Last bit of new cluster code, ready to test.

This commit is contained in:
Adam Ierymenko 2017-06-06 16:11:19 -07:00
parent 4f2179b0df
commit 951d911531
2 changed files with 416 additions and 334 deletions

View File

@ -66,11 +66,7 @@
#include "Phy.hpp" #include "Phy.hpp"
#include "OSUtils.hpp" #include "OSUtils.hpp"
/** // Period between refreshes of bindings
* Period between binder rescans/refreshes
*
* OneService also does this on detected restarts.
*/
#define ZT_BINDER_REFRESH_PERIOD 30000 #define ZT_BINDER_REFRESH_PERIOD 30000
namespace ZeroTier { namespace ZeroTier {
@ -105,10 +101,7 @@ public:
Binder() {} Binder() {}
/** /**
* Close all bound ports * Close all bound ports, should be called on shutdown
*
* This should be called on shutdown. It closes listen sockets and UDP ports
* but not TCP connections from any TCP listen sockets.
* *
* @param phy Physical interface * @param phy Physical interface
*/ */
@ -116,9 +109,9 @@ public:
void closeAll(Phy<PHY_HANDLER_TYPE> &phy) void closeAll(Phy<PHY_HANDLER_TYPE> &phy)
{ {
Mutex::Lock _l(_lock); Mutex::Lock _l(_lock);
for(typename std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) { for(std::vector<_Binding>::iterator b(_bindings.begin());b!=_bindings.end();++b) {
phy.close(i->udpSock,false); phy.close(b->udpSock,false);
phy.close(i->tcpListenSock,false); phy.close(b->tcpListenSock,false);
} }
} }
@ -129,7 +122,7 @@ public:
* changes, on startup, or periodically (e.g. every 30-60s). * changes, on startup, or periodically (e.g. every 30-60s).
* *
* @param phy Physical interface * @param phy Physical interface
* @param port Port to bind to on all interfaces (TCP and UDP) * @param ports Ports to bind on all interfaces
* @param ignoreInterfacesByName Ignore these interfaces by name * @param ignoreInterfacesByName Ignore these interfaces by name
* @param ignoreInterfacesByNamePrefix Ignore these interfaces by name-prefix (starts-with, e.g. zt ignores zt*) * @param ignoreInterfacesByNamePrefix Ignore these interfaces by name-prefix (starts-with, e.g. zt ignores zt*)
* @param ignoreInterfacesByAddress Ignore these interfaces by address * @param ignoreInterfacesByAddress Ignore these interfaces by address
@ -137,11 +130,10 @@ public:
* @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method * @tparam INTERFACE_CHECKER Type for class containing shouldBindInterface() method
*/ */
template<typename PHY_HANDLER_TYPE,typename INTERFACE_CHECKER> template<typename PHY_HANDLER_TYPE,typename INTERFACE_CHECKER>
void refresh(Phy<PHY_HANDLER_TYPE> &phy,unsigned int port,INTERFACE_CHECKER &ifChecker) void refresh(Phy<PHY_HANDLER_TYPE> &phy,unsigned int *ports,unsigned int portCount,INTERFACE_CHECKER &ifChecker)
{ {
std::map<InetAddress,std::string> localIfAddrs; std::map<InetAddress,std::string> localIfAddrs;
PhySocket *udps; PhySocket *udps,*tcps;
//PhySocket *tcps;
Mutex::Lock _l(_lock); Mutex::Lock _l(_lock);
#ifdef __WINDOWS__ #ifdef __WINDOWS__
@ -161,8 +153,10 @@ public:
case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE: case InetAddress::IP_SCOPE_PRIVATE:
ip.setPort(port); for(int x=0;x<portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string())); localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string()));
}
break; break;
} }
} }
@ -231,8 +225,10 @@ public:
case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE: case InetAddress::IP_SCOPE_PRIVATE:
ip.setPort(port); for(int x=0;x<portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string(devname))); localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string(devname)));
}
break; break;
} }
} }
@ -249,11 +245,8 @@ public:
configuration.ifc_buf = nullptr; configuration.ifc_buf = nullptr;
if (controlfd < 0) goto ip4_address_error; if (controlfd < 0) goto ip4_address_error;
if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error; if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error;
configuration.ifc_buf = (char*)malloc(configuration.ifc_len); configuration.ifc_buf = (char*)malloc(configuration.ifc_len);
if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error; if (ioctl(controlfd, SIOCGIFCONF, &configuration) < 0) goto ip4_address_error;
for (int i=0; i < (int)(configuration.ifc_len / sizeof(ifreq)); i ++) { for (int i=0; i < (int)(configuration.ifc_len / sizeof(ifreq)); i ++) {
@ -262,9 +255,8 @@ public:
if (addr->sa_family != AF_INET) continue; if (addr->sa_family != AF_INET) continue;
std::string ifname = request.ifr_ifrn.ifrn_name; std::string ifname = request.ifr_ifrn.ifrn_name;
// name can either be just interface name or interface name followed by ':' and arbitrary label // name can either be just interface name or interface name followed by ':' and arbitrary label
if (ifname.find(':') != std::string::npos) { if (ifname.find(':') != std::string::npos)
ifname = ifname.substr(0, ifname.find(':')); ifname = ifname.substr(0, ifname.find(':'));
}
InetAddress ip(&(((struct sockaddr_in *)addr)->sin_addr),4,0); InetAddress ip(&(((struct sockaddr_in *)addr)->sin_addr),4,0);
if (ifChecker.shouldBindInterface(ifname.c_str(), ip)) { if (ifChecker.shouldBindInterface(ifname.c_str(), ip)) {
@ -274,8 +266,10 @@ public:
case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE: case InetAddress::IP_SCOPE_PRIVATE:
ip.setPort(port); for(int x=0;x<portCount;++x) {
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip, ifname)); ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,ifname));
}
break; break;
} }
} }
@ -306,8 +300,10 @@ public:
case InetAddress::IP_SCOPE_GLOBAL: case InetAddress::IP_SCOPE_GLOBAL:
case InetAddress::IP_SCOPE_SHARED: case InetAddress::IP_SCOPE_SHARED:
case InetAddress::IP_SCOPE_PRIVATE: case InetAddress::IP_SCOPE_PRIVATE:
ip.setPort(port); for(int x=0;x<portCount;++x) {
ip.setPort(ports[x]);
localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string(ifa->ifa_name))); localIfAddrs.insert(std::pair<InetAddress,std::string>(ip,std::string(ifa->ifa_name)));
}
break; break;
} }
} }
@ -322,59 +318,57 @@ public:
// Default to binding to wildcard if we can't enumerate addresses // Default to binding to wildcard if we can't enumerate addresses
if (localIfAddrs.empty()) { if (localIfAddrs.empty()) {
localIfAddrs.insert(std::pair<InetAddress,std::string>(InetAddress((uint32_t)0,port),std::string())); for(int x=0;x<portCount;++x) {
localIfAddrs.insert(std::pair<InetAddress,std::string>(InetAddress((const void *)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,port),std::string())); localIfAddrs.insert(std::pair<InetAddress,std::string>(InetAddress((uint32_t)0,ports[x]),std::string()));
} localIfAddrs.insert(std::pair<InetAddress,std::string>(InetAddress((const void *)"\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0",16,ports[x]),std::string()));
// Close any old bindings to anything that doesn't exist anymore
for(typename std::vector<_Binding>::const_iterator bi(_bindings.begin());bi!=_bindings.end();++bi) {
if (localIfAddrs.find(bi->address) == localIfAddrs.end()) {
phy.close(bi->udpSock,false);
phy.close(bi->tcpListenSock,false);
} }
} }
std::vector<_Binding> newBindings; std::vector<_Binding> newBindings;
for(std::map<InetAddress,std::string>::const_iterator ii(localIfAddrs.begin());ii!=localIfAddrs.end();++ii) {
typename std::vector<_Binding>::const_iterator bi(_bindings.begin()); // Save bindings that are still valid, close those that are not
while (bi != _bindings.end()) { for(std::vector<_Binding>::iterator b(_bindings.begin());b!=_bindings.end();++b) {
if (bi->address == ii->first) { if (localIfAddrs.find(b->address) != localIfAddrs.end()) {
newBindings.push_back(*bi); newBindings.push_back(*b);
break; } else {
phy.close(b->udpSock,false);
phy.close(b->tcpListenSock,false);
} }
++bi;
} }
if (bi == _bindings.end()) { // Create new bindings for those not already bound
for(std::map<InetAddress,std::string>::const_iterator ii(localIfAddrs.begin());ii!=localIfAddrs.end();++ii) {
typename std::vector<_Binding>::const_iterator bi(newBindings.begin());
while (bi != newBindings.end()) {
if (bi->address == ii->first)
break;
++bi;
}
if (bi == newBindings.end()) {
udps = phy.udpBind(reinterpret_cast<const struct sockaddr *>(&(ii->first)),(void *)0,ZT_UDP_DESIRED_BUF_SIZE); udps = phy.udpBind(reinterpret_cast<const struct sockaddr *>(&(ii->first)),(void *)0,ZT_UDP_DESIRED_BUF_SIZE);
if (udps) { tcps = phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&(ii->first)),(void *)0);
//tcps = phy.tcpListen(reinterpret_cast<const struct sockaddr *>(&ii),(void *)0); if ((udps)&&(tcps)) {
//if (tcps) {
#ifdef __LINUX__ #ifdef __LINUX__
// Bind Linux sockets to their device so routes tha we manage do not override physical routes (wish all platforms had this!) // Bind Linux sockets to their device so routes tha we manage do not override physical routes (wish all platforms had this!)
