Bunch more refactoring for an even more compact NetworkConfig representation, especially rules.

This commit is contained in:
Adam Ierymenko 2016-04-26 17:11:25 -07:00
parent 25a5275921
commit b9dba97fdb
7 changed files with 524 additions and 248 deletions

View File

@ -84,12 +84,12 @@ extern "C" {
/** /**
* Maximum number of local routes on a network * Maximum number of local routes on a network
*/ */
#define ZT_MAX_NETWORK_LOCAL_ROUTES 32 #define ZT_MAX_NETWORK_LOCAL_ROUTES 16
/** /**
* Maximum number of statically assigned IP addresses per network endpoint using ZT address management (not DHCP) * Maximum number of statically assigned IP addresses per network endpoint using ZT address management (not DHCP)
*/ */
#define ZT_MAX_ZT_ASSIGNED_ADDRESSES 32 #define ZT_MAX_ZT_ASSIGNED_ADDRESSES 16
/** /**
* Maximum number of default routes / gateways on a network (ZT managed) * Maximum number of default routes / gateways on a network (ZT managed)
@ -97,14 +97,14 @@ extern "C" {
#define ZT_MAX_NETWORK_GATEWAYS 8 #define ZT_MAX_NETWORK_GATEWAYS 8
/** /**
* Maximum number of active bridges on a network * Maximum number of "specialists" on a network -- bridges, relays, etc.
*/ */
#define ZT_MAX_NETWORK_ACTIVE_BRIDGES 256 #define ZT_MAX_NETWORK_SPECIALISTS 256
/** /**
* Maximum number of static devices on a network * Maximum number of static physical to ZeroTier address mappings (typically relays, etc.)
*/ */
#define ZT_MAX_NETWORK_STATIC_DEVICES 32 #define ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES 16
/** /**
* Maximum number of rule table entries per network (can be increased) * Maximum number of rule table entries per network (can be increased)
@ -392,30 +392,6 @@ enum ZT_VirtualNetworkStatus
ZT_NETWORK_STATUS_CLIENT_TOO_OLD = 5 ZT_NETWORK_STATUS_CLIENT_TOO_OLD = 5
}; };
/**
* A network-scope defined static device entry
*
* Statically defined devices can have pre-specified endpoint addresses
* and can serve as things like network-specific relays.
*/
typedef struct
{
/**
* ZeroTier address (least significant 40 bits, other bits ignored)
*/
uint64_t address;
/**
* Physical address or zero ss_family if unspecified (two entries to support both V4 and V6)
*/
struct sockaddr_storage physical[2];
/**
* Flags indicating roles (if any) and restrictions
*/
unsigned int flags;
} ZT_VirtualNetworkStaticDevice;
/** /**
* Virtual network type codes * Virtual network type codes
*/ */
@ -433,9 +409,13 @@ enum ZT_VirtualNetworkType
}; };
/** /**
* An action in a network rule * The type of a virtual network rules table entry
*
* These must range from 0 to 127 (0x7f).
*
* Each rule is composed of one or more MATCHes followed by an ACTION.
*/ */
enum ZT_VirtualNetworkRuleAction enum ZT_VirtualNetworkRuleType
{ {
/** /**
* Drop frame * Drop frame
@ -455,108 +435,97 @@ enum ZT_VirtualNetworkRuleAction
/** /**
* Redirect frame to ZeroTier device in datum.zt[1] regardless of Ethernet addressing or anything else * Redirect frame to ZeroTier device in datum.zt[1] regardless of Ethernet addressing or anything else
*/ */
ZT_NETWORK_RULE_ACTION_REDIRECT = 3 ZT_NETWORK_RULE_ACTION_REDIRECT = 3,
};
/**
* Datum type (variant) that a rule matches
*/
enum ZT_VirtualNetworkRuleMatches
{
/**
* Matches all packets (no criteria)
*/
ZT_NETWORK_RULE_MATCHES_ALL = 0,
/** /**
* Source ZeroTier address -- analogous to an Ethernet port ID on a switch * Source ZeroTier address -- analogous to an Ethernet port ID on a switch
*/ */
ZT_NETWORK_RULE_MATCHES_SOURCE_ZEROTIER_ADDRESS = 1, ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS = 32,
/** /**
* Destination ZeroTier address -- analogous to an Ethernet port ID on a switch * Destination ZeroTier address -- analogous to an Ethernet port ID on a switch
*/ */
ZT_NETWORK_RULE_MATCHES_DEST_ZEROTIER_ADDRESS = 2, ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS = 33,
/** /**
* Ethernet VLAN ID * Ethernet VLAN ID
*/ */
ZT_NETWORK_RULE_MATCHES_VLAN_ID = 3, ZT_NETWORK_RULE_MATCH_VLAN_ID = 34,
/** /**
* Ethernet VLAN PCP * Ethernet VLAN PCP
*/ */
ZT_NETWORK_RULE_MATCHES_VLAN_PCP = 4, ZT_NETWORK_RULE_MATCH_VLAN_PCP = 35,
/** /**
* Ethernet VLAN DEI * Ethernet VLAN DEI
*/ */
ZT_NETWORK_RULE_MATCHES_VLAN_DEI = 5, ZT_NETWORK_RULE_MATCH_VLAN_DEI = 36,
/** /**
* Ethernet frame type * Ethernet frame type
*/ */
ZT_NETWORK_RULE_MATCHES_ETHERTYPE = 6, ZT_NETWORK_RULE_MATCH_ETHERTYPE = 37,
/** /**
* Source Ethernet MAC address * Source Ethernet MAC address
*/ */
ZT_NETWORK_RULE_MATCHES_MAC_SOURCE = 7, ZT_NETWORK_RULE_MATCH_MAC_SOURCE = 38,
/** /**
* Destination Ethernet MAC address * Destination Ethernet MAC address
*/ */
ZT_NETWORK_RULE_MATCHES_MAC_DEST = 8, ZT_NETWORK_RULE_MATCH_MAC_DEST = 39,
/** /**
* Source IPv4 address * Source IPv4 address
*/ */
ZT_NETWORK_RULE_MATCHES_IPV4_SOURCE = 9, ZT_NETWORK_RULE_MATCH_IPV4_SOURCE = 40,
