diff --git a/make-linux.mk b/make-linux.mk
index d0745fe9a..a84786918 100644
--- a/make-linux.mk
+++ b/make-linux.mk
@@ -14,7 +14,6 @@ DEFS?=
LDLIBS?=
DESTDIR?=
-
include objects.mk
ONE_OBJS+=osdep/LinuxEthernetTap.o
ONE_OBJS+=osdep/LinuxNetLink.o
diff --git a/node/C25519.cpp b/node/C25519.cpp
index 4384f8fd8..0bea59e9d 100644
--- a/node/C25519.cpp
+++ b/node/C25519.cpp
@@ -2687,7 +2687,7 @@ void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
}
}
-void get_hram(unsigned char *hram, const unsigned char *sm, const unsigned char *pk, unsigned char *playground, unsigned long long smlen)
+void get_hram(unsigned char *hram, const unsigned char *sm, const unsigned char *pk, unsigned char *playground, unsigned long smlen)
{
unsigned long long i;
@@ -2778,13 +2778,22 @@ void C25519::sign(const C25519::Private &myPrivate,const C25519::Public &myPubli
#endif
}
-bool C25519::verify(const C25519::Public &their,const void *msg,unsigned int len,const void *signature)
+bool C25519::verify(const C25519::Public &their,const void *msg,unsigned int len,const void *signature,const unsigned int siglen)
{
- const unsigned char *const sig = (const unsigned char *)signature;
+ if (siglen < 64) return false;
+
+ const unsigned char *sig = (const unsigned char *)signature;
unsigned char digest[64]; // we sign the first 32 bytes of SHA-512(msg)
+ unsigned char sigtmp[96];
SHA512::hash(digest,msg,len);
- if (!Utils::secureEq(sig + 64,digest,32))
+
+ if ((siglen == 96)&&(!Utils::secureEq(sig+64,digest,32))) {
return false;
+ } else if (siglen == 64) {
+ memcpy(sigtmp,sig,64);
+ memcpy(sigtmp+64,digest,32);
+ sig = sigtmp;
+ }
unsigned char t2[32];
ge25519 get1, get2;
diff --git a/node/C25519.hpp b/node/C25519.hpp
index 640aedf55..c87df9c20 100644
--- a/node/C25519.hpp
+++ b/node/C25519.hpp
@@ -125,6 +125,11 @@ public:
/**
* Sign a message with a sender's key pair
*
+ * Note that this generates a 96-byte signature that contains an extra 32 bytes
+ * of hash data. This data is included for historical reasons and is optional. The
+ * verify function here will take the first 64 bytes only (normal ed25519 signature)
+ * or a 96-byte length signature with the extra input hash data.
+ *
* @param myPrivate My private key
* @param myPublic My public key
* @param msg Message to sign
@@ -150,10 +155,11 @@ public:
* @param their Public key to verify against
* @param msg Message to verify signature integrity against
* @param len Length of message in bytes
- * @param signature 96-byte signature
+ * @param signature Signature bytes
+ * @param siglen Length of signature in bytes
* @return True if signature is valid and the message is authentic and unmodified
*/
- static bool verify(const Public &their,const void *msg,unsigned int len,const void *signature);
+ static bool verify(const Public &their,const void *msg,unsigned int len,const void *signature,const unsigned int siglen);
/**
* Verify a message's signature
@@ -164,10 +170,7 @@ public:
* @param signature 96-byte signature
* @return True if signature is valid and the message is authentic and unmodified
*/
- static inline bool verify(const Public &their,const void *msg,unsigned int len,const Signature &signature)
- {
- return verify(their,msg,len,signature.data);
- }
+ static inline bool verify(const Public &their,const void *msg,unsigned int len,const Signature &signature) { return verify(their,msg,len,signature.data,96); }
private:
// derive first 32 bytes of kp.pub from first 32 bytes of kp.priv
diff --git a/node/ECC384.cpp b/node/ECC384.cpp
new file mode 100644
index 000000000..44c8778f1
--- /dev/null
+++ b/node/ECC384.cpp
@@ -0,0 +1,1430 @@
+/*
+ * ZeroTier One - Network Virtualization Everywhere
+ * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ * --
+ *
+ * You can be released from the requirements of the license by purchasing
+ * a commercial license. Buying such a license is mandatory as soon as you
+ * develop commercial closed-source software that incorporates or links
+ * directly against ZeroTier software without disclosing the source code
+ * of your own application.
+ */
+
+#include
+#include
+#include
+#include
+
+#include "Constants.hpp"
+#include "ECC384.hpp"
+#include "Utils.hpp"
+
+namespace ZeroTier {
+
+namespace {
+//////////////////////////////////////////////////////////////////////////////
+// This is EASY-ECC by Kenneth MacKay
+// https://github.com/esxgx/easy-ecc
+// This code is under the BSD 2-clause license, not ZeroTier's license
+//////////////////////////////////////////////////////////////////////////////
+
+//////////////////////////////////////////////////////////////////////////////
+// ecc.h from easy-ecc
+//////////////////////////////////////////////////////////////////////////////
+
+#define secp128r1 16
+#define secp192r1 24
+#define secp256r1 32
+#define secp384r1 48
+
+//#ifndef ECC_CURVE
+// #define ECC_CURVE secp256r1
+//#endif
+#define ECC_CURVE secp384r1
+
+//#if (ECC_CURVE != secp128r1 && ECC_CURVE != secp192r1 && ECC_CURVE != secp256r1 && ECC_CURVE != secp384r1)
+// #error "Must define ECC_CURVE to one of the available curves"
+//#endif
+
+#define ECC_BYTES ECC_CURVE
+
+//////////////////////////////////////////////////////////////////////////////
+// ecc.c from easy-ecc
+//////////////////////////////////////////////////////////////////////////////
+
+//#include "ecc.h"
+//#include
+
+#define NUM_ECC_DIGITS (ECC_BYTES/8)
+#define MAX_TRIES 16
+
+typedef unsigned int uint;
+
+#if defined(__SIZEOF_INT128__) || ((__clang_major__ * 100 + __clang_minor__) >= 302)
+ #define SUPPORTS_INT128 1
+#else
+ #define SUPPORTS_INT128 0
+#endif
+
+#if SUPPORTS_INT128