if (ii->second.length() > 0) { if (ii->second.length() > 0) {
int fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(udps);
char tmp[256]; char tmp[256];
Utils::scopy(tmp,sizeof(tmp),ii->second.c_str()); Utils::scopy(tmp,sizeof(tmp),ii->second.c_str());
if (fd >= 0) { int fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(udps);
if (setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp)) != 0) { if (fd >= 0)
fprintf(stderr,"WARNING: unable to set SO_BINDTODEVICE to bind %s to %s\n",ii->first.toIpString().c_str(),ii->second.c_str()); setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp));
} fd = (int)Phy<PHY_HANDLER_TYPE>::getDescriptor(tcps);
} if (fd >= 0)
setsockopt(fd,SOL_SOCKET,SO_BINDTODEVICE,tmp,strlen(tmp));
} }
#endif // __LINUX__ #endif // __LINUX__
newBindings.push_back(_Binding()); newBindings.push_back(_Binding());
newBindings.back().udpSock = udps; newBindings.back().udpSock = udps;
//newBindings.back().tcpListenSock = tcps; newBindings.back().tcpListenSock = tcps;
newBindings.back().address = ii->first; newBindings.back().address = ii->first;
//} else {
// phy.close(udps,false);
//}
} }
} }
} }
// Swapping pointers and then letting the old one fall out of scope is faster than copying again
_bindings.swap(newBindings); _bindings.swap(newBindings);
} }
@ -402,58 +396,79 @@ public:
* @param data Data to send * @param data Data to send
* @param len Length of data * @param len Length of data
* @param v4ttl If non-zero, send this packet with the specified IP TTL (IPv4 only) * @param v4ttl If non-zero, send this packet with the specified IP TTL (IPv4 only)
* @return -1 == local doesn't match any bound address, 0 == send failure, 1 == send successful
*/ */
template<typename PHY_HANDLER_TYPE> template<typename PHY_HANDLER_TYPE>
inline bool udpSend(Phy<PHY_HANDLER_TYPE> &phy,const InetAddress &local,const InetAddress &remote,const void *data,unsigned int len,unsigned int v4ttl = 0) const inline int udpSend(Phy<PHY_HANDLER_TYPE> &phy,const InetAddress &local,const InetAddress &remote,const void *data,unsigned int len,unsigned int v4ttl = 0) const
{ {
PhySocket *s;
typename std::vector<_Binding>::const_iterator i;
int result;
Mutex::Lock _l(_lock); Mutex::Lock _l(_lock);
if (remote.ss_family == AF_INET) {
if (local) { if (local) {
for(typename std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) { for(i=_bindings.begin();i!=_bindings.end();++i) {
if (i->address == local) { if (
if ((v4ttl)&&(local.ss_family == AF_INET)) (i->address.ss_family == AF_INET) &&
phy.setIp4UdpTtl(i->udpSock,v4ttl); (reinterpret_cast<const struct sockaddr_in *>(&(i->address))->sin_port == reinterpret_cast<const struct sockaddr_in *>(&local)->sin_port) &&
const bool result = phy.udpSend(i->udpSock,reinterpret_cast<const struct sockaddr *>(&remote),data,len); (reinterpret_cast<const struct sockaddr_in *>(&(i->address))->sin_addr.s_addr == reinterpret_cast<const struct sockaddr_in *>(&local)->sin_addr.s_addr)
if ((v4ttl)&&(local.ss_family == AF_INET)) )
phy.setIp4UdpTtl(i->udpSock,255); {
return result; s = i->udpSock;
goto Binder_send_packet;
} }
} }
return false;
} else { } else {
bool result = false; for(i=_bindings.begin();i!=_bindings.end();++i) {
for(typename std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) { if (i->address.ss_family == AF_INET) {
if (i->address.ss_family == remote.ss_family) { s = i->udpSock;
if ((v4ttl)&&(remote.ss_family == AF_INET)) goto Binder_send_packet;
phy.setIp4UdpTtl(i->udpSock,v4ttl);
result |= phy.udpSend(i->udpSock,reinterpret_cast<const struct sockaddr *>(&remote),data,len);
if ((v4ttl)&&(remote.ss_family == AF_INET))
phy.setIp4UdpTtl(i->udpSock,255);
} }
} }
}
} else {
if (local) {
for(i=_bindings.begin();i!=_bindings.end();++i) {
if (
(i->address.ss_family == AF_INET6) &&
(reinterpret_cast<const struct sockaddr_in6 *>(&(i->address))->sin6_port == reinterpret_cast<const struct sockaddr_in6 *>(&local)->sin6_port) &&
(!memcmp(reinterpret_cast<const struct sockaddr_in6 *>(&(i->address))->sin6_addr.s6_addr,reinterpret_cast<const struct sockaddr_in6 *>(&local)->sin6_addr.s6_addr,16))
)
{
s = i->udpSock;
goto Binder_send_packet;
}
}
} else {
for(i=_bindings.begin();i!=_bindings.end();++i) {
if (i->address.ss_family == AF_INET6) {
s = i->udpSock;
goto Binder_send_packet;
}
}
}
}
return -1;
Binder_send_packet:
if (v4ttl) phy.setIp4UdpTtl(s,v4ttl);
result = (int)phy.udpSend(s,reinterpret_cast<const struct sockaddr *>(&remote),data,len);
if (v4ttl) phy.setIp4UdpTtl(s,255);
return result; return result;
} }
}
/** /**
* @return All currently bound local interface addresses * @return All currently bound local interface addresses
*/ */
inline std::vector<InetAddress> allBoundLocalInterfaceAddresses() inline std::vector<InetAddress> allBoundLocalInterfaceAddresses() const
{ {
Mutex::Lock _l(_lock);
std::vector<InetAddress> aa; std::vector<InetAddress> aa;
for(std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i)
aa.push_back(i->address);
return aa;
}
/**
* @param aa Vector to append local interface addresses to
*/
inline void allBoundLocalInterfaceAddresses(std::vector<InetAddress> &aa)
{
Mutex::Lock _l(_lock); Mutex::Lock _l(_lock);
for(std::vector<_Binding>::const_iterator i(_bindings.begin());i!=_bindings.end();++i) for(std::vector<_Binding>::const_iterator b(_bindings.begin());b!=_bindings.end();++b)
aa.push_back(i->address); aa.push_back(b->address);
return aa;
} }
private: private:

View File

@ -160,11 +160,8 @@ namespace ZeroTier { typedef BSDEthernetTap EthernetTap; }
// Maximum write buffer size for outgoing TCP connections (sanity limit) // Maximum write buffer size for outgoing TCP connections (sanity limit)
#define ZT_TCP_MAX_WRITEQ_SIZE 33554432 #define ZT_TCP_MAX_WRITEQ_SIZE 33554432
// How often to check TCP connections and cluster links // How often to check TCP connections and cluster links and send status to cluster peers