/** /**
* Destination IPv4 address * Destination IPv4 address
*/ */
ZT_NETWORK_RULE_MATCHES_IPV4_DEST = 10, ZT_NETWORK_RULE_MATCH_IPV4_DEST = 41,
/** /**
* Source IPv6 address * Source IPv6 address
*/ */
ZT_NETWORK_RULE_MATCHES_IPV6_SOURCE = 11, ZT_NETWORK_RULE_MATCH_IPV6_SOURCE = 42,
/** /**
* Destination IPv6 address * Destination IPv6 address
*/ */
ZT_NETWORK_RULE_MATCHES_IPV6_DEST = 12, ZT_NETWORK_RULE_MATCH_IPV6_DEST = 43,
/** /**
* IP TOS (type of service) * IP TOS (type of service)
*/ */
ZT_NETWORK_RULE_MATCHES_IP_TOS = 13, ZT_NETWORK_RULE_MATCH_IP_TOS = 44,
/** /**
* IP protocol * IP protocol
*/ */
ZT_NETWORK_RULE_MATCHES_IP_PROTOCOL = 14, ZT_NETWORK_RULE_MATCH_IP_PROTOCOL = 45,
/** /**
* IP source port range (start-end, inclusive) * IP source port range (start-end, inclusive)
*/ */
ZT_NETWORK_RULE_MATCHES_IP_SOURCE_PORT_RANGE = 15, ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE = 46,
/** /**
* IP destination port range (start-end, inclusive) * IP destination port range (start-end, inclusive)
*/ */
ZT_NETWORK_RULE_MATCHES_IP_DEST_PORT_RANGE = 16, ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE = 47,
/** /**
* Packet characteristic flags * Packet boolean characteristics
*/ */
ZT_NETWORK_RULE_MATCHES_FLAGS = 17, ZT_NETWORK_RULE_MATCH_CHARACTERISTICS = 48,
/** /**
* Frame size range (start-end, inclusive) * Frame size range (start-end, inclusive)
*/ */
ZT_NETWORK_RULE_MATCHES_FRAME_SIZE_RANGE = 18 ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE = 49
}; };
/** /**
@ -565,53 +534,48 @@ enum ZT_VirtualNetworkRuleMatches
* NOTE: Currently (1.1.x) only etherType is supported! Other things will * NOTE: Currently (1.1.x) only etherType is supported! Other things will
* have no effect until the rules engine is fully implemented. * have no effect until the rules engine is fully implemented.
* *
* Multiple entries in the table can have the same ruleNo. This indicates * Rules are stored in a table in which one or more match entries is followed
* a row with multiple matching criteria. * by an action. If more than one match precedes an action
*
* This gives the table a much more space-efficient compressed representation,
* allowing far more rules to be efficiently sent in small netconf structures.
*/ */
typedef struct typedef struct
{ {
/** /**
* Rule number and sort order * Least significant 7 bits: ZT_VirtualNetworkRuleType, most significant 1 bit is NOT bit
* *
* Multiple entries in the table can have the same ruleNo. This causes them * If the NOT bit is set, then matches will be interpreted as "does not
* to be matched as an AND together, e.g. both IP source and IP source port. * match." The NOT bit has no effect on actions.
*/
uint16_t ruleNo;
/**
* Field that this rules table entry matches (enum ZT_VirtualNetworkRuleMatches)
*/
uint8_t matches;
/**
* Action if rule matches (enum ZT_VirtualNetworkRuleAction)
*/
uint8_t action;
/**
* Union containing the datum for this rule
* *
* The rule entry functions like a variant type, with the field of datum * Use "& 0x7f" to get the enum and "& 0x80" to get the NOT flag.
* that is relevant/valid determined by the 'matches' enum. *
* This is essentially a variant selector determining which field of 'v' is
* used and its meaning.
*/
uint8_t t;
/**
* Union containing the value of this rule -- which field is used depends on 't'
*/ */
union { union {
/** /**
* IPv6 address in big-endian / network byte order * IPv6 address in big-endian / network byte order and netmask bits
*/ */
uint8_t ipv6[16]; struct {
uint8_t ip[16];
/** uint8_t mask;
* Flags (128 possible) } ipv6;
*/
uint8_t flags[16];
/** /**
* IPv4 address in big-endian / network byte order * IPv4 address in big-endian / network byte order
*/ */
uint32_t ipv4; struct {
uint32_t ip;
uint8_t mask;
} ipv4;
/**
* Packet characteristic flags being matched
*/
uint64_t characteristics;
/** /**
* IP port range -- start-end inclusive -- host byte order * IP port range -- start-end inclusive -- host byte order
@ -619,12 +583,9 @@ typedef struct
uint16_t port[2]; uint16_t port[2];
/** /**
* Two possible 40-bit ZeroTier addresses in host byte order (least significant 40 bits of uint64_t) * 40-bit ZeroTier address (in least significant bits, host byte order)
*
* The first of these ([0]) is used in most cases e.g. matching ZT source
* address. The second is used as the observer for the TEE action.
*/ */
uint64_t zt[2]; uint64_t zt;
/** /**
* 48-bit Ethernet MAC address in big-endian order * 48-bit Ethernet MAC address in big-endian order
@ -665,7 +626,7 @@ typedef struct
* Ethernet packet size in host byte order (start-end, inclusive) * Ethernet packet size in host byte order (start-end, inclusive)
*/ */
uint16_t frameSize[2]; uint16_t frameSize[2];
} datum; } v;
} ZT_VirtualNetworkRule; } ZT_VirtualNetworkRule;
/** /**