+typedef unsigned __int128 uint128_t;
+#else
+typedef struct
+{
+ uint64_t m_low;
+ uint64_t m_high;
+} uint128_t;
+#endif
+
+typedef struct EccPoint
+{
+ uint64_t x[NUM_ECC_DIGITS];
+ uint64_t y[NUM_ECC_DIGITS];
+} EccPoint;
+
+#define CONCAT1(a, b) a##b
+#define CONCAT(a, b) CONCAT1(a, b)
+
+#define Curve_P_16 {0xFFFFFFFFFFFFFFFF, 0xFFFFFFFDFFFFFFFF}
+#define Curve_P_24 {0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFFFFFFFFFEull, 0xFFFFFFFFFFFFFFFFull}
+#define Curve_P_32 {0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, 0x0000000000000000ull, 0xFFFFFFFF00000001ull}
+#define Curve_P_48 {0x00000000FFFFFFFF, 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}
+
+#define Curve_B_16 {0xD824993C2CEE5ED3, 0xE87579C11079F43D}
+#define Curve_B_24 {0xFEB8DEECC146B9B1ull, 0x0FA7E9AB72243049ull, 0x64210519E59C80E7ull}
+#define Curve_B_32 {0x3BCE3C3E27D2604Bull, 0x651D06B0CC53B0F6ull, 0xB3EBBD55769886BCull, 0x5AC635D8AA3A93E7ull}
+#define Curve_B_48 {0x2A85C8EDD3EC2AEF, 0xC656398D8A2ED19D, 0x0314088F5013875A, 0x181D9C6EFE814112, 0x988E056BE3F82D19, 0xB3312FA7E23EE7E4}
+
+#define Curve_G_16 { \
+ {0x0C28607CA52C5B86, 0x161FF7528B899B2D}, \
+ {0xC02DA292DDED7A83, 0xCF5AC8395BAFEB13}}
+
+#define Curve_G_24 { \
+ {0xF4FF0AFD82FF1012ull, 0x7CBF20EB43A18800ull, 0x188DA80EB03090F6ull}, \
+ {0x73F977A11E794811ull, 0x631011ED6B24CDD5ull, 0x07192B95FFC8DA78ull}}
+
+#define Curve_G_32 { \
+ {0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull}, \
+ {0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull}}
+
+#define Curve_G_48 { \
+ {0x3A545E3872760AB7, 0x5502F25DBF55296C, 0x59F741E082542A38, 0x6E1D3B628BA79B98, 0x8EB1C71EF320AD74, 0xAA87CA22BE8B0537}, \
+ {0x7A431D7C90EA0E5F, 0x0A60B1CE1D7E819D, 0xE9DA3113B5F0B8C0, 0xF8F41DBD289A147C, 0x5D9E98BF9292DC29, 0x3617DE4A96262C6F}}
+
+#define Curve_N_16 {0x75A30D1B9038A115, 0xFFFFFFFE00000000}
+#define Curve_N_24 {0x146BC9B1B4D22831ull, 0xFFFFFFFF99DEF836ull, 0xFFFFFFFFFFFFFFFFull}
+#define Curve_N_32 {0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull}
+#define Curve_N_48 {0xECEC196ACCC52973, 0x581A0DB248B0A77A, 0xC7634D81F4372DDF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF}
+
+static uint64_t curve_p[NUM_ECC_DIGITS] = CONCAT(Curve_P_, ECC_CURVE);
+static uint64_t curve_b[NUM_ECC_DIGITS] = CONCAT(Curve_B_, ECC_CURVE);
+static EccPoint curve_G = CONCAT(Curve_G_, ECC_CURVE);
+static uint64_t curve_n[NUM_ECC_DIGITS] = CONCAT(Curve_N_, ECC_CURVE);
+
+#if 0
+#if (defined(_WIN32) || defined(_WIN64))
+/* Windows */
+
+#define WIN32_LEAN_AND_MEAN
+#include
+#include
+
+static int getRandomNumber(uint64_t *p_vli)
+{
+ HCRYPTPROV l_prov;
+ if(!CryptAcquireContext(&l_prov, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
+ {
+ return 0;
+ }
+
+ CryptGenRandom(l_prov, ECC_BYTES, (BYTE *)p_vli);
+ CryptReleaseContext(l_prov, 0);
+
+ return 1;
+}
+
+#else /* _WIN32 */
+
+/* Assume that we are using a POSIX-like system with /dev/urandom or /dev/random. */
+#include
+#include
+#include
+
+#ifndef O_CLOEXEC
+ #define O_CLOEXEC 0
+#endif
+
+static int getRandomNumber(uint64_t *p_vli)
+{
+ int l_fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
+ if(l_fd == -1)
+ {
+ l_fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
+ if(l_fd == -1)
+ {
+ return 0;
+ }
+ }
+
+ char *l_ptr = (char *)p_vli;
+ size_t l_left = ECC_BYTES;
+ while(l_left > 0)
+ {
+ int l_read = read(l_fd, l_ptr, l_left);
+ if(l_read <= 0)
+ { // read failed
+ close(l_fd);
+ return 0;
+ }
+ l_left -= l_read;
+ l_ptr += l_read;
+ }
+
+ close(l_fd);
+ return 1;
+}
+
+#endif /* _WIN32 */
+#endif
+
+// Use ZeroTier's secure PRNG
+static inline int getRandomNumber(uint64_t *p_vli)
+{
+ Utils::getSecureRandom(p_vli,ECC_BYTES);
+ return 1;
+}
+
+static inline void vli_clear(uint64_t *p_vli)
+{
+ uint i;
+ for(i=0; i= 0 && p_vli[i] == 0; --i)
+ {
+ }
+
+ return (i + 1);
+}
+
+/* Counts the number of bits required for p_vli. */
+static inline uint vli_numBits(uint64_t *p_vli)
+{
+ uint i;
+ uint64_t l_digit;
+
+ uint l_numDigits = vli_numDigits(p_vli);
+ if(l_numDigits == 0)
+ {
+ return 0;
+ }
+
+ l_digit = p_vli[l_numDigits - 1];
+ for(i=0; l_digit; ++i)
+ {
+ l_digit >>= 1;
+ }
+
+ return ((l_numDigits - 1) * 64 + i);
+}
+
+/* Sets p_dest = p_src. */
+static inline void vli_set(uint64_t *p_dest, uint64_t *p_src)
+{
+ uint i;
+ for(i=0; i= 0; --i)
+ {
+ if(p_left[i] > p_right[i])
+ {
+ return 1;
+ }
+ else if(p_left[i] < p_right[i])
+ {
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/* Computes p_result = p_in << c, returning carry. Can modify in place (if p_result == p_in). 0 < p_shift < 64. */
+static inline uint64_t vli_lshift(uint64_t *p_result, uint64_t *p_in, uint p_shift)
+{
+ uint64_t l_carry = 0;
+ uint i;
+ for(i = 0; i < NUM_ECC_DIGITS; ++i)
+ {
+ uint64_t l_temp = p_in[i];
+ p_result[i] = (l_temp << p_shift) | l_carry;
+ l_carry = l_temp >> (64 - p_shift);
+ }
+
+ return l_carry;
+}
+
+/* Computes p_vli = p_vli >> 1. */
+static inline void vli_rshift1(uint64_t *p_vli)
+{
+ uint64_t *l_end = p_vli;
+ uint64_t l_carry = 0;
+
+ p_vli += NUM_ECC_DIGITS;
+ while(p_vli-- > l_end)
+ {
+ uint64_t l_temp = *p_vli;
+ *p_vli = (l_temp >> 1) | l_carry;
+ l_carry = l_temp << 63;
+ }
+}
+
+/* Computes p_result = p_left + p_right, returning carry. Can modify in place. */
+static inline uint64_t vli_add(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
+{
+ uint64_t l_carry = 0;
+ uint i;
+ for(i=0; i p_left[i]);
+ }
+ p_result[i] = l_diff;
+ }
+ return l_borrow;
+}
+
+#if SUPPORTS_INT128
+
+/* Computes p_result = p_left * p_right. */
+static inline void vli_mult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
+{
+ uint128_t r01 = 0;