#define ZT_TCP_CHECK_PERIOD 10000 #define ZT_TCP_CHECK_PERIOD 15000
// How often to send status info to cluster links
#define ZT_TCP_CLUSTER_SEND_STATUS_EVERY 30000
// TCP activity timeout // TCP activity timeout
#define ZT_TCP_ACTIVITY_TIMEOUT 60000 #define ZT_TCP_ACTIVITY_TIMEOUT 60000
@ -369,12 +366,12 @@ struct TcpConnection
TCP_HTTP_INCOMING, TCP_HTTP_INCOMING,
TCP_HTTP_OUTGOING, TCP_HTTP_OUTGOING,
TCP_TUNNEL_OUTGOING, // TUNNELED mode proxy outbound connection TCP_TUNNEL_OUTGOING, // TUNNELED mode proxy outbound connection
TCP_CLUSTER_BACKPLANE, TCP_CLUSTER_BACKPLANE
} type; } type;
OneServiceImpl *parent; OneServiceImpl *parent;
PhySocket *sock; PhySocket *sock;
InetAddress from; InetAddress remoteAddr;
unsigned long lastReceive; unsigned long lastReceive;
// Used for inbound HTTP connections // Used for inbound HTTP connections
@ -392,6 +389,7 @@ struct TcpConnection
unsigned int clusterMemberVersionMinor; unsigned int clusterMemberVersionMinor;
unsigned int clusterMemberVersionRev; unsigned int clusterMemberVersionRev;
std::vector< InetAddress > clusterMemberLocalAddresses; std::vector< InetAddress > clusterMemberLocalAddresses;
Mutex clusterMemberLocalAddresses_m;
std::string readq; std::string readq;
std::string writeq; std::string writeq;
@ -454,17 +452,8 @@ public:
* destructively with uPnP port mapping behavior in very weird buggy ways. * destructively with uPnP port mapping behavior in very weird buggy ways.
* It's only used if uPnP/NAT-PMP is enabled in this build. * It's only used if uPnP/NAT-PMP is enabled in this build.
*/ */
Binder _bindings[3];
unsigned int _ports[3]; unsigned int _ports[3];
uint16_t _portsBE[3]; // ports in big-endian network byte order as in sockaddr Binder _binder;
// Local interface addresses obtained from bindings
std::vector<InetAddress> _localInterfaceAddresses;
Mutex _localInterfaceAddresses_m;
// Sockets for JSON API -- bound only to V4 and V6 localhost
PhySocket *_v4TcpControlSocket;
PhySocket *_v6TcpControlSocket;
// Time we last received a packet from a global address // Time we last received a packet from a global address
uint64_t _lastDirectReceiveFromGlobal; uint64_t _lastDirectReceiveFromGlobal;
@ -534,8 +523,7 @@ public:
,_updateAutoApply(false) ,_updateAutoApply(false)
,_primaryPort(port) ,_primaryPort(port)
,_udpPortPickerCounter(0) ,_udpPortPickerCounter(0)
,_v4TcpControlSocket((PhySocket *)0) ,_clusterMemberId(0)
,_v6TcpControlSocket((PhySocket *)0)
,_lastDirectReceiveFromGlobal(0) ,_lastDirectReceiveFromGlobal(0)
#ifdef ZT_TCP_FALLBACK_RELAY #ifdef ZT_TCP_FALLBACK_RELAY
,_lastSendToGlobalV4(0) ,_lastSendToGlobalV4(0)
@ -547,10 +535,6 @@ public:
,_portMappingEnabled(true) ,_portMappingEnabled(true)
#ifdef ZT_USE_MINIUPNPC #ifdef ZT_USE_MINIUPNPC
,_portMapper((PortMapper *)0) ,_portMapper((PortMapper *)0)
#endif
#ifdef ZT_ENABLE_CLUSTER
,_clusterMessageSocket((PhySocket *)0)
,_clusterDefinition((ClusterDefinition *)0)
#endif #endif
,_run(true) ,_run(true)
{ {
@ -561,23 +545,11 @@ public:
virtual ~OneServiceImpl() virtual ~OneServiceImpl()
{ {
for(int i=0;i<3;++i) _binder.closeAll(_phy);
_bindings[i].closeAll(_phy);
_phy.close(_v4TcpControlSocket);
_phy.close(_v6TcpControlSocket);
#ifdef ZT_ENABLE_CLUSTER
_phy.close(_clusterMessageSocket);
#endif
#ifdef ZT_USE_MINIUPNPC #ifdef ZT_USE_MINIUPNPC
delete _portMapper; delete _portMapper;
#endif #endif
delete _controller; delete _controller;
#ifdef ZT_ENABLE_CLUSTER
delete _clusterDefinition;
#endif
} }
virtual ReasonForTermination run() virtual ReasonForTermination run()
@ -623,7 +595,7 @@ public:
InetAddress trustedPathNetworks[ZT_MAX_TRUSTED_PATHS]; InetAddress trustedPathNetworks[ZT_MAX_TRUSTED_PATHS];
unsigned int trustedPathCount = 0; unsigned int trustedPathCount = 0;
// Old style "trustedpaths" flat file -- will eventually go away // LEGACY: support old "trustedpaths" flat file
FILE *trustpaths = fopen((_homePath + ZT_PATH_SEPARATOR_S "trustedpaths").c_str(),"r"); FILE *trustpaths = fopen((_homePath + ZT_PATH_SEPARATOR_S "trustedpaths").c_str(),"r");
if (trustpaths) { if (trustpaths) {
fprintf(stderr,"WARNING: 'trustedpaths' flat file format is deprecated in favor of path definitions in local.conf" ZT_EOL_S); fprintf(stderr,"WARNING: 'trustedpaths' flat file format is deprecated in favor of path definitions in local.conf" ZT_EOL_S);
@ -688,9 +660,11 @@ public:
if (trustedPathCount) if (trustedPathCount)
_node->setTrustedPaths(reinterpret_cast<const struct sockaddr_storage *>(trustedPathNetworks),trustedPathIds,trustedPathCount); _node->setTrustedPaths(reinterpret_cast<const struct sockaddr_storage *>(trustedPathNetworks),trustedPathIds,trustedPathCount);
} }
// Apply other runtime configuration from local.conf
applyLocalConfig(); applyLocalConfig();
// Bind TCP socket // Make sure we can use the primary port, and hunt for one if configured to do so
const int portTrials = (_primaryPort == 0) ? 256 : 1; // if port is 0, pick random const int portTrials = (_primaryPort == 0) ? 256 : 1; // if port is 0, pick random
for(int k=0;k<portTrials;++k) { for(int k=0;k<portTrials;++k) {
if (_primaryPort == 0) { if (_primaryPort == 0) {
@ -698,32 +672,8 @@ public:
Utils::getSecureRandom(&randp,sizeof(randp)); Utils::getSecureRandom(&randp,sizeof(randp));
_primaryPort = 20000 + (randp % 45500); _primaryPort = 20000 + (randp % 45500);
} }
if (_trialBind(_primaryPort)) { if (_trialBind(_primaryPort)) {
struct sockaddr_in in4;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = Utils::hton((uint16_t)_primaryPort);
_v4TcpControlSocket = _phy.tcpListen((const struct sockaddr *)&in4,this);
struct sockaddr_in6 in6;
memset((void *)&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = in4.sin_port;
_v6TcpControlSocket = _phy.tcpListen((const struct sockaddr *)&in6,this);
// We must bind one of IPv4 or IPv6 -- support either failing to support hosts that
// have only IPv4 or only IPv6 stacks.