View File

@ -216,6 +216,13 @@ public:
*/ */
inline unsigned char operator[](unsigned int i) const throw() { return (unsigned char)((_a >> (32 - (i * 8))) & 0xff); } inline unsigned char operator[](unsigned int i) const throw() { return (unsigned char)((_a >> (32 - (i * 8))) & 0xff); }
inline bool operator==(const uint64_t &a) const throw() { return (_a == (a & 0xffffffffffULL)); }
inline bool operator!=(const uint64_t &a) const throw() { return (_a != (a & 0xffffffffffULL)); }
inline bool operator>(const uint64_t &a) const throw() { return (_a > (a & 0xffffffffffULL)); }
inline bool operator<(const uint64_t &a) const throw() { return (_a < (a & 0xffffffffffULL)); }
inline bool operator>=(const uint64_t &a) const throw() { return (_a >= (a & 0xffffffffffULL)); }
inline bool operator<=(const uint64_t &a) const throw() { return (_a <= (a & 0xffffffffffULL)); }
inline bool operator==(const Address &a) const throw() { return (_a == a._a); } inline bool operator==(const Address &a) const throw() { return (_a == a._a); }
inline bool operator!=(const Address &a) const throw() { return (_a != a._a); } inline bool operator!=(const Address &a) const throw() { return (_a != a._a); }
inline bool operator>(const Address &a) const throw() { return (_a > a._a); } inline bool operator>(const Address &a) const throw() { return (_a > a._a); }