+ uint64_t r2 = 0;
+
+ uint i, k;
+
+ /* Compute each digit of p_result in sequence, maintaining the carries. */
+ for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
+ {
+ uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
+ for(i=l_min; i<=k && i> 64) | (((uint128_t)r2) << 64);
+ r2 = 0;
+ }
+
+ p_result[NUM_ECC_DIGITS*2 - 1] = (uint64_t)r01;
+}
+
+/* Computes p_result = p_left^2. */
+static inline void vli_square(uint64_t *p_result, uint64_t *p_left)
+{
+ uint128_t r01 = 0;
+ uint64_t r2 = 0;
+
+ uint i, k;
+ for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
+ {
+ uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
+ for(i=l_min; i<=k && i<=k-i; ++i)
+ {
+ uint128_t l_product = (uint128_t)p_left[i] * p_left[k-i];
+ if(i < k-i)
+ {
+ r2 += l_product >> 127;
+ l_product *= 2;
+ }
+ r01 += l_product;
+ r2 += (r01 < l_product);
+ }
+ p_result[k] = (uint64_t)r01;
+ r01 = (r01 >> 64) | (((uint128_t)r2) << 64);
+ r2 = 0;
+ }
+
+ p_result[NUM_ECC_DIGITS*2 - 1] = (uint64_t)r01;
+}
+
+#else /* #if SUPPORTS_INT128 */
+
+static inline uint128_t mul_64_64(uint64_t p_left, uint64_t p_right)
+{
+ uint128_t l_result;
+
+ uint64_t a0 = p_left & 0xffffffffull;
+ uint64_t a1 = p_left >> 32;
+ uint64_t b0 = p_right & 0xffffffffull;
+ uint64_t b1 = p_right >> 32;
+
+ uint64_t m0 = a0 * b0;
+ uint64_t m1 = a0 * b1;
+ uint64_t m2 = a1 * b0;
+ uint64_t m3 = a1 * b1;
+
+ m2 += (m0 >> 32);
+ m2 += m1;
+ if(m2 < m1)
+ { // overflow
+ m3 += 0x100000000ull;
+ }
+
+ l_result.m_low = (m0 & 0xffffffffull) | (m2 << 32);
+ l_result.m_high = m3 + (m2 >> 32);
+
+ return l_result;
+}
+
+static inline uint128_t add_128_128(uint128_t a, uint128_t b)
+{
+ uint128_t l_result;
+ l_result.m_low = a.m_low + b.m_low;
+ l_result.m_high = a.m_high + b.m_high + (l_result.m_low < a.m_low);
+ return l_result;
+}
+
+static inline void vli_mult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
+{
+ uint128_t r01 = {0, 0};
+ uint64_t r2 = 0;
+
+ uint i, k;
+
+ /* Compute each digit of p_result in sequence, maintaining the carries. */
+ for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
+ {
+ uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
+ for(i=l_min; i<=k && i> 63;
+ l_product.m_high = (l_product.m_high << 1) | (l_product.m_low >> 63);
+ l_product.m_low <<= 1;
+ }
+ r01 = add_128_128(r01, l_product);
+ r2 += (r01.m_high < l_product.m_high);
+ }
+ p_result[k] = r01.m_low;
+ r01.m_low = r01.m_high;
+ r01.m_high = r2;
+ r2 = 0;
+ }
+
+ p_result[NUM_ECC_DIGITS*2 - 1] = r01.m_low;
+}
+
+#endif /* SUPPORTS_INT128 */
+
+
+/* Computes p_result = (p_left + p_right) % p_mod.
+ Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
+static inline void vli_modAdd(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, uint64_t *p_mod)
+{
+ uint64_t l_carry = vli_add(p_result, p_left, p_right);
+ if(l_carry || vli_cmp(p_result, p_mod) >= 0)
+ { /* p_result > p_mod (p_result = p_mod + remainder), so subtract p_mod to get remainder. */
+ vli_sub(p_result, p_result, p_mod);
+ }
+}
+
+/* Computes p_result = (p_left - p_right) % p_mod.
+ Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
+static inline void vli_modSub(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, uint64_t *p_mod)
+{
+ uint64_t l_borrow = vli_sub(p_result, p_left, p_right);
+ if(l_borrow)
+ { /* In this case, p_result == -diff == (max int) - diff.
+ Since -x % d == d - x, we can get the correct result from p_result + p_mod (with overflow). */
+ vli_add(p_result, p_result, p_mod);
+ }
+}
+
+#if ECC_CURVE == secp128r1
+
+/* Computes p_result = p_product % curve_p.
+ See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */
+static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
+{
+ uint64_t l_tmp[NUM_ECC_DIGITS];
+ int l_carry;
+
+ vli_set(p_result, p_product);
+
+ l_tmp[0] = p_product[2];
+ l_tmp[1] = (p_product[3] & 0x1FFFFFFFFull) | (p_product[2] << 33);
+ l_carry = vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = (p_product[2] >> 31) | (p_product[3] << 33);
+ l_tmp[1] = (p_product[3] >> 31) | ((p_product[2] & 0xFFFFFFFF80000000ull) << 2);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = (p_product[2] >> 62) | (p_product[3] << 2);
+ l_tmp[1] = (p_product[3] >> 62) | ((p_product[2] & 0xC000000000000000ull) >> 29) | (p_product[3] << 35);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = (p_product[3] >> 29);
+ l_tmp[1] = ((p_product[3] & 0xFFFFFFFFE0000000ull) << 4);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = (p_product[3] >> 60);
+ l_tmp[1] = (p_product[3] & 0xFFFFFFFE00000000ull);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = 0;
+ l_tmp[1] = ((p_product[3] & 0xF000000000000000ull) >> 27);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ while(l_carry || vli_cmp(curve_p, p_result) != 1)
+ {
+ l_carry -= vli_sub(p_result, p_result, curve_p);
+ }
+}
+
+#elif ECC_CURVE == secp192r1
+
+/* Computes p_result = p_product % curve_p.
+ See algorithm 5 and 6 from http://www.isys.uni-klu.ac.at/PDF/2001-0126-MT.pdf */
+static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
+{
+ uint64_t l_tmp[NUM_ECC_DIGITS];
+ int l_carry;
+
+ vli_set(p_result, p_product);
+
+ vli_set(l_tmp, &p_product[3]);
+ l_carry = vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = 0;
+ l_tmp[1] = p_product[3];
+ l_tmp[2] = p_product[4];
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ l_tmp[0] = l_tmp[1] = p_product[5];
+ l_tmp[2] = 0;
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ while(l_carry || vli_cmp(curve_p, p_result) != 1)
+ {
+ l_carry -= vli_sub(p_result, p_result, curve_p);
+ }
+}
+
+#elif ECC_CURVE == secp256r1
+
+/* Computes p_result = p_product % curve_p