if ((_v4TcpControlSocket)||(_v6TcpControlSocket)) {
_ports[0] = _primaryPort; _ports[0] = _primaryPort;
break;
} else {
if (_v4TcpControlSocket)
_phy.close(_v4TcpControlSocket,false);
if (_v6TcpControlSocket)
_phy.close(_v6TcpControlSocket,false);
_primaryPort = 0;
}
} else { } else {
_primaryPort = 0; _primaryPort = 0;
} }
@ -743,7 +693,7 @@ public:
// Attempt to bind to a secondary port chosen from our ZeroTier address. // Attempt to bind to a secondary port chosen from our ZeroTier address.
// This exists because there are buggy NATs out there that fail if more // This exists because there are buggy NATs out there that fail if more
// than one device behind the same NAT tries to use the same internal // than one device behind the same NAT tries to use the same internal
// private address port number. // private address port number. Buggy NATs are a running theme.
_ports[1] = 20000 + ((unsigned int)_node->address() % 45500); _ports[1] = 20000 + ((unsigned int)_node->address() % 45500);
for(int i=0;;++i) { for(int i=0;;++i) {
if (i > 1000) { if (i > 1000) {
@ -782,10 +732,6 @@ public:
} }
#endif #endif
// Populate ports in big-endian format for quick compare
for(int i=0;i<3;++i)
_portsBE[i] = Utils::hton((uint16_t)_ports[i]);
// Network controller is now enabled by default for desktop and server // Network controller is now enabled by default for desktop and server
_controller = new EmbeddedNetworkController(_node,_controllerDbPath.c_str()); _controller = new EmbeddedNetworkController(_node,_controllerDbPath.c_str());
_node->setNetconfMaster((void *)_controller); _node->setNetconfMaster((void *)_controller);
@ -841,8 +787,8 @@ public:
#endif #endif
*/ */
/* // Join existing networks in networks.d
{ // Load existing networks {
std::vector<std::string> networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str())); std::vector<std::string> networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str()));
for(std::vector<std::string>::iterator f(networksDotD.begin());f!=networksDotD.end();++f) { for(std::vector<std::string>::iterator f(networksDotD.begin());f!=networksDotD.end();++f) {
std::size_t dot = f->find_last_of('.'); std::size_t dot = f->find_last_of('.');
@ -850,7 +796,9 @@ public:
_node->join(Utils::hexStrToU64(f->substr(0,dot).c_str()),(void *)0,(void *)0); _node->join(Utils::hexStrToU64(f->substr(0,dot).c_str()),(void *)0,(void *)0);
} }
} }
{ // Load existing moons
// Orbit existing moons in moons.d
{
std::vector<std::string> moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str())); std::vector<std::string> moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str()));
for(std::vector<std::string>::iterator f(moonsDotD.begin());f!=moonsDotD.end();++f) { for(std::vector<std::string>::iterator f(moonsDotD.begin());f!=moonsDotD.end();++f) {
std::size_t dot = f->find_last_of('.'); std::size_t dot = f->find_last_of('.');
@ -858,8 +806,8 @@ public:
_node->orbit((void *)0,Utils::hexStrToU64(f->substr(0,dot).c_str()),0); _node->orbit((void *)0,Utils::hexStrToU64(f->substr(0,dot).c_str()),0);
} }
} }
*/
// Derive the cluster's shared secret backplane encryption key by hashing its shared secret identity
{ {
uint8_t tmp[64]; uint8_t tmp[64];
SHA512::hash(tmp,_node->identity().privateKeyPair().priv.data,ZT_C25519_PRIVATE_KEY_LEN); SHA512::hash(tmp,_node->identity().privateKeyPair().priv.data,ZT_C25519_PRIVATE_KEY_LEN);
@ -877,6 +825,7 @@ public:
uint64_t lastUpdateCheck = clockShouldBe; uint64_t lastUpdateCheck = clockShouldBe;
uint64_t lastLocalInterfaceAddressCheck = (clockShouldBe - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle uint64_t lastLocalInterfaceAddressCheck = (clockShouldBe - ZT_LOCAL_INTERFACE_CHECK_INTERVAL) + 15000; // do this in 15s to give portmapper time to configure and other things time to settle
uint64_t lastCleanedIddb = 0; uint64_t lastCleanedIddb = 0;
uint64_t lastTcpCheck = 0;
for(;;) { for(;;) {
_run_m.lock(); _run_m.lock();
if (!_run) { if (!_run) {
@ -914,11 +863,13 @@ public:
// Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default) // Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default)
if (((now - lastBindRefresh) >= ZT_BINDER_REFRESH_PERIOD)||(restarted)) { if (((now - lastBindRefresh) >= ZT_BINDER_REFRESH_PERIOD)||(restarted)) {
lastBindRefresh = now; lastBindRefresh = now;
unsigned int p[3];
unsigned int pc = 0;
for(int i=0;i<3;++i) { for(int i=0;i<3;++i) {
if (_ports[i]) { if (_ports[i])
_bindings[i].refresh(_phy,_ports[i],*this); p[pc++] = _ports[i];
}
} }
_binder.refresh(_phy,p,pc,*this);
{ {
Mutex::Lock _l(_nets_m); Mutex::Lock _l(_nets_m);
for(std::map<uint64_t,NetworkState>::iterator n(_nets.begin());n!=_nets.end();++n) { for(std::map<uint64_t,NetworkState>::iterator n(_nets.begin());n!=_nets.end();++n) {
@ -928,15 +879,18 @@ public:
} }
} }
// Run background task processor in core if it's time to do so
uint64_t dl = _nextBackgroundTaskDeadline; uint64_t dl = _nextBackgroundTaskDeadline;
if (dl <= now) { if (dl <= now) {
_node->processBackgroundTasks((void *)0,now,&_nextBackgroundTaskDeadline); _node->processBackgroundTasks((void *)0,now,&_nextBackgroundTaskDeadline);
dl = _nextBackgroundTaskDeadline; dl = _nextBackgroundTaskDeadline;
} }
// Close TCP fallback tunnel if we have direct UDP
if ((_tcpFallbackTunnel)&&((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2))) if ((_tcpFallbackTunnel)&&((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2)))
_phy.close(_tcpFallbackTunnel->sock); _phy.close(_tcpFallbackTunnel->sock);
// Sync multicast group memberships
if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) { if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) {
lastTapMulticastGroupCheck = now; lastTapMulticastGroupCheck = now;
Mutex::Lock _l(_nets_m); Mutex::Lock _l(_nets_m);
@ -952,12 +906,12 @@ public:
} }
} }
// Sync information about physical network interfaces