View File

@ -23,60 +23,6 @@
namespace ZeroTier { namespace ZeroTier {
namespace {
struct ZT_VirtualNetworkStaticDevice_SortByAddress
{
inline bool operator()(const ZT_VirtualNetworkStaticDevice &a,const ZT_VirtualNetworkStaticDevice &b)
{
return (a.address < b.address);
}
};
struct ZT_VirtualNetworkRule_SortByRuleNo
{
inline bool operator()(const ZT_VirtualNetworkRule &a,const ZT_VirtualNetworkRule &b)
{
return (a.ruleNo < b.ruleNo);
}
};
} // anonymous namespace
NetworkConfig NetworkConfig::createTestNetworkConfig(const Address &self)
{
NetworkConfig nc;
nc._nwid = ZT_TEST_NETWORK_ID;
nc._timestamp = 1;
nc._revision = 1;
nc._issuedTo = self;
nc._multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT;
nc._flags = ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST;
nc._type = ZT_NETWORK_TYPE_PUBLIC;
nc._rules[nc._ruleCount].ruleNo = 1;
nc._rules[nc._ruleCount].matches = (uint8_t)ZT_NETWORK_RULE_MATCHES_ALL;
nc._rules[nc._ruleCount].action = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
nc._ruleCount = 1;
Utils::snprintf(nc._name,sizeof(nc._name),"ZT_TEST_NETWORK");
// Make up a V4 IP from 'self' in the 10.0.0.0/8 range -- no
// guarantee of uniqueness but collisions are unlikely.
uint32_t ip = (uint32_t)((self.toInt() & 0x00ffffff) | 0x0a000000); // 10.x.x.x
if ((ip & 0x000000ff) == 0x000000ff) ip ^= 0x00000001; // but not ending in .255
if ((ip & 0x000000ff) == 0x00000000) ip ^= 0x00000001; // or .0
nc._staticIps[0] = InetAddress(Utils::hton(ip),8);
// Assign an RFC4193-compliant IPv6 address -- will never collide
nc._staticIps[1] = InetAddress::makeIpv6rfc4193(ZT_TEST_NETWORK_ID,self.toInt());
nc._staticIpCount = 2;
return nc;
}
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
void NetworkConfig::fromDictionary(const char *ds,unsigned int dslen) void NetworkConfig::fromDictionary(const char *ds,unsigned int dslen)
@ -116,12 +62,19 @@ void NetworkConfig::fromDictionary(const char *ds,unsigned int dslen)
if (a->length() == ZT_ADDRESS_LENGTH_HEX) { // ignore empty or garbage fields if (a->length() == ZT_ADDRESS_LENGTH_HEX) { // ignore empty or garbage fields
Address tmp(*a); Address tmp(*a);
if (!tmp.isReserved()) { if (!tmp.isReserved()) {
if ((_activeBridgeCount < ZT_MAX_NETWORK_ACTIVE_BRIDGES)&&(std::find(&(_activeBridges[0]),&(_activeBridges[_activeBridgeCount]),tmp) == &(_activeBridges[_activeBridgeCount]))) uint64_t specialist = tmp.toInt();
_activeBridges[_activeBridgeCount++] = tmp; for(unsigned int i=0;i<_specialistCount;++i) {
if ((_specialists[i] & 0xffffffffffULL) == specialist) {
_specialists[i] |= ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE;
specialist = 0;
break;
}
}
if ((specialist)&&(_specialistCount < ZT_MAX_NETWORK_SPECIALISTS))
_specialists[_specialistCount++] = specialist | ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE;
} }
} }
} }
std::sort(&(_activeBridges[0]),&(_activeBridges[_activeBridgeCount]));
std::string ipAddrs(d.get(ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC,std::string())); std::string ipAddrs(d.get(ZT_NETWORKCONFIG_DICT_KEY_IPV4_STATIC,std::string()));
{ {
@ -169,49 +122,55 @@ void NetworkConfig::fromDictionary(const char *ds,unsigned int dslen)
std::vector<std::string> relaysSplit(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_RELAYS,"").c_str(),",","","")); std::vector<std::string> relaysSplit(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_RELAYS,"").c_str(),",","",""));
for(std::vector<std::string>::const_iterator r(relaysSplit.begin());r!=relaysSplit.end();++r) { for(std::vector<std::string>::const_iterator r(relaysSplit.begin());r!=relaysSplit.end();++r) {
if (r->length() >= ZT_ADDRESS_LENGTH_HEX) { if (r->length() >= ZT_ADDRESS_LENGTH_HEX) {
Address addr(r->substr(0,ZT_ADDRESS_LENGTH_HEX).c_str()); Address zt(r->substr(0,ZT_ADDRESS_LENGTH_HEX).c_str());
InetAddress phys[2]; InetAddress phy[2];
unsigned int physCount = 0; unsigned int phyCount = 0;
const std::size_t semi(r->find(';')); const std::size_t semi(r->find(';'));
if ((semi > ZT_ADDRESS_LENGTH_HEX)&&(semi < (r->length() - 2))) { if ((semi > ZT_ADDRESS_LENGTH_HEX)&&(semi < (r->length() - 2))) {
std::vector<std::string> phySplit(Utils::split(r->substr(semi+1).c_str(),",","","")); std::vector<std::string> phySplit(Utils::split(r->substr(semi+1).c_str(),",","",""));
for(std::vector<std::string>::const_iterator p(phySplit.begin());((p!=phySplit.end())&&(physCount < 2));++p) { for(std::vector<std::string>::const_iterator p(phySplit.begin());((p!=phySplit.end())&&(phyCount < 2));++p) {
phys[physCount] = InetAddress(*p); phy[phyCount] = InetAddress(*p);
if (phys[physCount]) if (phy[phyCount])
++physCount; ++phyCount;
else phys[physCount].zero(); else phy[phyCount].zero();
} }
} }
unsigned int p = _staticCount; uint64_t specialist = zt.toInt();
for(unsigned int i=0;i<_staticCount;++i) { for(unsigned int i=0;i<_specialistCount;++i) {
if (_static[p].address == addr.toInt()) { if ((_specialists[i] & 0xffffffffffULL) == specialist) {
p = i; _specialists[i] |= ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY;
specialist = 0;
break; break;
} }
} }
if ((p == _staticCount)&&(_staticCount < ZT_MAX_NETWORK_STATIC_DEVICES))
if ((specialist)&&(_specialistCount < ZT_MAX_NETWORK_SPECIALISTS))
_specialists[_specialistCount++] = specialist | ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY;
if ((phy[0])&&(_staticCount < ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES)) {
_static[_staticCount].zt = zt;
_static[_staticCount].phy = phy[0];
++_staticCount;
}
if ((phy[1])&&(_staticCount < ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES)) {
_static[_staticCount].zt = zt;
_static[_staticCount].phy = phy[0];
++_staticCount; ++_staticCount;
if (p < ZT_MAX_NETWORK_STATIC_DEVICES) {
_static[p].address = Address(r->c_str());
for(unsigned int i=0;i<physCount;++i)
_static[p].physical[i] = phys[i];
_static[p].flags |= ZT_NETWORK_STATIC_DEVICE_IS_RELAY;
} }
} }
} }
std::sort(&(_static[0]),&(_static[_staticCount]),ZT_VirtualNetworkStaticDevice_SortByAddress());
std::vector<std::string> ets(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES,"").c_str(),",","","")); std::vector<std::string> ets(Utils::split(d.get(ZT_NETWORKCONFIG_DICT_KEY_ALLOWED_ETHERNET_TYPES,"").c_str(),",","",""));
int rno = 0;
for(std::vector<std::string>::const_iterator et(ets.begin());et!=ets.end();++et) { for(std::vector<std::string>::const_iterator et(ets.begin());et!=ets.end();++et) {
unsigned int et2 = Utils::hexStrToUInt(et->c_str()) & 0xffff; unsigned int et2 = Utils::hexStrToUInt(et->c_str()) & 0xffff;
if (_ruleCount < ZT_MAX_NETWORK_RULES) { if ((_ruleCount + 1) < ZT_MAX_NETWORK_RULES) {
memset(&(_rules[_ruleCount]),0,sizeof(ZT_VirtualNetworkRule)); if (et2) {
_rules[_ruleCount].ruleNo = rno; rno += 10; _rules[_ruleCount].t = ZT_NETWORK_RULE_MATCH_ETHERTYPE;
_rules[_ruleCount].matches = (uint8_t)((et2 == 0) ? ZT_NETWORK_RULE_MATCHES_ALL : ZT_NETWORK_RULE_MATCHES_ETHERTYPE); _rules[_ruleCount].v.etherType = (uint16_t)et2;
_rules[_ruleCount].action = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; ++_ruleCount;
_rules[_ruleCount].datum.etherType = (uint16_t)et2; }
_rules[_ruleCount].t = ZT_NETWORK_RULE_ACTION_ACCEPT;
++_ruleCount; ++_ruleCount;
} }
} }

