param metaData Meta-data bundled with request (if any)
* @param result Buffer to receive serialized network configuration data (any existing data in buffer is preserved)
* @return Returns NETCONF_QUERY_OK if result dictionary is valid, or an error code on error
* @param nc NetworkConfig to fill with results
* @return Returns NETCONF_QUERY_OK if result 'nc' is valid, or an error code on error
*/
virtual NetworkController::ResultCode doNetworkConfigRequest(
const InetAddress &fromAddr,
const Identity &signingId,
const Identity &identity,
uint64_t nwid,
const NetworkConfigRequestMetaData &metaData,
Buffer<8194> &result) = 0;
const Dictionary &metaData,
NetworkConfig &nc) = 0;
};
} // namespace ZeroTier

View File

@ -262,6 +262,24 @@ std::vector<std::string> Utils::split(const char *s,const char *const sep,const
return fields;
}
bool Utils::scopy(char *dest,unsigned int len,const char *src)
{
if (!len)
return false; // sanity check
if (!src) {
*dest = (char)0;
return true;
}
char *end = dest + len;
while ((*dest++ = *src++)) {
if (dest == end) {
*(--dest) = (char)0;
return false;
}
}
return true;
}
unsigned int Utils::snprintf(char *buf,unsigned int len,const char *fmt,...)
throw(std::length_error)
{

View File

@ -49,7 +49,6 @@ public:
* @return True if strings are equal
*/
static inline bool secureEq(const void *a,const void *b,unsigned int len)
throw()
{
uint8_t diff = 0;
for(unsigned int i=0;i<len;++i)
@ -235,23 +234,7 @@ public:
* @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
* @return True on success, false on overflow (buffer will still be 0-terminated)
*/
static inline bool scopy(char *dest,unsigned int len,const char *src)
{
if (!len)
return false; // sanity check
if (!src) {
*dest = (char)0;
return true;
}
char *end = dest + len;
while ((*dest++ = *src++)) {
if (dest == end) {
*(--dest) = (char)0;
return false;
}
}
return true;
}
static bool scopy(char *dest,unsigned int len,const char *src);
/**
* Variant of snprintf that is portable and throws an exception
@ -275,7 +258,6 @@ public:
* @return Number of bits set in this integer (0-32)
*/
static inline uint32_t countBits(uint32_t v)
throw()
{
v = v - ((v >> 1) & (uint32_t)0x55555555);
v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333);
@ -290,7 +272,6 @@ public:
* @return True if memory is all zero
*/
static inline bool isZero(const void *p,unsigned int len)
throw()
{
for(unsigned int i=0;i<len;++i) {
if (((const unsigned char *)p)[i])

View File

@ -766,23 +766,45 @@ static int testOther()
std::cout << "[other] Testing Dictionary... "; std::cout.flush();
for(int k=0;k<1000;++k) {
Dictionary a,b;
int nk = rand() % 32;
for(int q=0;q<nk;++q) {
std::string k,v;
int kl = (rand() % 512);
int vl = (rand() % 512);
for(int i=0;i<kl;++i)
k.push_back((char)rand());
for(int i=0;i<vl;++i)
v.push_back((char)rand());
a[k] = v;
Dictionary td;
char key[128][16];
char value[128][128];
for(unsigned int q=0;q<128;++q) {
Utils::snprintf(key[q],16,"%.8lx",(unsigned long)rand());
int r = rand() % 128;
for(int x=0;x<r;++x)
value[q][x] = ("0123456789\0\t\r\n= ")[rand() % 16];
value[q][r] = (char)0;
test.set(key[q],value[q]);
}
std::string aser = a.toString();
b.fromString(aser);
if (a != b) {
std::cout << "FAIL!" << std::endl;
return -1;
for(unsigned int q=0;q<1024;++q) {
int r = rand() % 128;
char tmp[128];
if (test.get(key[r],tmp,sizeof(tmp)) >= 0) {
if (strcmp(value[r],tmp)) {
std::cout << "FAILED (invalid value)!" << std::endl;
return -1;
}
} else {
std::cout << "FAILED (can't find key)!" << std::endl;
return -1;
}
}
}
int foo = 0;
volatile int *volatile bar = &foo; // force compiler not to optimize out test.get() below
for(int k=0;k<100000;++k) {
int r = rand() % 16384;
unsigned char tmp[16384];
for(int q=0;q<r;++q)
tmp[q] = (unsigned char)((rand() % 254) + 1);
tmp[r] = 0;
Dictionary test(tmp);
for(unsigned int q=0;q<1024;++q) {
char tmp[16];
Utils::snprintf(tmp,16,"%.8lx",(unsigned long)rand());
char value[128];
*bar = test.get(tmp,value,sizeof(value));
}
}
std::cout << "PASS" << std::endl;

View File

@ -23,18 +23,15 @@
* Major version
*/
#define ZEROTIER_ONE_VERSION_MAJOR 1
#define ZEROTIER_ONE_VERSION_MAJOR_S_HEX "1"
/**
* Minor version
*/
#define ZEROTIER_ONE_VERSION_MINOR 1
#define ZEROTIER_ONE_VERSION_MINOR_S_HEX "1"
/**
* Revision
*/
#define ZEROTIER_ONE_VERSION_REVISION 5
#define ZEROTIER_ONE_VERSION_REVISION_S_HEX "5"
#endif