if ((now - lastLocalInterfaceAddressCheck) >= ZT_LOCAL_INTERFACE_CHECK_INTERVAL) { if ((now - lastLocalInterfaceAddressCheck) >= ZT_LOCAL_INTERFACE_CHECK_INTERVAL) {
lastLocalInterfaceAddressCheck = now; lastLocalInterfaceAddressCheck = now;
_node->clearLocalInterfaceAddresses(); _node->clearLocalInterfaceAddresses();
// Tell Node about uPnP and NAT-PMP bound external addresses
#ifdef ZT_USE_MINIUPNPC #ifdef ZT_USE_MINIUPNPC
if (_portMapper) { if (_portMapper) {
std::vector<InetAddress> mappedAddresses(_portMapper->get()); std::vector<InetAddress> mappedAddresses(_portMapper->get());
@ -966,18 +920,57 @@ public:
} }
#endif #endif
// Tell Node about local interface addresses bound to the primary port std::vector<InetAddress> boundAddrs(_binder.allBoundLocalInterfaceAddresses());
std::vector<InetAddress> boundAddrs(_bindings[0].allBoundLocalInterfaceAddresses());
for(std::vector<InetAddress>::const_iterator i(boundAddrs.begin());i!=boundAddrs.end();++i) for(std::vector<InetAddress>::const_iterator i(boundAddrs.begin());i!=boundAddrs.end();++i)
_node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*i))); _node->addLocalInterfaceAddress(reinterpret_cast<const struct sockaddr_storage *>(&(*i)));
}
// Memoize all local interface addresses for use in clustering -- we tell other cluster members about these // Check TCP connections and cluster links
if ((now - lastTcpCheck) >= ZT_TCP_CHECK_PERIOD) {
lastTcpCheck = now;
std::vector<PhySocket *> toClose;
std::vector<InetAddress> clusterLinksUp;
{ {
Mutex::Lock _l(_localInterfaceAddresses_m); Mutex::Lock _l(_tcpConnections_m);
_localInterfaceAddresses.clear(); for(std::vector<TcpConnection *>::const_iterator c(_tcpConnections.begin());c!=_tcpConnections.end();++c) {
for(int i=0;i<3;++i) { TcpConnection *const tc = *c;
if (_ports[i] > 0) tc->writeq_m.lock();
_bindings[i].allBoundLocalInterfaceAddresses(_localInterfaceAddresses); const unsigned long wql = (unsigned long)tc->writeq.length();
tc->writeq_m.unlock();
if ((tc->sock)&&((wql > ZT_TCP_MAX_WRITEQ_SIZE)||((now - tc->lastReceive) > ZT_TCP_ACTIVITY_TIMEOUT))) {
toClose.push_back(tc->sock);
} else if ((tc->type == TcpConnection::TCP_CLUSTER_BACKPLANE)&&(tc->clusterMemberId)) {
clusterLinksUp.push_back(tc->remoteAddr);
sendMyCurrentClusterState(tc);
}
}
}
for(std::vector<PhySocket *>::iterator s(toClose.begin());s!=toClose.end();++s)
_phy.close(*s,true);
{
Mutex::Lock _l(_localConfig_m);
for(std::vector<InetAddress>::const_iterator ca(_clusterBackplaneAddresses.begin());ca!=_clusterBackplaneAddresses.end();++ca) {
if (std::find(clusterLinksUp.begin(),clusterLinksUp.end(),*ca) == clusterLinksUp.end()) {
TcpConnection *tc = new TcpConnection();
{
Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.push_back(tc);
}
tc->type = TcpConnection::TCP_CLUSTER_BACKPLANE;
tc->remoteAddr = *ca;
tc->lastReceive = OSUtils::now();
tc->parent = this;
tc->sock = (PhySocket *)0; // set in connect handler
tc->messageSize = 0;
tc->clusterMemberId = 0; // not known yet
bool connected = false;
_phy.tcpConnect(reinterpret_cast<const struct sockaddr *>(&(*ca)),connected,(void *)tc,true);
}
} }
} }
} }
@ -986,10 +979,6 @@ public:
clockShouldBe = now + (uint64_t)delay; clockShouldBe = now + (uint64_t)delay;
_phy.poll(delay); _phy.poll(delay);
} }
} catch (std::exception &exc) {
Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR;
_fatalErrorMessage = exc.what();
} catch ( ... ) { } catch ( ... ) {
Mutex::Lock _l(_termReason_m); Mutex::Lock _l(_termReason_m);
_termReason = ONE_UNRECOVERABLE_ERROR; _termReason = ONE_UNRECOVERABLE_ERROR;
@ -1819,40 +1808,13 @@ public:
} }
} }
void announceStatusToClusterMember(TcpConnection *tc) // =========================================================================
// Cluster messaging functions
// =========================================================================
// mlen must be at least 24
void encryptClusterMessage(char *data,unsigned int mlen)
{ {
Buffer<4096> buf;
buf.appendRandom(16);
buf.addSize(8); // space for MAC
buf.append((uint8_t)CLUSTER_MESSAGE_STATUS);
buf.append(_clusterMemberId);
buf.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
buf.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
buf.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
{
Mutex::Lock _l(_localInterfaceAddresses_m);
buf.append((uint16_t)_localInterfaceAddresses.size());
for(std::vector<InetAddress>::const_iterator i(_localInterfaceAddresses.begin());i!=_localInterfaceAddresses.end();++i) {
i->serialize(buf);
if ((buf.size() + 32) > buf.capacity())
break;
}
}
Mutex::Lock _l(tc->writeq_m);
if (tc->writeq.length() == 0)
_phy.setNotifyWritable(tc->sock,true);
const unsigned int mlen = buf.size();
tc->writeq.push_back((char)((mlen >> 16) & 0xff));
tc->writeq.push_back((char)((mlen >> 8) & 0xff));
tc->writeq.push_back((char)(mlen & 0xff));
char *data = reinterpret_cast<char *>(buf.unsafeData());
uint8_t key[32]; uint8_t key[32];
memcpy(key,_clusterKey,32); memcpy(key,_clusterKey,32);
for(int i=0;i<8;++i) key[i] ^= data[i]; for(int i=0;i<8;++i) key[i] ^= data[i];
@ -1865,14 +1827,124 @@ public:
s20.crypt12(data + 24,data + 24,mlen - 24); s20.crypt12(data + 24,data + 24,mlen - 24);
Poly1305::compute(mac,data + 24,mlen - 24,macKey); Poly1305::compute(mac,data + 24,mlen - 24,macKey);
memcpy(data + 16,mac,8); memcpy(data + 16,mac,8);
}
void announceStatusToClusterMember(TcpConnection *tc)
{
try {
Buffer<8194> buf;
buf.appendRandom(16);
buf.addSize(8); // space for MAC
buf.append((uint8_t)CLUSTER_MESSAGE_STATUS);
buf.append(_clusterMemberId);
buf.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
buf.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
buf.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
std::vector<InetAddress> lif(_binder.allBoundLocalInterfaceAddresses());
buf.append((uint16_t)lif.size());
for(std::vector<InetAddress>::const_iterator i(lif.begin());i!=lif.end();++i)
i->serialize(buf);
Mutex::Lock _l(tc->writeq_m);
if (tc->writeq.length() == 0)
_phy.setNotifyWritable(tc->sock,true);