View File

@ -23,10 +23,8 @@
#include <string.h> #include <string.h>
#include <stdlib.h> #include <stdlib.h>
#include <map>
#include <vector> #include <vector>
#include <stdexcept> #include <stdexcept>
#include <algorithm>
#include "../include/ZeroTierOne.h" #include "../include/ZeroTierOne.h"
@ -59,6 +57,21 @@
*/ */
#define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0002 #define ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST 0x0002
/**
* Device is a network preferred relay
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY 0x0000010000000000ULL
/**
* Device is an active bridge
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE 0x0000020000000000ULL
/**
* This device is allowed to send packets from any Ethernet MAC, including ZeroTier-reserved ones
*/
#define ZT_NETWORKCONFIG_SPECIALIST_TYPE_IMPOSTOR 0x0000040000000000ULL
namespace ZeroTier { namespace ZeroTier {
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF #ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
@ -119,6 +132,15 @@ namespace ZeroTier {
class NetworkConfig class NetworkConfig
{ {
public: public:
/**
* Network preferred relay with optional physical endpoint addresses
*/
struct Relay
{
Address address;
InetAddress phy4,phy6;
};
/** /**
* Create an instance of a NetworkConfig for the test network ID * Create an instance of a NetworkConfig for the test network ID
* *
@ -128,7 +150,37 @@ public:
* @param self This node's ZT address * @param self This node's ZT address
* @return Configuration for test network ID * @return Configuration for test network ID
*/ */
static NetworkConfig createTestNetworkConfig(const Address &self); static inline NetworkConfig createTestNetworkConfig(const Address &self)
{
NetworkConfig nc;
nc._nwid = ZT_TEST_NETWORK_ID;
nc._timestamp = 1;
nc._revision = 1;
nc._issuedTo = self;
nc._multicastLimit = ZT_MULTICAST_DEFAULT_LIMIT;
nc._flags = ZT_NETWORKCONFIG_FLAG_ENABLE_BROADCAST;
nc._type = ZT_NETWORK_TYPE_PUBLIC;
nc._rules[nc._ruleCount].t = ZT_NETWORK_RULE_ACTION_ACCEPT;
nc._ruleCount = 1;
Utils::snprintf(nc._name,sizeof(nc._name),"ZT_TEST_NETWORK");
// Make up a V4 IP from 'self' in the 10.0.0.0/8 range -- no
// guarantee of uniqueness but collisions are unlikely.
uint32_t ip = (uint32_t)((self.toInt() & 0x00ffffff) | 0x0a000000); // 10.x.x.x
if ((ip & 0x000000ff) == 0x000000ff) ip ^= 0x00000001; // but not ending in .255
if ((ip & 0x000000ff) == 0x00000000) ip ^= 0x00000001; // or .0
nc._staticIps[0] = InetAddress(Utils::hton(ip),8);
// Assign an RFC4193-compliant IPv6 address -- will never collide
nc._staticIps[1] = InetAddress::makeIpv6rfc4193(ZT_TEST_NETWORK_ID,self.toInt());
nc._staticIpCount = 2;
return nc;
}
NetworkConfig() NetworkConfig()
{ {
@ -152,28 +204,20 @@ public:
*/ */
inline bool permitsEtherType(unsigned int etherType) const inline bool permitsEtherType(unsigned int etherType) const
{ {
unsigned int et = 0;
for(unsigned int i=0;i<_ruleCount;++i) { for(unsigned int i=0;i<_ruleCount;++i) {
if ((ZT_VirtualNetworkRuleMatches)_rules[i].matches == ZT_NETWORK_RULE_MATCHES_ETHERTYPE) { ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f);
if (_rules[i].datum.etherType == etherType) if (rt == ZT_NETWORK_RULE_MATCH_ETHERTYPE) {
return ((ZT_VirtualNetworkRuleAction)_rules[i].action == ZT_NETWORK_RULE_ACTION_ACCEPT); et = _rules[i].v.etherType;
} else if ((ZT_VirtualNetworkRuleMatches)_rules[i].matches == ZT_NETWORK_RULE_MATCHES_ALL) { } else if (rt == ZT_NETWORK_RULE_ACTION_ACCEPT) {
return ((ZT_VirtualNetworkRuleAction)_rules[i].action == ZT_NETWORK_RULE_ACTION_ACCEPT); if ((!et)||(et == etherType))
return true;
et = 0;
} }
} }
return false; return false;
} }
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
/**
* Parse an old-style dictionary and fill in structure
*
* @param ds String-serialized dictionary
* @param dslen Length of dictionary in bytes
* @throws std::invalid_argument Invalid dictionary
*/
void fromDictionary(const char *ds,unsigned int dslen);
#endif
/** /**
* @return Network ID that this config applies to * @return Network ID that this config applies to
*/ */
@ -273,34 +317,48 @@ public:
inline std::vector<Address> activeBridges() const inline std::vector<Address> activeBridges() const
{ {
std::vector<Address> r; std::vector<Address> r;
for(unsigned int i=0;i<_activeBridgeCount;++i) for(unsigned int i=0;i<_specialistCount;++i) {
r.push_back(_activeBridges[i]); if ((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
r.push_back(Address(_specialists[i]));
}
return r; return r;
} }
/**
* Look up a static physical address for a given ZeroTier address
*
* @param zt ZeroTier address
* @param af Address family (e.g. AF_INET) or 0 for the first we find of any type
* @return Physical address, if any
*/
inline InetAddress staticPhysicalAddress(const Address &zt,unsigned int af) const
{
for(unsigned int i=0;i<_staticCount;++i) {
if (_static[i].zt == zt) {
if ((af == 0)||((unsigned int)_static[i].phy.ss_family == af))
return _static[i].phy;
}
}
return InetAddress();
}
/** /**
* @return Network-preferred relays for this network (if none, only roots will be used) * @return Network-preferred relays for this network (if none, only roots will be used)
*/ */
inline std::vector<ZT_VirtualNetworkStaticDevice> relays() const inline std::vector<Relay> relays() const
{ {
std::vector<ZT_VirtualNetworkStaticDevice> r; std::vector<Relay> r;
for(unsigned int i=0;i<_staticCount;++i) { for(unsigned int i=0;i<_specialistCount;++i) {
if ((_static[i].flags & ZT_NETWORK_STATIC_DEVICE_IS_RELAY) != 0) if ((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) {
r.push_back(_static[i]); r.push_back(Relay());