+ from http://www.nsa.gov/ia/_files/nist-routines.pdf */
+static void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
+{
+ uint64_t l_tmp[NUM_ECC_DIGITS];
+ int l_carry;
+
+ /* t */
+ vli_set(p_result, p_product);
+
+ /* s1 */
+ l_tmp[0] = 0;
+ l_tmp[1] = p_product[5] & 0xffffffff00000000ull;
+ l_tmp[2] = p_product[6];
+ l_tmp[3] = p_product[7];
+ l_carry = vli_lshift(l_tmp, l_tmp, 1);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ /* s2 */
+ l_tmp[1] = p_product[6] << 32;
+ l_tmp[2] = (p_product[6] >> 32) | (p_product[7] << 32);
+ l_tmp[3] = p_product[7] >> 32;
+ l_carry += vli_lshift(l_tmp, l_tmp, 1);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ /* s3 */
+ l_tmp[0] = p_product[4];
+ l_tmp[1] = p_product[5] & 0xffffffff;
+ l_tmp[2] = 0;
+ l_tmp[3] = p_product[7];
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ /* s4 */
+ l_tmp[0] = (p_product[4] >> 32) | (p_product[5] << 32);
+ l_tmp[1] = (p_product[5] >> 32) | (p_product[6] & 0xffffffff00000000ull);
+ l_tmp[2] = p_product[7];
+ l_tmp[3] = (p_product[6] >> 32) | (p_product[4] << 32);
+ l_carry += vli_add(p_result, p_result, l_tmp);
+
+ /* d1 */
+ l_tmp[0] = (p_product[5] >> 32) | (p_product[6] << 32);
+ l_tmp[1] = (p_product[6] >> 32);
+ l_tmp[2] = 0;
+ l_tmp[3] = (p_product[4] & 0xffffffff) | (p_product[5] << 32);
+ l_carry -= vli_sub(p_result, p_result, l_tmp);
+
+ /* d2 */
+ l_tmp[0] = p_product[6];
+ l_tmp[1] = p_product[7];
+ l_tmp[2] = 0;
+ l_tmp[3] = (p_product[4] >> 32) | (p_product[5] & 0xffffffff00000000ull);
+ l_carry -= vli_sub(p_result, p_result, l_tmp);
+
+ /* d3 */
+ l_tmp[0] = (p_product[6] >> 32) | (p_product[7] << 32);
+ l_tmp[1] = (p_product[7] >> 32) | (p_product[4] << 32);
+ l_tmp[2] = (p_product[4] >> 32) | (p_product[5] << 32);
+ l_tmp[3] = (p_product[6] << 32);
+ l_carry -= vli_sub(p_result, p_result, l_tmp);
+
+ /* d4 */
+ l_tmp[0] = p_product[7];
+ l_tmp[1] = p_product[4] & 0xffffffff00000000ull;
+ l_tmp[2] = p_product[5];
+ l_tmp[3] = p_product[6] & 0xffffffff00000000ull;
+ l_carry -= vli_sub(p_result, p_result, l_tmp);
+
+ if(l_carry < 0)
+ {
+ do
+ {
+ l_carry += vli_add(p_result, p_result, curve_p);
+ } while(l_carry < 0);
+ }
+ else
+ {
+ while(l_carry || vli_cmp(curve_p, p_result) != 1)
+ {
+ l_carry -= vli_sub(p_result, p_result, curve_p);
+ }
+ }
+}
+
+#elif ECC_CURVE == secp384r1
+
+static inline void omega_mult(uint64_t *p_result, uint64_t *p_right)
+{
+ uint64_t l_tmp[NUM_ECC_DIGITS];
+ uint64_t l_carry, l_diff;
+
+ /* Multiply by (2^128 + 2^96 - 2^32 + 1). */
+ vli_set(p_result, p_right); /* 1 */
+ l_carry = vli_lshift(l_tmp, p_right, 32);
+ p_result[1 + NUM_ECC_DIGITS] = l_carry + vli_add(p_result + 1, p_result + 1, l_tmp); /* 2^96 + 1 */
+ p_result[2 + NUM_ECC_DIGITS] = vli_add(p_result + 2, p_result + 2, p_right); /* 2^128 + 2^96 + 1 */
+ l_carry += vli_sub(p_result, p_result, l_tmp); /* 2^128 + 2^96 - 2^32 + 1 */
+ l_diff = p_result[NUM_ECC_DIGITS] - l_carry;
+ if(l_diff > p_result[NUM_ECC_DIGITS])
+ { /* Propagate borrow if necessary. */
+ uint i;
+ for(i = 1 + NUM_ECC_DIGITS; ; ++i)
+ {
+ --p_result[i];
+ if(p_result[i] != (uint64_t)-1)
+ {
+ break;
+ }
+ }
+ }
+ p_result[NUM_ECC_DIGITS] = l_diff;
+}
+
+/* Computes p_result = p_product % curve_p
+ see PDF "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs"
+ section "Curve-Specific Optimizations" */
+static inline void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
+{
+ uint64_t l_tmp[2*NUM_ECC_DIGITS];
+
+ while(!vli_isZero(p_product + NUM_ECC_DIGITS)) /* While c1 != 0 */
+ {
+ uint64_t l_carry = 0;
+ uint i;
+
+ vli_clear(l_tmp);
+ vli_clear(l_tmp + NUM_ECC_DIGITS);
+ omega_mult(l_tmp, p_product + NUM_ECC_DIGITS); /* tmp = w * c1 */
+ vli_clear(p_product + NUM_ECC_DIGITS); /* p = c0 */
+
+ /* (c1, c0) = c0 + w * c1 */
+ for(i=0; i 0)
+ {
+ vli_sub(p_product, p_product, curve_p);
+ }
+ vli_set(p_result, p_product);
+}
+
+#endif
+
+/* Computes p_result = (p_left * p_right) % curve_p. */
+static inline void vli_modMult_fast(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right)
+{
+ uint64_t l_product[2 * NUM_ECC_DIGITS];
+ vli_mult(l_product, p_left, p_right);
+ vli_mmod_fast(p_result, l_product);
+}
+
+/* Computes p_result = p_left^2 % curve_p. */
+static inline void vli_modSquare_fast(uint64_t *p_result, uint64_t *p_left)
+{
+ uint64_t l_product[2 * NUM_ECC_DIGITS];
+ vli_square(l_product, p_left);
+ vli_mmod_fast(p_result, l_product);
+}
+
+#define EVEN(vli) (!(vli[0] & 1))
+/* Computes p_result = (1 / p_input) % p_mod. All VLIs are the same size.
+ See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
+ https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */
+static inline void vli_modInv(uint64_t *p_result, uint64_t *p_input, uint64_t *p_mod)
+{
+ uint64_t a[NUM_ECC_DIGITS], b[NUM_ECC_DIGITS], u[NUM_ECC_DIGITS], v[NUM_ECC_DIGITS];
+ uint64_t l_carry;
+ int l_cmpResult;
+
+ if(vli_isZero(p_input))
+ {
+ vli_clear(p_result);
+ return;
+ }
+
+ vli_set(a, p_input);
+ vli_set(b, p_mod);
+ vli_clear(u);
+ u[0] = 1;
+ vli_clear(v);
+
+ while((l_cmpResult = vli_cmp(a, b)) != 0)
+ {
+ l_carry = 0;
+ if(EVEN(a))
+ {
+ vli_rshift1(a);
+ if(!EVEN(u))
+ {
+ l_carry = vli_add(u, u, p_mod);
+ }
+ vli_rshift1(u);
+ if(l_carry)
+ {
+ u[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
+ }
+ }
+ else if(EVEN(b))
+ {
+ vli_rshift1(b);
+ if(!EVEN(v))
+ {
+ l_carry = vli_add(v, v, p_mod);
+ }
+ vli_rshift1(v);
+ if(l_carry)
+ {
+ v[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
+ }
+ }
+ else if(l_cmpResult > 0)
+ {
+ vli_sub(a, a, b);
+ vli_rshift1(a);
+ if(vli_cmp(u, v) < 0)
+ {
+ vli_add(u, u, p_mod);
+ }
+ vli_sub(u, u, v);
+ if(!EVEN(u))
+ {