const unsigned int mlen = buf.size();
tc->writeq.push_back((char)((mlen >> 16) & 0xff));
tc->writeq.push_back((char)((mlen >> 8) & 0xff));
tc->writeq.push_back((char)(mlen & 0xff));
char *const data = reinterpret_cast<char *>(buf.unsafeData());
encryptClusterMessage(data,mlen);
tc->writeq.append(data,mlen); tc->writeq.append(data,mlen);
} catch ( ... ) {
fprintf(stderr,"WARNING: unexpected exception announcing status to cluster members" ZT_EOL_S);
}
}
bool proxySendViaCluster(const InetAddress &fromAddress,const InetAddress &dest,const void *data,unsigned int len,unsigned int ttl)
{
Mutex::Lock _l(_tcpConnections_m);
for(std::vector<TcpConnection *>::const_iterator c(_tcpConnections.begin());c!=_tcpConnections.end();++c) {
TcpConnection *const tc = *c;
if ((tc->type == TcpConnection::TCP_CLUSTER_BACKPLANE)&&(tc->clusterMemberId)) {
Mutex::Lock _l2(tc->clusterMemberLocalAddresses_m);
for(std::vector<InetAddress>::const_iterator i(tc->clusterMemberLocalAddresses.begin());i!=tc->clusterMemberLocalAddresses.end();++i) {
if (*i == fromAddress) {
Buffer<1024> buf;
buf.appendRandom(16);
buf.addSize(8); // space for MAC
buf.append((uint8_t)CLUSTER_MESSAGE_PROXY_SEND);
buf.append((uint8_t)ttl);
dest.serialize(buf);
fromAddress.serialize(buf);
Mutex::Lock _l3(tc->writeq_m);
if (tc->writeq.length() == 0)
_phy.setNotifyWritable(tc->sock,true);
const unsigned int mlen = buf.size() + len;
tc->writeq.push_back((char)((mlen >> 16) & 0xff));
tc->writeq.push_back((char)((mlen >> 8) & 0xff));
tc->writeq.push_back((char)(mlen & 0xff));
const unsigned long startpos = (unsigned long)tc->writeq.length();
tc->writeq.append(reinterpret_cast<const char *>(buf.data()),buf.size());
tc->writeq.append(reinterpret_cast<const char *>(data),len);
char *const outdata = const_cast<char *>(tc->writeq.data()) + startpos;
encryptClusterMessage(outdata,mlen);
return true;
}
}
}
}
return false;
}
void replicateStateObject(const ZT_StateObjectType type,const uint64_t id,const void *const data,const unsigned int len,TcpConnection *tc)
{
char buf[34];
Mutex::Lock _l2(tc->writeq_m);
if (tc->writeq.length() == 0)
_phy.setNotifyWritable(tc->sock,true);
const unsigned int mlen = len + 34;
tc->writeq.push_back((char)((mlen >> 16) & 0xff));
tc->writeq.push_back((char)((mlen >> 8) & 0xff));
tc->writeq.push_back((char)(mlen & 0xff));
Utils::getSecureRandom(buf,16);
buf[24] = (char)CLUSTER_MESSAGE_STATE_OBJECT;
buf[25] = (char)type;
buf[26] = (char)((id >> 56) & 0xff);
buf[27] = (char)((id >> 48) & 0xff);
buf[28] = (char)((id >> 40) & 0xff);
buf[29] = (char)((id >> 32) & 0xff);
buf[30] = (char)((id >> 24) & 0xff);
buf[31] = (char)((id >> 16) & 0xff);
buf[32] = (char)((id >> 8) & 0xff);
buf[33] = (char)(id & 0xff);
const unsigned long startpos = (unsigned long)tc->writeq.length();
tc->writeq.append(buf,34);
tc->writeq.append(reinterpret_cast<const char *>(data),len);
char *const outdata = const_cast<char *>(tc->writeq.data()) + startpos;
encryptClusterMessage(outdata,mlen);
} }
void replicateStateObjectToCluster(const ZT_StateObjectType type,const uint64_t id,const void *const data,const unsigned int len,const uint64_t everyoneBut) void replicateStateObjectToCluster(const ZT_StateObjectType type,const uint64_t id,const void *const data,const unsigned int len,const uint64_t everyoneBut)
{ {
uint8_t *buf = new uint8_t[len + 34];
try {
std::vector<uint64_t> sentTo; std::vector<uint64_t> sentTo;
if (everyoneBut) if (everyoneBut)
sentTo.push_back(everyoneBut); sentTo.push_back(everyoneBut);
@ -1881,48 +1953,9 @@ public:
TcpConnection *const c = *ci; TcpConnection *const c = *ci;
if ((c->type == TcpConnection::TCP_CLUSTER_BACKPLANE)&&(c->clusterMemberId != 0)&&(std::find(sentTo.begin(),sentTo.end(),c->clusterMemberId) == sentTo.end())) { if ((c->type == TcpConnection::TCP_CLUSTER_BACKPLANE)&&(c->clusterMemberId != 0)&&(std::find(sentTo.begin(),sentTo.end(),c->clusterMemberId) == sentTo.end())) {
sentTo.push_back(c->clusterMemberId); sentTo.push_back(c->clusterMemberId);
Mutex::Lock _l2(c->writeq_m); replicateStateObject(type,id,data,len,c);
if (c->writeq.length() == 0)
_phy.setNotifyWritable(c->sock,true);
const unsigned int mlen = len + 34;
c->writeq.push_back((char)((mlen >> 16) & 0xff));
c->writeq.push_back((char)((mlen >> 8) & 0xff));
c->writeq.push_back((char)(mlen & 0xff));
Utils::getSecureRandom(buf,16);
buf[24] = (uint8_t)CLUSTER_MESSAGE_STATE_OBJECT;
buf[25] = (uint8_t)type;
buf[26] = (uint8_t)((id >> 56) & 0xff);
buf[27] = (uint8_t)((id >> 48) & 0xff);
buf[28] = (uint8_t)((id >> 40) & 0xff);
buf[29] = (uint8_t)((id >> 32) & 0xff);
buf[30] = (uint8_t)((id >> 24) & 0xff);
buf[31] = (uint8_t)((id >> 16) & 0xff);
buf[32] = (uint8_t)((id >> 8) & 0xff);
buf[33] = (uint8_t)(id & 0xff);
memcpy(buf + 34,data,len);
uint8_t key[32];
memcpy(key,_clusterKey,32);
for(int i=0;i<8;++i) key[i] ^= buf[i];
Salsa20 s20(key,buf + 8);
uint8_t macKey[32];
uint8_t mac[16];
memset(macKey,0,32);
s20.crypt12(macKey,macKey,32);
s20.crypt12(buf + 24,buf + 24,mlen - 24);
Poly1305::compute(mac,buf + 24,mlen - 24,macKey);
memcpy(buf + 16,mac,8);
c->writeq.append(reinterpret_cast<char *>(buf),len + 34);
} }
} }
} catch ( ... ) {} // sanity check
delete [] buf;
} }
void writeStateObject(enum ZT_StateObjectType type,uint64_t id,const void *data,int len) void writeStateObject(enum ZT_StateObjectType type,uint64_t id,const void *data,int len)
@ -1955,6 +1988,7 @@ public:
break; break;
} }
if (p[0]) { if (p[0]) {
if (len >= 0) {
FILE *f = fopen(p,"w"); FILE *f = fopen(p,"w");
if (f) { if (f) {
if (fwrite(data,len,1,f) != 1) if (fwrite(data,len,1,f) != 1)
@ -1965,6 +1999,38 @@ public:
} else { } else {
fprintf(stderr,"WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S,p); fprintf(stderr,"WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S,p);
} }
} else {
OSUtils::rm(p);
}
}
}
void sendMyCurrentClusterState(TcpConnection *tc)
{
// We currently don't need to dump everything. Networks and moons are most important.