r.back().address = _specialists[i];
r.back().phy4 = staticPhysicalAddress(r.back().address,AF_INET);
r.back().phy6 = staticPhysicalAddress(r.back().address,AF_INET6);
}
} }
return r; return r;
} }
/**
* @return Static device at index [i] (warning: no bounds checking! see staticDeviceCount() for count)
*/
const ZT_VirtualNetworkStaticDevice &staticDevice(unsigned int i) const { return _static[i]; }
/**
* @return Number of static devices defined in this network config
*/
unsigned int staticDeviceCount() const { return _staticCount; }
/** /**
* @param fromPeer Peer attempting to bridge other Ethernet peers onto network * @param fromPeer Peer attempting to bridge other Ethernet peers onto network
* @return True if this network allows bridging * @return True if this network allows bridging
@ -309,8 +367,38 @@ public:
{ {
if ((_flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0) if ((_flags & ZT_NETWORKCONFIG_FLAG_ALLOW_PASSIVE_BRIDGING) != 0)
return true; return true;
for(unsigned int i=0;i<_activeBridgeCount;++i) { for(unsigned int i=0;i<_specialistCount;++i) {
if (_activeBridges[i] == fromPeer) if ((fromPeer == _specialists[i])&&((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0))
return true;
}
return false;
}
/**
* Iterate through relays efficiently
*
* @param ptr Value-result parameter -- start by initializing with zero, then call until return is null
* @return Address of relay or NULL if no more
*/
Address nextRelay(unsigned int &ptr) const
{
while (ptr < _specialistCount) {
if ((_specialists[ptr] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0) {
return Address(_specialists[ptr]);
}
++ptr;
}
return Address();
}
/**
* @param zt ZeroTier address
* @return True if this address is a relay
*/
bool isRelay(const Address &zt) const
{
for(unsigned int i=0;i<_specialistCount;++i) {
if ((zt == _specialists[i])&&((_specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_NETWORK_PREFERRED_RELAY) != 0))
return true; return true;
} }
return false; return false;
@ -324,6 +412,263 @@ public:
inline bool operator==(const NetworkConfig &nc) const { return (memcmp(this,&nc,sizeof(NetworkConfig)) == 0); } inline bool operator==(const NetworkConfig &nc) const { return (memcmp(this,&nc,sizeof(NetworkConfig)) == 0); }
inline bool operator!=(const NetworkConfig &nc) const { return (!(*this == nc)); } inline bool operator!=(const NetworkConfig &nc) const { return (!(*this == nc)); }
template<unsigned int C>
inline void serialize(Buffer<C> &b) const
{
b.append((uint8_t)ZT_NETWORKCONFIG_V2_MARKER_BYTE);
b.append((uint16_t)0); // version
b.append((uint64_t)_nwid);
b.append((uint64_t)_timestamp);
b.append((uint64_t)_revision);
_issuedTo.appendTo(b);
b.append((uint32_t)_multicastLimit);
b.append((uint32_t)_flags);
b.append((uint8_t)_type);
unsigned int nl = (unsigned int)strlen(_name);
if (nl > 255) nl = 255; // sanity check
b.append((uint8_t)nl);
b.append((const void *)_name,nl);
b.append((uint16_t)_specialistCount);
for(unsigned int i=0;i<_specialistCount;++i)
b.append((uint64_t)_specialists[i]);
b.append((uint16_t)_localRouteCount);
for(unsigned int i=0;i<_localRouteCount;++i)
_localRoutes[i].serialize(b);
b.append((uint16_t)_staticIpCount);
for(unsigned int i=0;i<_staticIpCount;++i)
_staticIps[i].serialize(b);
b.append((uint16_t)_gatewayCount);
for(unsigned int i=0;i<_gatewayCount;++i)
_gateways[i].serialize(b);
b.append((uint16_t)_staticCount);
for(unsigned int i=0;i<_staticCount;++i) {
_static[i].zt.appendTo(b);
_static[i].phy.serialize(b);
}
b.append((uint16_t)_ruleCount);
for(unsigned int i=0;i<_ruleCount;++i) {
b.append((uint8_t)_rules[i].t);
switch((ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
b.append((uint8_t)0);
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
b.append((uint8_t)5);
Address(_rules[i].v.zt).appendTo(b);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
b.append((uint8_t)2);
b.append((uint16_t)_rules[i].v.vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
b.append((uint8_t)1);
b.append((uint8_t)_rules[i].v.vlanPcp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
b.append((uint8_t)1);
b.append((uint8_t)_rules[i].v.vlanDei);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
b.append((uint8_t)2);
b.append((uint16_t)_rules[i].v.etherType);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
b.append((uint8_t)6);
b.append(_rules[i].v.mac,6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
b.append((uint8_t)5);
b.append(&(_rules[i].v.ipv4.ip),4);
b.append((uint8_t)_rules[i].v.ipv4.mask);
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
b.append((uint8_t)17);
b.append(_rules[i].v.ipv6.ip,16);
b.append((uint8_t)_rules[i].v.ipv6.mask);
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
b.append((uint8_t)1);
b.append((uint8_t)_rules[i].v.ipTos);
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
b.append((uint8_t)1);
b.append((uint8_t)_rules[i].v.ipProtocol);
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)_rules[i].v.port[0]);
b.append((uint16_t)_rules[i].v.port[1]);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
b.append((uint8_t)8);
b.append((uint64_t)_rules[i].v.characteristics);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)_rules[i].v.frameSize[0]);
b.append((uint16_t)_rules[i].v.frameSize[1]);
break;
}
}
b.append((uint16_t)0); // extended bytes, currently 0 since unused
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
memset(this,0,sizeof(NetworkConfig));
unsigned int p = startAt;
if (b[p++] != ZT_NETWORKCONFIG_V2_MARKER_BYTE)
throw std::invalid_argument("use fromDictionary() for old style netconf deserialization");
if (b.template at<uint16_t>(p) != 0)