+ l_carry = vli_add(u, u, p_mod);
+ }
+ vli_rshift1(u);
+ if(l_carry)
+ {
+ u[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
+ }
+ }
+ else
+ {
+ vli_sub(b, b, a);
+ vli_rshift1(b);
+ if(vli_cmp(v, u) < 0)
+ {
+ vli_add(v, v, p_mod);
+ }
+ vli_sub(v, v, u);
+ if(!EVEN(v))
+ {
+ l_carry = vli_add(v, v, p_mod);
+ }
+ vli_rshift1(v);
+ if(l_carry)
+ {
+ v[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
+ }
+ }
+ }
+
+ vli_set(p_result, u);
+}
+
+/* ------ Point operations ------ */
+
+/* Returns 1 if p_point is the point at infinity, 0 otherwise. */
+static inline int EccPoint_isZero(EccPoint *p_point)
+{
+ return (vli_isZero(p_point->x) && vli_isZero(p_point->y));
+}
+
+/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
+From http://eprint.iacr.org/2011/338.pdf
+*/
+
+/* Double in place */
+static inline void EccPoint_double_jacobian(uint64_t *X1, uint64_t *Y1, uint64_t *Z1)
+{
+ /* t1 = X, t2 = Y, t3 = Z */
+ uint64_t t4[NUM_ECC_DIGITS];
+ uint64_t t5[NUM_ECC_DIGITS];
+
+ if(vli_isZero(Z1))
+ {
+ return;
+ }
+
+ vli_modSquare_fast(t4, Y1); /* t4 = y1^2 */
+ vli_modMult_fast(t5, X1, t4); /* t5 = x1*y1^2 = A */
+ vli_modSquare_fast(t4, t4); /* t4 = y1^4 */
+ vli_modMult_fast(Y1, Y1, Z1); /* t2 = y1*z1 = z3 */
+ vli_modSquare_fast(Z1, Z1); /* t3 = z1^2 */
+
+ vli_modAdd(X1, X1, Z1, curve_p); /* t1 = x1 + z1^2 */
+ vli_modAdd(Z1, Z1, Z1, curve_p); /* t3 = 2*z1^2 */
+ vli_modSub(Z1, X1, Z1, curve_p); /* t3 = x1 - z1^2 */
+ vli_modMult_fast(X1, X1, Z1); /* t1 = x1^2 - z1^4 */
+
+ vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
+ vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
+ if(vli_testBit(X1, 0))
+ {
+ uint64_t l_carry = vli_add(X1, X1, curve_p);
+ vli_rshift1(X1);
+ X1[NUM_ECC_DIGITS-1] |= l_carry << 63;
+ }
+ else
+ {
+ vli_rshift1(X1);
+ }
+ /* t1 = 3/2*(x1^2 - z1^4) = B */
+
+ vli_modSquare_fast(Z1, X1); /* t3 = B^2 */
+ vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - A */
+ vli_modSub(Z1, Z1, t5, curve_p); /* t3 = B^2 - 2A = x3 */
+ vli_modSub(t5, t5, Z1, curve_p); /* t5 = A - x3 */
+ vli_modMult_fast(X1, X1, t5); /* t1 = B * (A - x3) */
+ vli_modSub(t4, X1, t4, curve_p); /* t4 = B * (A - x3) - y1^4 = y3 */
+
+ vli_set(X1, Z1);
+ vli_set(Z1, Y1);
+ vli_set(Y1, t4);
+}
+
+/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
+static inline void apply_z(uint64_t *X1, uint64_t *Y1, uint64_t *Z)
+{
+ uint64_t t1[NUM_ECC_DIGITS];
+
+ vli_modSquare_fast(t1, Z); /* z^2 */
+ vli_modMult_fast(X1, X1, t1); /* x1 * z^2 */
+ vli_modMult_fast(t1, t1, Z); /* z^3 */
+ vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */
+}
+
+/* P = (x1, y1) => 2P, (x2, y2) => P' */
+static inline void XYcZ_initial_double(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2, uint64_t *p_initialZ)
+{
+ uint64_t z[NUM_ECC_DIGITS];
+
+ vli_set(X2, X1);
+ vli_set(Y2, Y1);
+
+ vli_clear(z);
+ z[0] = 1;
+ if(p_initialZ)
+ {
+ vli_set(z, p_initialZ);
+ }
+
+ apply_z(X1, Y1, z);
+
+ EccPoint_double_jacobian(X1, Y1, z);
+
+ apply_z(X2, Y2, z);
+}
+
+/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
+ Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
+ or P => P', Q => P + Q
+*/
+static inline void XYcZ_add(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
+{
+ /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
+ uint64_t t5[NUM_ECC_DIGITS];
+
+ vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */
+ vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
+ vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */
+ vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */
+ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */
+ vli_modSquare_fast(t5, Y2); /* t5 = (y2 - y1)^2 = D */
+
+ vli_modSub(t5, t5, X1, curve_p); /* t5 = D - B */
+ vli_modSub(t5, t5, X2, curve_p); /* t5 = D - B - C = x3 */
+ vli_modSub(X2, X2, X1, curve_p); /* t3 = C - B */
+ vli_modMult_fast(Y1, Y1, X2); /* t2 = y1*(C - B) */
+ vli_modSub(X2, X1, t5, curve_p); /* t3 = B - x3 */
+ vli_modMult_fast(Y2, Y2, X2); /* t4 = (y2 - y1)*(B - x3) */
+ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */
+
+ vli_set(X2, t5);
+}
+
+/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
+ Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
+ or P => P - Q, Q => P + Q
+*/
+static inline void XYcZ_addC(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
+{
+ /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
+ uint64_t t5[NUM_ECC_DIGITS];
+ uint64_t t6[NUM_ECC_DIGITS];
+ uint64_t t7[NUM_ECC_DIGITS];
+
+ vli_modSub(t5, X2, X1, curve_p); /* t5 = x2 - x1 */
+ vli_modSquare_fast(t5, t5); /* t5 = (x2 - x1)^2 = A */
+ vli_modMult_fast(X1, X1, t5); /* t1 = x1*A = B */
+ vli_modMult_fast(X2, X2, t5); /* t3 = x2*A = C */
+ vli_modAdd(t5, Y2, Y1, curve_p); /* t4 = y2 + y1 */
+ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y2 - y1 */
+
+ vli_modSub(t6, X2, X1, curve_p); /* t6 = C - B */
+ vli_modMult_fast(Y1, Y1, t6); /* t2 = y1 * (C - B) */
+ vli_modAdd(t6, X1, X2, curve_p); /* t6 = B + C */
+ vli_modSquare_fast(X2, Y2); /* t3 = (y2 - y1)^2 */
+ vli_modSub(X2, X2, t6, curve_p); /* t3 = x3 */
+
+ vli_modSub(t7, X1, X2, curve_p); /* t7 = B - x3 */
+ vli_modMult_fast(Y2, Y2, t7); /* t4 = (y2 - y1)*(B - x3) */
+ vli_modSub(Y2, Y2, Y1, curve_p); /* t4 = y3 */
+
+ vli_modSquare_fast(t7, t5); /* t7 = (y2 + y1)^2 = F */
+ vli_modSub(t7, t7, t6, curve_p); /* t7 = x3' */
+ vli_modSub(t6, t7, X1, curve_p); /* t6 = x3' - B */
+ vli_modMult_fast(t6, t6, t5); /* t6 = (y2 + y1)*(x3' - B) */
+ vli_modSub(Y1, t6, Y1, curve_p); /* t2 = y3' */
+
+ vli_set(X1, t7);
+}
+
+static inline void EccPoint_mult(EccPoint *p_result, EccPoint *p_point, uint64_t *p_scalar, uint64_t *p_initialZ)