// The rest will get caught up rapidly due to constant peer updates, etc.
std::string buf;
std::vector<std::string> l(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S + "networks.d").c_str(),false));
for(std::vector<std::string>::const_iterator f(l.begin());f!=l.end();++f) {
buf.clear();
if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S + *f).c_str(),buf)) {
if (f->length() == 21) {
const uint64_t nwid = Utils::hexStrToU64(f->substr(0,16).c_str());
if (nwid)
replicateStateObject(ZT_STATE_OBJECT_NETWORK_CONFIG,nwid,buf.data(),(int)buf.length(),tc);
}
}
}
l = OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S + "moons.d").c_str(),false);
for(std::vector<std::string>::const_iterator f(l.begin());f!=l.end();++f) {
buf.clear();
if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S + *f).c_str(),buf)) {
if (f->length() == 21) {
const uint64_t moonId = Utils::hexStrToU64(f->substr(0,16).c_str());
if (moonId)
replicateStateObject(ZT_STATE_OBJECT_MOON,moonId,buf.data(),(int)buf.length(),tc);
}
}
} }
} }
@ -2015,6 +2081,12 @@ public:
_tcpFallbackTunnel = tc; _tcpFallbackTunnel = tc;
_phy.streamSend(sock,ZT_TCP_TUNNEL_HELLO,sizeof(ZT_TCP_TUNNEL_HELLO)); _phy.streamSend(sock,ZT_TCP_TUNNEL_HELLO,sizeof(ZT_TCP_TUNNEL_HELLO));
} else if (tc->type == TcpConnection::TCP_CLUSTER_BACKPLANE) { } else if (tc->type == TcpConnection::TCP_CLUSTER_BACKPLANE) {
{
Mutex::Lock _l(tc->writeq_m);
tc->writeq.push_back((char)0x93); // identifies type of connection as cluster backplane
}
announceStatusToClusterMember(tc);
_phy.setNotifyWritable(sock,true);
} else { } else {
_phy.close(sock,true); _phy.close(sock,true);
} }
@ -2035,7 +2107,7 @@ public:
tc->type = TcpConnection::TCP_UNCATEGORIZED_INCOMING; tc->type = TcpConnection::TCP_UNCATEGORIZED_INCOMING;
tc->parent = this; tc->parent = this;
tc->sock = sockN; tc->sock = sockN;
tc->from = from; tc->remoteAddr = from;
tc->lastReceive = OSUtils::now(); tc->lastReceive = OSUtils::now();
http_parser_init(&(tc->parser),HTTP_REQUEST); http_parser_init(&(tc->parser),HTTP_REQUEST);
tc->parser.data = (void *)tc; tc->parser.data = (void *)tc;
@ -2072,17 +2144,19 @@ public:
switch(reinterpret_cast<uint8_t *>(data)[0]) { switch(reinterpret_cast<uint8_t *>(data)[0]) {
// 0x93 is first byte of cluster backplane connections // 0x93 is first byte of cluster backplane connections
case 0x93: { case 0x93: {
// We only allow this from cluster backplane IPs. We also authenticate
// each packet cryptographically, so this is just a first line of defense.
bool allow = false; bool allow = false;
{ {
Mutex::Lock _l(_localConfig_m); Mutex::Lock _l(_localConfig_m);
for(std::vector< InetAddress >::const_iterator i(_clusterBackplaneAddresses.begin());i!=_clusterBackplaneAddresses.end();++i) { for(std::vector< InetAddress >::const_iterator i(_clusterBackplaneAddresses.begin());i!=_clusterBackplaneAddresses.end();++i) {
if (tc->from.ipsEqual(*i)) { if (tc->remoteAddr.ipsEqual(*i)) {
allow = true; allow = true;
break; break;
} }
} }
} }
if (allow) { // note that we also auth each packet cryptographically -- this is just a first line sanity check if (allow) {
tc->type = TcpConnection::TCP_CLUSTER_BACKPLANE; tc->type = TcpConnection::TCP_CLUSTER_BACKPLANE;
tc->clusterMemberId = 0; // unknown, waiting for first status message tc->clusterMemberId = 0; // unknown, waiting for first status message
announceStatusToClusterMember(tc); announceStatusToClusterMember(tc);
@ -2097,15 +2171,17 @@ public:
case 'G': case 'G':
case 'P': case 'P':
case 'H': { case 'H': {
// This is only allowed from IPs permitted to access the management
// backplane, which is just 127.0.0.1/::1 unless otherwise configured.
bool allow; bool allow;
{ {
Mutex::Lock _l(_localConfig_m); Mutex::Lock _l(_localConfig_m);
if (_allowManagementFrom.size() == 0) { if (_allowManagementFrom.size() == 0) {
allow = (tc->from.ipScope() == InetAddress::IP_SCOPE_LOOPBACK); allow = (tc->remoteAddr.ipScope() == InetAddress::IP_SCOPE_LOOPBACK);
} else { } else {
allow = false; allow = false;
for(std::vector<InetAddress>::const_iterator i(_allowManagementFrom.begin());i!=_allowManagementFrom.end();++i) { for(std::vector<InetAddress>::const_iterator i(_allowManagementFrom.begin());i!=_allowManagementFrom.end();++i) {
if (i->containsAddress(tc->from)) { if (i->containsAddress(tc->remoteAddr)) {
allow = true; allow = true;
break; break;
} }
@ -2240,11 +2316,15 @@ public:
if (mlen > (25 + 16)) { if (mlen > (25 + 16)) {
Buffer<4096> tmp(data + 25,mlen - 25); Buffer<4096> tmp(data + 25,mlen - 25);
try { try {
tc->clusterMemberId = tmp.at<uint64_t>(0); const uint64_t cmid = tmp.at<uint64_t>(0);
if (tc->clusterMemberId == _clusterMemberId) { // shouldn't happen, but don't allow self-to-self if (cmid == _clusterMemberId) { // shouldn't happen, but don't allow self-to-self
_phy.close(sock); _phy.close(sock);
return; return;
} }
if (!tc->clusterMemberId) {
tc->clusterMemberId = cmid;
sendMyCurrentClusterState(tc);
}
tc->clusterMemberVersionMajor = tmp.at<uint16_t>(8); tc->clusterMemberVersionMajor = tmp.at<uint16_t>(8);
tc->clusterMemberVersionMinor = tmp.at<uint16_t>(10); tc->clusterMemberVersionMinor = tmp.at<uint16_t>(10);
tc->clusterMemberVersionRev = tmp.at<uint16_t>(12); tc->clusterMemberVersionRev = tmp.at<uint16_t>(12);
@ -2255,7 +2335,10 @@ public:
la.push_back(InetAddress()); la.push_back(InetAddress());
ptr += la.back().deserialize(tmp,ptr); ptr += la.back().deserialize(tmp,ptr);
} }
{
Mutex::Lock _l2(tc->clusterMemberLocalAddresses_m);
tc->clusterMemberLocalAddresses.swap(la); tc->clusterMemberLocalAddresses.swap(la);
}
} catch ( ... ) {} } catch ( ... ) {}
} }
break; break;
@ -2284,17 +2367,12 @@ public:
Buffer<4096> tmp(data + 25,mlen - 25); Buffer<4096> tmp(data + 25,mlen - 25);
try { try {
InetAddress dest,src; InetAddress dest,src;
unsigned int ptr = dest.deserialize(tmp); const unsigned int ttl = (unsigned int)tmp[0];
unsigned int ptr = 1;
ptr += dest.deserialize(tmp);