throw std::invalid_argument("unrecognized version");
p += 2;
_nwid = b.template at<uint64_t>(p); p += 8;
_timestamp = b.template at<uint64_t>(p); p += 8;
_revision = b.template at<uint64_t>(p); p += 8;
_issuedTo.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
_multicastLimit = (unsigned int)b.template at<uint32_t>(p); p += 4;
_flags = (unsigned int)b.template at<uint32_t>(p); p += 4;
_type = (ZT_VirtualNetworkType)b[p++];
unsigned int nl = (unsigned int)b[p++];
if (nl > ZT_MAX_NETWORK_SHORT_NAME_LENGTH)
nl = ZT_MAX_NETWORK_SHORT_NAME_LENGTH;
memcpy(_name,b.field(p,nl),nl);
// _name will always be null terminated since field size is ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1
_specialistCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (_specialistCount > ZT_MAX_NETWORK_SPECIALISTS)
throw std::invalid_argument("overflow (specialists)");
for(unsigned int i=0;i<_specialistCount;++i) {
_specialists[i] = b.template at<uint64_t>(p); p += 8;
}
_localRouteCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (_localRouteCount > ZT_MAX_NETWORK_LOCAL_ROUTES)
throw std::invalid_argument("overflow (local routes)");
for(unsigned int i=0;i<_localRouteCount;++i) {
p += _localRoutes[i].deserialize(b,p);
}
_staticIpCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (_staticIpCount > ZT_MAX_ZT_ASSIGNED_ADDRESSES)
throw std::invalid_argument("overflow (static IPs)");
for(unsigned int i=0;i<_staticIpCount;++i) {
p += _staticIps[i].deserialize(b,p);
}
_gatewayCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (_gatewayCount > ZT_MAX_NETWORK_GATEWAYS)
throw std::invalid_argument("overflow (gateways)");
for(unsigned int i=0;i<_gatewayCount;++i) {
p += _gateways[i].deserialize(b,p);
}
_staticCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (_staticCount > ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES)
throw std::invalid_argument("overflow (static addresses)");
for(unsigned int i=0;i<_staticCount;++i) {
}
_ruleCount = (unsigned int)b.template at<uint16_t>(p); p += 2;
if (_ruleCount > ZT_MAX_NETWORK_RULES)
throw std::invalid_argument("overflow (rules)");
for(unsigned int i=0;i<_ruleCount;++i) {
_rules[i].t = (uint8_t)b[p++];
unsigned int rlen = (unsigned int)b[p++];
switch((ZT_VirtualNetworkRuleType)(_rules[i].t & 0x7f)) {
//case ZT_NETWORK_RULE_ACTION_DROP:
//case ZT_NETWORK_RULE_ACTION_ACCEPT:
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: {
Address tmp;
tmp.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
_rules[i].v.zt = tmp.toInt();
} break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
_rules[i].v.vlanId = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
_rules[i].v.vlanPcp = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
_rules[i].v.vlanDei = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
_rules[i].v.etherType = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
memcpy(_rules[i].v.mac,b.field(p,6),6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
memcpy(&(_rules[i].v.ipv4.ip),b.field(p,4),4);
_rules[i].v.ipv4.mask = (uint8_t)b[p+4];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
memcpy(_rules[i].v.ipv6.ip,b.field(p,16),16);
_rules[i].v.ipv6.mask = (uint8_t)b[p+16];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
_rules[i].v.ipTos = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
_rules[i].v.ipProtocol = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
_rules[i].v.port[0] = b.template at<uint16_t>(p);
_rules[i].v.port[1] = b.template at<uint16_t>(p+2);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
_rules[i].v.characteristics = b.template at<uint64_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
_rules[i].v.frameSize[0] = b.template at<uint16_t>(p);
_rules[i].v.frameSize[1] = b.template at<uint16_t>(p+2);
break;
}
p += rlen;
}
p += b.template at<uint16_t>(p) + 2;
return (p - startAt);
}
#ifdef ZT_SUPPORT_OLD_STYLE_NETCONF
void fromDictionary(const char *ds,unsigned int dslen);
#endif
protected: // protected so that a subclass can fill this out in network controller code protected: // protected so that a subclass can fill this out in network controller code
uint64_t _nwid; uint64_t _nwid;
uint64_t _timestamp; uint64_t _timestamp;
@ -335,14 +680,24 @@ protected: // protected so that a subclass can fill this out in network controll
char _name[ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1]; char _name[ZT_MAX_NETWORK_SHORT_NAME_LENGTH + 1];
Address _activeBridges[ZT_MAX_NETWORK_ACTIVE_BRIDGES]; // Special ZeroTier addresses -- most significant 40 bits are address, least 24 are specialist type flags
uint64_t _specialists[ZT_MAX_NETWORK_SPECIALISTS];
// ZeroTier-managed IPs and routing table entries and stuff
InetAddress _localRoutes[ZT_MAX_NETWORK_LOCAL_ROUTES]; InetAddress _localRoutes[ZT_MAX_NETWORK_LOCAL_ROUTES];
InetAddress _staticIps[ZT_MAX_ZT_ASSIGNED_ADDRESSES]; InetAddress _staticIps[ZT_MAX_ZT_ASSIGNED_ADDRESSES];
InetAddress _gateways[ZT_MAX_NETWORK_GATEWAYS]; InetAddress _gateways[ZT_MAX_NETWORK_GATEWAYS];
ZT_VirtualNetworkStaticDevice _static[ZT_MAX_NETWORK_STATIC_DEVICES];
// ZeroTier to physical static mappings
struct {
Address zt;
InetAddress phy;
} _static[ZT_MAX_NETWORK_STATIC_PHYSICAL_ADDRESSES];
// Network rules (only Ethernet type filtering is currently supported)
ZT_VirtualNetworkRule _rules[ZT_MAX_NETWORK_RULES]; ZT_VirtualNetworkRule _rules[ZT_MAX_NETWORK_RULES];
unsigned int _activeBridgeCount; unsigned int _specialistCount;
unsigned int _localRouteCount; unsigned int _localRouteCount;
unsigned int _staticIpCount; unsigned int _staticIpCount;
unsigned int _gatewayCount; unsigned int _gatewayCount;