+{
+ /* R0 and R1 */
+ uint64_t Rx[2][NUM_ECC_DIGITS];
+ uint64_t Ry[2][NUM_ECC_DIGITS];
+ uint64_t z[NUM_ECC_DIGITS];
+
+ int i, nb;
+
+ vli_set(Rx[1], p_point->x);
+ vli_set(Ry[1], p_point->y);
+
+ XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], p_initialZ);
+
+ for(i = vli_numBits(p_scalar) - 2; i > 0; --i)
+ {
+ nb = !vli_testBit(p_scalar, i);
+ XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]);
+ XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]);
+ }
+
+ nb = !vli_testBit(p_scalar, 0);
+ XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]);
+
+ /* Find final 1/Z value. */
+ vli_modSub(z, Rx[1], Rx[0], curve_p); /* X1 - X0 */
+ vli_modMult_fast(z, z, Ry[1-nb]); /* Yb * (X1 - X0) */
+ vli_modMult_fast(z, z, p_point->x); /* xP * Yb * (X1 - X0) */
+ vli_modInv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */
+ vli_modMult_fast(z, z, p_point->y); /* yP / (xP * Yb * (X1 - X0)) */
+ vli_modMult_fast(z, z, Rx[1-nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
+ /* End 1/Z calculation */
+
+ XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]);
+
+ apply_z(Rx[0], Ry[0], z);
+
+ vli_set(p_result->x, Rx[0]);
+ vli_set(p_result->y, Ry[0]);
+}
+
+static inline void ecc_bytes2native(uint64_t p_native[NUM_ECC_DIGITS], const uint8_t p_bytes[ECC_BYTES])
+{
+ unsigned i;
+ for(i=0; i> 56;
+ p_digit[1] = p_native[i] >> 48;
+ p_digit[2] = p_native[i] >> 40;
+ p_digit[3] = p_native[i] >> 32;
+ p_digit[4] = p_native[i] >> 24;
+ p_digit[5] = p_native[i] >> 16;
+ p_digit[6] = p_native[i] >> 8;
+ p_digit[7] = p_native[i];
+ }
+}
+
+/* Compute a = sqrt(a) (mod curve_p). */
+static inline void mod_sqrt(uint64_t a[NUM_ECC_DIGITS])
+{
+ unsigned i;
+ uint64_t p1[NUM_ECC_DIGITS] = {1};
+ uint64_t l_result[NUM_ECC_DIGITS] = {1};
+
+ /* Since curve_p == 3 (mod 4) for all supported curves, we can
+ compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */
+ vli_add(p1, curve_p, p1); /* p1 = curve_p + 1 */
+ for(i = vli_numBits(p1) - 1; i > 1; --i)
+ {
+ vli_modSquare_fast(l_result, l_result);
+ if(vli_testBit(p1, i))
+ {
+ vli_modMult_fast(l_result, l_result, a);
+ }
+ }
+ vli_set(a, l_result);
+}
+
+static inline void ecc_point_decompress(EccPoint *p_point, const uint8_t p_compressed[ECC_BYTES+1])
+{
+ uint64_t _3[NUM_ECC_DIGITS] = {3}; /* -a = 3 */
+ ecc_bytes2native(p_point->x, p_compressed+1);
+
+ vli_modSquare_fast(p_point->y, p_point->x); /* y = x^2 */
+ vli_modSub(p_point->y, p_point->y, _3, curve_p); /* y = x^2 - 3 */
+ vli_modMult_fast(p_point->y, p_point->y, p_point->x); /* y = x^3 - 3x */
+ vli_modAdd(p_point->y, p_point->y, curve_b, curve_p); /* y = x^3 - 3x + b */
+
+ mod_sqrt(p_point->y);
+
+ if((p_point->y[0] & 0x01) != (p_compressed[0] & 0x01))
+ {
+ vli_sub(p_point->y, curve_p, p_point->y);
+ }
+}
+
+static inline int ecc_make_key(uint8_t p_publicKey[ECC_BYTES+1], uint8_t p_privateKey[ECC_BYTES])
+{
+ uint64_t l_private[NUM_ECC_DIGITS];
+ EccPoint l_public;
+ unsigned l_tries = 0;
+
+ do
+ {
+ if(!getRandomNumber(l_private) || (l_tries++ >= MAX_TRIES))
+ {
+ return 0;
+ }
+ if(vli_isZero(l_private))
+ {
+ continue;
+ }
+
+ /* Make sure the private key is in the range [1, n-1].
+ For the supported curves, n is always large enough that we only need to subtract once at most. */
+ if(vli_cmp(curve_n, l_private) != 1)
+ {
+ vli_sub(l_private, l_private, curve_n);
+ }
+
+ EccPoint_mult(&l_public, &curve_G, l_private, NULL);
+ } while(EccPoint_isZero(&l_public));
+
+ ecc_native2bytes(p_privateKey, l_private);
+ ecc_native2bytes(p_publicKey + 1, l_public.x);
+ p_publicKey[0] = 2 + (l_public.y[0] & 0x01);
+ return 1;
+}
+
+static inline int ecdh_shared_secret(const uint8_t p_publicKey[ECC_BYTES+1], const uint8_t p_privateKey[ECC_BYTES], uint8_t p_secret[ECC_BYTES])
+{
+ EccPoint l_public;
+ uint64_t l_private[NUM_ECC_DIGITS];
+ uint64_t l_random[NUM_ECC_DIGITS];
+
+ if(!getRandomNumber(l_random))
+ {
+ return 0;
+ }
+
+ ecc_point_decompress(&l_public, p_publicKey);
+ ecc_bytes2native(l_private, p_privateKey);
+
+ EccPoint l_product;
+ EccPoint_mult(&l_product, &l_public, l_private, l_random);
+
+ ecc_native2bytes(p_secret, l_product.x);
+
+ return !EccPoint_isZero(&l_product);
+}
+
+/* -------- ECDSA code -------- */
+
+/* Computes p_result = (p_left * p_right) % p_mod. */
+static inline void vli_modMult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, uint64_t *p_mod)
+{
+ uint64_t l_product[2 * NUM_ECC_DIGITS];
+ uint64_t l_modMultiple[2 * NUM_ECC_DIGITS];
+ uint l_digitShift, l_bitShift;
+ uint l_productBits;
+ uint l_modBits = vli_numBits(p_mod);
+
+ vli_mult(l_product, p_left, p_right);
+ l_productBits = vli_numBits(l_product + NUM_ECC_DIGITS);
+ if(l_productBits)
+ {
+ l_productBits += NUM_ECC_DIGITS * 64;
+ }
+ else
+ {
+ l_productBits = vli_numBits(l_product);
+ }
+
+ if(l_productBits < l_modBits)
+ { /* l_product < p_mod. */
+ vli_set(p_result, l_product);
+ return;
+ }
+
+ /* Shift p_mod by (l_leftBits - l_modBits). This multiplies p_mod by the largest
+ power of two possible while still resulting in a number less than p_left. */
+ vli_clear(l_modMultiple);
+ vli_clear(l_modMultiple + NUM_ECC_DIGITS);
+ l_digitShift = (l_productBits - l_modBits) / 64;
+ l_bitShift = (l_productBits - l_modBits) % 64;
+ if(l_bitShift)
+ {
+ l_modMultiple[l_digitShift + NUM_ECC_DIGITS] = vli_lshift(l_modMultiple + l_digitShift, p_mod, l_bitShift);
+ }
+ else
+ {
+ vli_set(l_modMultiple + l_digitShift, p_mod);
+ }
+
+ /* Subtract all multiples of p_mod to get the remainder. */
+ vli_clear(p_result);
+ p_result[0] = 1; /* Use p_result as a temp var to store 1 (for subtraction) */