ptr += src.deserialize(tmp,ptr); ptr += src.deserialize(tmp,ptr);
if (ptr < tmp.size()) { if (ptr < tmp.size())
bool local; _binder.udpSend(_phy,src,dest,reinterpret_cast<const uint8_t *>(tmp.data()) + ptr,tmp.size() - ptr,ttl);
{
Mutex::Lock _l(_localInterfaceAddresses_m);
local = (std::find(_localInterfaceAddresses.begin(),_localInterfaceAddresses.end(),src) != _localInterfaceAddresses.end());
}
if (local)
nodeWirePacketSendFunction(&src,&dest,reinterpret_cast<const uint8_t *>(tmp.data()) + ptr,tmp.size() - ptr,0);
}
} catch ( ... ) {} } catch ( ... ) {}
} }
break; break;
@ -2539,24 +2617,8 @@ public:
inline int nodeWirePacketSendFunction(const struct sockaddr_storage *localAddr,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl) inline int nodeWirePacketSendFunction(const struct sockaddr_storage *localAddr,const struct sockaddr_storage *addr,const void *data,unsigned int len,unsigned int ttl)
{ {
unsigned int fromBindingNo = 0;
if (addr->ss_family == AF_INET) {
if (reinterpret_cast<const struct sockaddr_in *>(localAddr)->sin_port == 0) {
// If sender is sending from wildcard (null address), choose the secondary backup
// port 1/4 of the time. (but only for IPv4)
fromBindingNo = (++_udpPortPickerCounter & 0x4) >> 2;
if (!_ports[fromBindingNo])
fromBindingNo = 0;
} else {
const uint16_t lp = reinterpret_cast<const struct sockaddr_in *>(localAddr)->sin_port;
if (lp == _portsBE[1])
fromBindingNo = 1;
else if (lp == _portsBE[2])
fromBindingNo = 2;
}
#ifdef ZT_TCP_FALLBACK_RELAY #ifdef ZT_TCP_FALLBACK_RELAY
if (addr->ss_family == AF_INET) {
// TCP fallback tunnel support, currently IPv4 only // TCP fallback tunnel support, currently IPv4 only
if ((len >= 16)&&(reinterpret_cast<const InetAddress *>(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) { if ((len >= 16)&&(reinterpret_cast<const InetAddress *>(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) {
// Engage TCP tunnel fallback if we haven't received anything valid from a global // Engage TCP tunnel fallback if we haven't received anything valid from a global
@ -2579,40 +2641,45 @@ public:
_tcpFallbackTunnel->writeq.append(reinterpret_cast<const char *>(reinterpret_cast<const void *>(&(reinterpret_cast<const struct sockaddr_in *>(addr)->sin_port))),2); _tcpFallbackTunnel->writeq.append(reinterpret_cast<const char *>(reinterpret_cast<const void *>(&(reinterpret_cast<const struct sockaddr_in *>(addr)->sin_port))),2);
_tcpFallbackTunnel->writeq.append((const char *)data,len); _tcpFallbackTunnel->writeq.append((const char *)data,len);
} else if (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER)&&((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INVERVAL / 2))) { } else if (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER)&&((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INVERVAL / 2))) {
bool connected = false;
const InetAddress addr(ZT_TCP_FALLBACK_RELAY); const InetAddress addr(ZT_TCP_FALLBACK_RELAY);
TcpConnection *tc = new TcpConnection(); TcpConnection *tc = new TcpConnection();
{ {
Mutex::Lock _l(_tcpConnections_m); Mutex::Lock _l(_tcpConnections_m);
_tcpConnections.push_back(tc); _tcpConnections.push_back(tc);
} }
tc->type = TcpConnection::TCP_TUNNEL_OUTGOING; tc->type = TcpConnection::TCP_TUNNEL_OUTGOING;
tc->remoteAddr = addr;
tc->lastReceive = OSUtils::now();
tc->parent = this; tc->parent = this;
tc->sock = (PhySocket *)0; // set in connect handler tc->sock = (PhySocket *)0; // set in connect handler
tc->messageSize = 0; tc->messageSize = 0;
bool connected = false;
_phy.tcpConnect(reinterpret_cast<const struct sockaddr *>(&addr),connected,(void *)tc,true); _phy.tcpConnect(reinterpret_cast<const struct sockaddr *>(&addr),connected,(void *)tc,true);
} }
} }
_lastSendToGlobalV4 = now; _lastSendToGlobalV4 = now;
} }
}
// Even when relaying we still send via UDP. This way if UDP starts
// working we can instantly "fail forward" to it and stop using TCP
// proxy fallback, which is slow.
#endif // ZT_TCP_FALLBACK_RELAY #endif // ZT_TCP_FALLBACK_RELAY
} else if (addr->ss_family == AF_INET6) { switch (_binder.udpSend(_phy,*(reinterpret_cast<const InetAddress *>(localAddr)),*(reinterpret_cast<const InetAddress *>(addr)),data,len,ttl)) {
if (reinterpret_cast<const struct sockaddr_in6 *>(localAddr)->sin6_port != 0) { case -1: // local bound address not found, so see if a cluster peer owns it
const uint16_t lp = reinterpret_cast<const struct sockaddr_in6 *>(localAddr)->sin6_port; if (localAddr->ss_family != 0) {
if (lp == _portsBE[1]) return (proxySendViaCluster(*(reinterpret_cast<const InetAddress *>(localAddr)),*(reinterpret_cast<const InetAddress *>(addr)),data,len,ttl)) ? 0 : -1;
fromBindingNo = 1;
else if (lp == _portsBE[2])
fromBindingNo = 2;
}
} else { } else {
return -1; return -1; // failure
} }
break;
return (_bindings[fromBindingNo].udpSend(_phy,*(reinterpret_cast<const InetAddress *>(localAddr)),*(reinterpret_cast<const InetAddress *>(addr)),data,len,ttl)) ? 0 : -1; case 0: // failure
return -1;
default: // success
return 0;
}
} }
inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) inline void nodeVirtualNetworkFrameFunction(uint64_t nwid,void **nuptr,uint64_t sourceMac,uint64_t destMac,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
@ -2707,7 +2774,7 @@ public:
// phyOnTcpData(). If we made it here the source IP is okay. // phyOnTcpData(). If we made it here the source IP is okay.
try { try {
scode = handleControlPlaneHttpRequest(tc->from,tc->parser.method,tc->url,tc->headers,tc->readq,data,contentType); scode = handleControlPlaneHttpRequest(tc->remoteAddr,tc->parser.method,tc->url,tc->headers,tc->readq,data,contentType);
} catch (std::exception &exc) { } catch (std::exception &exc) {
fprintf(stderr,"WARNING: unexpected exception processing control HTTP request: %s" ZT_EOL_S,exc.what()); fprintf(stderr,"WARNING: unexpected exception processing control HTTP request: %s" ZT_EOL_S,exc.what());
scode = 500; scode = 500;