View File

@ -173,7 +173,7 @@ ZT_ResultCode Node::processVirtualNetworkFrame(
class _PingPeersThatNeedPing class _PingPeersThatNeedPing
{ {
public: public:
_PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now,const std::vector<ZT_VirtualNetworkStaticDevice> &relays) : _PingPeersThatNeedPing(const RuntimeEnvironment *renv,uint64_t now,const std::vector<NetworkConfig::Relay> &relays) :
lastReceiveFromUpstream(0), lastReceiveFromUpstream(0),
RR(renv), RR(renv),
_now(now), _now(now),
@ -217,14 +217,10 @@ public:
// Check for network preferred relays, also considered 'upstream' and thus always // Check for network preferred relays, also considered 'upstream' and thus always
// pinged to keep links up. If they have stable addresses we will try them there. // pinged to keep links up. If they have stable addresses we will try them there.
for(std::vector<ZT_VirtualNetworkStaticDevice>::const_iterator r(_relays.begin());r!=_relays.end();++r) { for(std::vector<NetworkConfig::Relay>::const_iterator r(_relays.begin());r!=_relays.end();++r) {
if (r->address == p->address().toInt()) { if (r->address == p->address()) {
for(unsigned int i=0;i<2;++i) { stableEndpoint4 = r->phy4;
if (r->physical[i].ss_family == AF_INET) stableEndpoint6 = r->phy6;
stableEndpoint4 = r->physical[i];
else if (r->physical[i].ss_family == AF_INET6)
stableEndpoint6 = r->physical[i];
}
upstream = true; upstream = true;
break; break;
} }
@ -271,7 +267,7 @@ public:
private: private:
const RuntimeEnvironment *RR; const RuntimeEnvironment *RR;
uint64_t _now; uint64_t _now;
const std::vector<ZT_VirtualNetworkStaticDevice> &_relays; const std::vector<NetworkConfig::Relay> &_relays;
World _world; World _world;
}; };
@ -287,7 +283,7 @@ ZT_ResultCode Node::processBackgroundTasks(uint64_t now,volatile uint64_t *nextB
_lastPingCheck = now; _lastPingCheck = now;
// Get relays and networks that need config without leaving the mutex locked // Get relays and networks that need config without leaving the mutex locked
std::vector< ZT_VirtualNetworkStaticDevice > networkRelays; std::vector< NetworkConfig::Relay > networkRelays;
std::vector< SharedPtr<Network> > needConfig; std::vector< SharedPtr<Network> > needConfig;
{ {
Mutex::Lock _l(_networks_m); Mutex::Lock _l(_networks_m);
@ -296,7 +292,7 @@ ZT_ResultCode Node::processBackgroundTasks(uint64_t now,volatile uint64_t *nextB
needConfig.push_back(n->second); needConfig.push_back(n->second);
} }
if (n->second->hasConfig()) { if (n->second->hasConfig()) {
std::vector<ZT_VirtualNetworkStaticDevice> r(n->second->config().relays()); std::vector<NetworkConfig::Relay> r(n->second->config().relays());
networkRelays.insert(networkRelays.end(),r.begin(),r.end()); networkRelays.insert(networkRelays.end(),r.begin(),r.end());
} }
} }

View File

@ -795,10 +795,11 @@ bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
if (!viaPath) { if (!viaPath) {
if (network) { if (network) {
unsigned int bestq = ~((unsigned int)0); // max unsigned int since quality is lower==better unsigned int bestq = ~((unsigned int)0); // max unsigned int since quality is lower==better
for(unsigned int ri=0;ri<network->config().staticDeviceCount();++ri) { unsigned int ptr = 0;
const ZT_VirtualNetworkStaticDevice &r = network->config().staticDevice(ri); for(;;) {
if ((r.address != peer->address().toInt())&&((r.flags & ZT_NETWORK_STATIC_DEVICE_IS_RELAY) != 0)) { const Address raddr(network->config().nextRelay(ptr));
SharedPtr<Peer> rp(RR->topology->getPeer(Address(r.address))); if (raddr) {
SharedPtr<Peer> rp(RR->topology->getPeer(raddr));
if (rp) { if (rp) {
const unsigned int q = rp->relayQuality(now); const unsigned int q = rp->relayQuality(now);
if (q < bestq) { if (q < bestq) {
@ -806,7 +807,7 @@ bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid)
rp.swap(relay); rp.swap(relay);
} }
} }
} } else break;
} }
} }

View File

@ -284,13 +284,10 @@ bool Topology::isUpstream(const Identity &id) const
return true; return true;
std::vector< SharedPtr<Network> > nws(RR->node->allNetworks()); std::vector< SharedPtr<Network> > nws(RR->node->allNetworks());
for(std::vector< SharedPtr<Network> >::const_iterator nw(nws.begin());nw!=nws.end();++nw) { for(std::vector< SharedPtr<Network> >::const_iterator nw(nws.begin());nw!=nws.end();++nw) {
if ((*nw)->hasConfig()) { if ((*nw)->config().isRelay(id.address())) {
for(unsigned int r=0;r<(*nw)->config().staticDeviceCount();++r) {
if ((((*nw)->config().staticDevice(r).flags & ZT_NETWORK_STATIC_DEVICE_IS_RELAY) != 0)&&((*nw)->config().staticDevice(r).address == id.address().toInt()))
return true; return true;
} }
} }
}
return false; return false;
} }