+ while(l_productBits > NUM_ECC_DIGITS * 64 || vli_cmp(l_modMultiple, p_mod) >= 0)
+ {
+ int l_cmp = vli_cmp(l_modMultiple + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS);
+ if(l_cmp < 0 || (l_cmp == 0 && vli_cmp(l_modMultiple, l_product) <= 0))
+ {
+ if(vli_sub(l_product, l_product, l_modMultiple))
+ { /* borrow */
+ vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, p_result);
+ }
+ vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, l_modMultiple + NUM_ECC_DIGITS);
+ }
+ uint64_t l_carry = (l_modMultiple[NUM_ECC_DIGITS] & 0x01) << 63;
+ vli_rshift1(l_modMultiple + NUM_ECC_DIGITS);
+ vli_rshift1(l_modMultiple);
+ l_modMultiple[NUM_ECC_DIGITS-1] |= l_carry;
+
+ --l_productBits;
+ }
+ vli_set(p_result, l_product);
+}
+
+static inline uint umax(uint a, uint b)
+{
+ return (a > b ? a : b);
+}
+
+static inline int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES], const uint8_t p_hash[ECC_BYTES], uint8_t p_signature[ECC_BYTES*2])
+{
+ uint64_t k[NUM_ECC_DIGITS];
+ uint64_t l_tmp[NUM_ECC_DIGITS];
+ uint64_t l_s[NUM_ECC_DIGITS];
+ EccPoint p;
+ unsigned l_tries = 0;
+
+ do
+ {
+ if(!getRandomNumber(k) || (l_tries++ >= MAX_TRIES))
+ {
+ return 0;
+ }
+ if(vli_isZero(k))
+ {
+ continue;
+ }
+
+ if(vli_cmp(curve_n, k) != 1)
+ {
+ vli_sub(k, k, curve_n);
+ }
+
+ /* tmp = k * G */
+ EccPoint_mult(&p, &curve_G, k, NULL);
+
+ /* r = x1 (mod n) */
+ if(vli_cmp(curve_n, p.x) != 1)
+ {
+ vli_sub(p.x, p.x, curve_n);
+ }
+ } while(vli_isZero(p.x));
+
+ ecc_native2bytes(p_signature, p.x);
+
+ ecc_bytes2native(l_tmp, p_privateKey);
+ vli_modMult(l_s, p.x, l_tmp, curve_n); /* s = r*d */
+ ecc_bytes2native(l_tmp, p_hash);
+ vli_modAdd(l_s, l_tmp, l_s, curve_n); /* s = e + r*d */
+ vli_modInv(k, k, curve_n); /* k = 1 / k */
+ vli_modMult(l_s, l_s, k, curve_n); /* s = (e + r*d) / k */
+ ecc_native2bytes(p_signature + ECC_BYTES, l_s);
+
+ return 1;
+}
+
+static inline int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES+1], const uint8_t p_hash[ECC_BYTES], const uint8_t p_signature[ECC_BYTES*2])
+{
+ uint64_t u1[NUM_ECC_DIGITS], u2[NUM_ECC_DIGITS];
+ uint64_t z[NUM_ECC_DIGITS];
+ EccPoint l_public, l_sum;
+ uint64_t rx[NUM_ECC_DIGITS];
+ uint64_t ry[NUM_ECC_DIGITS];
+ uint64_t tx[NUM_ECC_DIGITS];
+ uint64_t ty[NUM_ECC_DIGITS];
+ uint64_t tz[NUM_ECC_DIGITS];
+
+ uint64_t l_r[NUM_ECC_DIGITS], l_s[NUM_ECC_DIGITS];
+
+ ecc_point_decompress(&l_public, p_publicKey);
+ ecc_bytes2native(l_r, p_signature);
+ ecc_bytes2native(l_s, p_signature + ECC_BYTES);
+
+ if(vli_isZero(l_r) || vli_isZero(l_s))
+ { /* r, s must not be 0. */
+ return 0;
+ }
+
+ if(vli_cmp(curve_n, l_r) != 1 || vli_cmp(curve_n, l_s) != 1)
+ { /* r, s must be < n. */
+ return 0;
+ }
+
+ /* Calculate u1 and u2. */
+ vli_modInv(z, l_s, curve_n); /* Z = s^-1 */
+ ecc_bytes2native(u1, p_hash);
+ vli_modMult(u1, u1, z, curve_n); /* u1 = e/s */
+ vli_modMult(u2, l_r, z, curve_n); /* u2 = r/s */
+
+ /* Calculate l_sum = G + Q. */
+ vli_set(l_sum.x, l_public.x);
+ vli_set(l_sum.y, l_public.y);
+ vli_set(tx, curve_G.x);
+ vli_set(ty, curve_G.y);
+ vli_modSub(z, l_sum.x, tx, curve_p); /* Z = x2 - x1 */
+ XYcZ_add(tx, ty, l_sum.x, l_sum.y);
+ vli_modInv(z, z, curve_p); /* Z = 1/Z */
+ apply_z(l_sum.x, l_sum.y, z);
+
+ /* Use Shamir's trick to calculate u1*G + u2*Q */
+ EccPoint *l_points[4] = {NULL, &curve_G, &l_public, &l_sum};
+ uint l_numBits = umax(vli_numBits(u1), vli_numBits(u2));
+
+ EccPoint *l_point = l_points[(!!vli_testBit(u1, l_numBits-1)) | ((!!vli_testBit(u2, l_numBits-1)) << 1)];
+ vli_set(rx, l_point->x);
+ vli_set(ry, l_point->y);
+ vli_clear(z);
+ z[0] = 1;
+
+ int i;
+ for(i = l_numBits - 2; i >= 0; --i)
+ {
+ EccPoint_double_jacobian(rx, ry, z);
+
+ int l_index = (!!vli_testBit(u1, i)) | ((!!vli_testBit(u2, i)) << 1);
+ EccPoint *l_point = l_points[l_index];
+ if(l_point)
+ {
+ vli_set(tx, l_point->x);
+ vli_set(ty, l_point->y);
+ apply_z(tx, ty, z);
+ vli_modSub(tz, rx, tx, curve_p); /* Z = x2 - x1 */
+ XYcZ_add(tx, ty, rx, ry);
+ vli_modMult_fast(z, z, tz);
+ }
+ }
+
+ vli_modInv(z, z, curve_p); /* Z = 1/Z */
+ apply_z(rx, ry, z);
+
+ /* v = x1 (mod n) */
+ if(vli_cmp(curve_n, rx) != 1)
+ {
+ vli_sub(rx, rx, curve_n);
+ }
+
+ /* Accept only if v == r. */
+ return (vli_cmp(rx, l_r) == 0);
+}
+
+//////////////////////////////////////////////////////////////////////////////
+
+//////////////////////////////////////////////////////////////////////////////
+//////////////////////////////////////////////////////////////////////////////
+} // anonymous namespace
+
+void ECC384GenerateKey(uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE])
+{
+ if (!ecc_make_key(pub,priv)) {
+ fprintf(stderr,"FATAL: ecdsa_make_key() failed!" ZT_EOL_S);
+ abort();
+ }
+}
+
+void ECC384ECDSASign(const uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],uint8_t sig[ZT_ECC384_SIGNATURE_SIZE])
+{
+ if (!ecdsa_sign(priv,hash,sig)) {
+ fprintf(stderr,"FATAL: ecdsa_sign() failed!" ZT_EOL_S);
+ abort();
+ }
+}
+
+bool ECC384ECDSAVerify(const uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],const uint8_t sig[ZT_ECC384_SIGNATURE_SIZE])
+{
+ return (ecdsa_verify(pub,hash,sig) != 0);
+}
+
+bool ECC384ECDH(const uint8_t theirPub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t ourPriv[ZT_ECC384_PRIVATE_KEY_SIZE],uint8_t secret[ZT_ECC384_SHARED_SECRET_SIZE])
+{
+ return (ecdh_shared_secret(theirPub,ourPriv,secret) != 0);
+}
+
+} // namespace ZeroTier
diff --git a/node/ECC384.hpp b/node/ECC384.hpp
new file mode 100644
index 000000000..40ce3a145
--- /dev/null
+++ b/node/ECC384.hpp
@@ -0,0 +1,74 @@
+/*
+ * ZeroTier One - Network Virtualization Everywhere
+ * Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see .
+ *
+ * --
+ *
+ * You can be released from the requirements of the license by purchasing
+ * a commercial license. Buying such a license is mandatory as soon as you
+ * develop commercial closed-source software that incorporates or links
+ * directly against ZeroTier software without disclosing the source code
+ * of your own application.
+ */
+
+// This is glue code to ease the use of the NIST P-384 elliptic curve.
+
+// Note that some of the code inside ECC384.cpp is third party code and
+// is under the BSD 2-clause license rather than ZeroTier's license.
+
+#ifndef ZT_ECC384_HPP
+#define ZT_ECC384_HPP
+
+#include "Constants.hpp"
+
+/**
+ * Size of a (point compressed) P-384 public key
+ */
+#define ZT_ECC384_PUBLIC_KEY_SIZE 49
+
+/**
+ * Size of a P-384 private key
+ */
+#define ZT_ECC384_PRIVATE_KEY_SIZE 48
+
+/**
+ * Size of the hash that should be signed using P-384
+ */
+#define ZT_ECC384_SIGNATURE_HASH_SIZE 48
+
+/**
+ * Size of a P-384 signature
+ */
+#define ZT_ECC384_SIGNATURE_SIZE 96
+
+/**
+ * Size of shared secret generated by ECDH key agreement
+ */
+#define ZT_ECC384_SHARED_SECRET_SIZE 48
+
+namespace ZeroTier {
+
+void ECC384GenerateKey(uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE]);
+
+void ECC384ECDSASign(const uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],uint8_t sig[ZT_ECC384_SIGNATURE_SIZE]);
+
+bool ECC384ECDSAVerify(const uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],const uint8_t sig[ZT_ECC384_SIGNATURE_SIZE]);
+
+bool ECC384ECDH(const uint8_t theirPub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t ourPriv[ZT_ECC384_PRIVATE_KEY_SIZE],uint8_t secret[ZT_ECC384_SHARED_SECRET_SIZE]);
+
+} // namespace ZeroTier
+
+#endif
diff --git a/node/Identity.hpp b/node/Identity.hpp
index f559bcc5d..ee55028cf 100644
--- a/node/Identity.hpp
+++ b/node/Identity.hpp
@@ -159,12 +159,7 @@ public:
* @param siglen Length of signature in bytes
* @return True if signature validates and data integrity checks
*/
- inline bool verify(const void *data,unsigned int len,const void *signature,unsigned int siglen) const
- {
- if (siglen != ZT_C25519_SIGNATURE_LEN)
- return false;
- return C25519::verify(_publicKey,data,len,signature);
- }
+ inline bool verify(const void *data,unsigned int len,const void *signature,unsigned int siglen) const { return C25519::verify(_publicKey,data,len,signature,siglen); }
/**
* Verify a message signature against this identity
@@ -174,10 +169,7 @@ public:
* @param signature Signature
* @return True if signature validates and data integrity checks
*/
- inline bool verify(const void *data,unsigned int len,const C25519::Signature &signature) const
- {
- return C25519::verify(_publicKey,data,len,signature);
- }
+ inline bool verify(const void *data,unsigned int len,const C25519::Signature &signature) const { return C25519::verify(_publicKey,data,len,signature); }
/**
* Shortcut method to perform key agreement with another identity
diff --git a/objects.mk b/objects.mk
index eb348dca2..cab07490d 100644
--- a/objects.mk
+++ b/objects.mk
@@ -3,6 +3,7 @@ CORE_OBJS=\
node/Capability.o \
node/CertificateOfMembership.o \
node/CertificateOfOwnership.o \
+ node/ECC384.o \
node/Identity.o \
node/IncomingPacket.o \
node/InetAddress.o \
diff --git a/selftest.cpp b/selftest.cpp
index 77c06cc03..b63bf4bde 100644
--- a/selftest.cpp
+++ b/selftest.cpp
@@ -50,6 +50,7 @@
#include "node/Dictionary.hpp"
#include "node/SHA512.hpp"
#include "node/C25519.hpp"
+#include "node/ECC384.hpp"
#include "node/Poly1305.hpp"
#include "node/CertificateOfMembership.hpp"
#include "node/Node.hpp"
@@ -305,18 +306,35 @@ static int testCrypto()
::free((void *)bb);
}
- /*
- for(unsigned int d=8;d<=10;++d) {
- for(int k=0;k<8;++k) {
- std::cout << "[crypto] computeSalsa2012Sha512ProofOfWork(" << d << ",\"foobarbaz\",9) == "; std::cout.flush();
- unsigned char result[16];
- uint64_t start = OSUtils::now();
- IncomingPacket::computeSalsa2012Sha512ProofOfWork(d,"foobarbaz",9,result);
- uint64_t end = OSUtils::now();
- std::cout << Utils::hex(result,16) << " -- valid: " << IncomingPacket::testSalsa2012Sha512ProofOfWorkResult(d,"foobarbaz",9,result) << ", " << (end - start) << "ms" << std::endl;
+ std::cout << "[crypto] Testing ECC384 (NIST P-384)..." << std::endl;
+ {
+ uint8_t p384pub[ZT_ECC384_PUBLIC_KEY_SIZE],p384priv[ZT_ECC384_PRIVATE_KEY_SIZE],p384sig[ZT_ECC384_SIGNATURE_SIZE],p384hash[ZT_ECC384_SIGNATURE_HASH_SIZE];
+ char p384hex[256];
+ ECC384GenerateKey(p384pub,p384priv);
+ std::cout << "[crypto] Public Key: " << Utils::hex(p384pub,sizeof(p384pub),p384hex) << std::endl;
+ Utils::getSecureRandom(p384hash,sizeof(p384hash));
+ ECC384ECDSASign(p384priv,p384hash,p384sig);
+ if (!ECC384ECDSAVerify(p384pub,p384hash,p384sig)) {
+ std::cout << "[crypto] Signature: FAILED (verify good signature)" << std::endl;
+ return -1;
}
+ ++p384sig[0];
+ if (ECC384ECDSAVerify(p384pub,p384hash,p384sig)) {
+ std::cout << "[crypto] Signature: FAILED (verify bad signature)" << std::endl;
+ return -1;
+ }
+ --p384sig[0];
+ std::cout << "[crypto] Signature: " << Utils::hex(p384sig,sizeof(p384sig),p384hex) << std::endl;
+ uint8_t p384pub2[ZT_ECC384_PUBLIC_KEY_SIZE],p384priv2[ZT_ECC384_PRIVATE_KEY_SIZE],p384sec[ZT_ECC384_SHARED_SECRET_SIZE],p384sec2[ZT_ECC384_SHARED_SECRET_SIZE];
+ ECC384GenerateKey(p384pub2,p384priv2);
+ ECC384ECDH(p384pub,p384priv2,p384sec);
+ ECC384ECDH(p384pub2,p384priv,p384sec2);
+ if (memcmp(p384sec,p384sec2,ZT_ECC384_SHARED_SECRET_SIZE)) {
+ std::cout << "[crypto] ECDH Agree: FAILED (secrets do not match)" << std::endl;
+ return -1;
+ }
+ std::cout << "[crypto] ECDH Agree: " << Utils::hex(p384sec,sizeof(p384sec),p384hex) << std::endl;
}
- */
std::cout << "[crypto] Testing C25519 and Ed25519 against test vectors... "; std::cout.flush();
for(int k=0;k