Cleanup, multicast fingerprint, benchmark asymmetric crypto

This commit is contained in:
Adam Ierymenko 2019-08-28 07:31:17 -07:00
parent 199b3345a0
commit 6e730cfad1
No known key found for this signature in database
GPG Key ID: C8877CF2D7A5D7F3
3 changed files with 111 additions and 264 deletions

View File

@ -43,15 +43,11 @@ class MulticastGroup
public:
ZT_ALWAYS_INLINE MulticastGroup() :
_mac(),
_adi(0)
{
}
_adi(0) {}
ZT_ALWAYS_INLINE MulticastGroup(const MAC &m,uint32_t a) :
_mac(m),
_adi(a)
{
}
_adi(a) {}
/**
* Derive the multicast group used for address resolution (ARP/NDP) for an IP
@ -97,6 +93,42 @@ public:
ZT_ALWAYS_INLINE bool operator<=(const MulticastGroup &g) const { return !(g < *this); }
ZT_ALWAYS_INLINE bool operator>=(const MulticastGroup &g) const { return !(*this < g); }
/**
* Compute a 32-bit fnv1a hash of a multicast group and a network ID
*
* @param mg Multicast group
* @param nwid Network ID
* @return 32-bit relatively-unique ID
*/
static ZT_ALWAYS_INLINE uint32_t id(const MulticastGroup &mg,const uint64_t nwid)
{
const uint32_t fnv1aPrime = 0x01000193;
uint32_t i = 0x811c9dc5;
i = (((uint32_t)(nwid >> 56) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(nwid >> 48) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(nwid >> 40) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(nwid >> 32) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(nwid >> 24) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(nwid >> 16) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(nwid >> 8) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)nwid & 0xff) ^ i) * fnv1aPrime;
const uint64_t mac = mg._mac.toInt();
i = (((uint32_t)(mac >> 56) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(mac >> 48) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(mac >> 40) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(mac >> 32) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(mac >> 24) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(mac >> 16) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)(mac >> 8) & 0xff) ^ i) * fnv1aPrime;
i = (((uint32_t)mac & 0xff) ^ i) * fnv1aPrime;
const uint32_t adi = mg._adi;
i = (((adi >> 24) & 0xff) ^ i) * fnv1aPrime;
i = (((adi >> 16) & 0xff) ^ i) * fnv1aPrime;
i = (((adi >> 8) & 0xff) ^ i) * fnv1aPrime;
i = ((adi & 0xff) ^ i) * fnv1aPrime;
return i;
}
private:
MAC _mac;
uint32_t _adi;

View File

@ -26,15 +26,11 @@ namespace ZeroTier {
#if defined(__GNUC__) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
// Inline ticket lock on x64 systems with GCC and CLANG (Mac, Linux) -- this is really fast as long as locking durations are very short
// Inline ticket lock on x64 systems with GCC and CLANG (Mac, Linux) -- this is really fast as long as contention is LOW
class Mutex
{
public:
ZT_ALWAYS_INLINE Mutex() :
nextTicket(0),
nowServing(0)
{
}
ZT_ALWAYS_INLINE Mutex() : nextTicket(0),nowServing(0) {}
ZT_ALWAYS_INLINE void lock() const
{
@ -47,9 +43,6 @@ public:
ZT_ALWAYS_INLINE void unlock() const { ++(const_cast<Mutex *>(this)->nowServing); }
/**
* Uses C++ contexts and constructor/destructor to lock/unlock automatically
*/
class Lock
{
public:
@ -74,46 +67,17 @@ private:
class Mutex
{
public:
ZT_ALWAYS_INLINE Mutex()
{
pthread_mutex_init(&_mh,(const pthread_mutexattr_t *)0);
}
ZT_ALWAYS_INLINE ~Mutex()
{
pthread_mutex_destroy(&_mh);
}
ZT_ALWAYS_INLINE void lock() const
{
pthread_mutex_lock(&((const_cast <Mutex *> (this))->_mh));
}
ZT_ALWAYS_INLINE void unlock() const
{
pthread_mutex_unlock(&((const_cast <Mutex *> (this))->_mh));
}
ZT_ALWAYS_INLINE Mutex() { pthread_mutex_init(&_mh,(const pthread_mutexattr_t *)0); }
ZT_ALWAYS_INLINE ~Mutex() { pthread_mutex_destroy(&_mh); }
ZT_ALWAYS_INLINE void lock() const { pthread_mutex_lock(&((const_cast <Mutex *> (this))->_mh)); }
ZT_ALWAYS_INLINE void unlock() const { pthread_mutex_unlock(&((const_cast <Mutex *> (this))->_mh)); }
class Lock
{
public:
ZT_ALWAYS_INLINE Lock(Mutex &m) :
_m(&m)
{
m.lock();
}
ZT_ALWAYS_INLINE Lock(const Mutex &m) :
_m(const_cast<Mutex *>(&m))
{
_m->lock();
}
ZT_ALWAYS_INLINE ~Lock()
{
_m->unlock();
}
ZT_ALWAYS_INLINE Lock(Mutex &m) : _m(&m) { m.lock(); }
ZT_ALWAYS_INLINE Lock(const Mutex &m) : _m(const_cast<Mutex *>(&m)) { _m->lock(); }
ZT_ALWAYS_INLINE ~Lock() { _m->unlock(); }
private:
Mutex *const _m;
};
@ -142,56 +106,19 @@ namespace ZeroTier {
class Mutex
{
public:
inline Mutex()
{
InitializeCriticalSection(&_cs);
}
inline ~Mutex()
{
DeleteCriticalSection(&_cs);
}
inline void lock()
{
EnterCriticalSection(&_cs);
}
inline void unlock()
{
LeaveCriticalSection(&_cs);
}
inline void lock() const
{
(const_cast <Mutex *> (this))->lock();
}
inline void unlock() const
{
(const_cast <Mutex *> (this))->unlock();
}
ZT_ALWAYS_INLINE Mutex() { InitializeCriticalSection(&_cs); }
ZT_ALWAYS_INLINE ~Mutex() { DeleteCriticalSection(&_cs); }
ZT_ALWAYS_INLINE void lock() { EnterCriticalSection(&_cs); }
ZT_ALWAYS_INLINE void unlock() { LeaveCriticalSection(&_cs); }
ZT_ALWAYS_INLINE void lock() const { (const_cast <Mutex *> (this))->lock(); }
ZT_ALWAYS_INLINE void unlock() const { (const_cast <Mutex *> (this))->unlock(); }
class Lock
{
public:
inline Lock(Mutex &m) :
_m(&m)
{
m.lock();
}
inline Lock(const Mutex &m) :
_m(const_cast<Mutex *>(&m))
{
_m->lock();
}
inline ~Lock()
{
_m->unlock();
}
ZT_ALWAYS_INLINE Lock(Mutex &m) : _m(&m) { m.lock(); }
ZT_ALWAYS_INLINE Lock(const Mutex &m) : _m(const_cast<Mutex *>(&m)) { _m->lock(); }
ZT_ALWAYS_INLINE ~Lock() { _m->unlock(); }
private:
Mutex *const _m;
};

View File

@ -178,7 +178,7 @@ static int testCrypto()
}
{
std::cout << "[crypto] Testing and benchmarking AES-256 and GCM..." ZT_EOL_S << " AES-256 (test vectors): "; std::cout.flush();
std::cout << "[crypto] Testing and benchmarking AES-256..." ZT_EOL_S << " AES-256 (test vectors): "; std::cout.flush();
AES tv(AES_TEST_VECTOR_0_KEY);
tv.encrypt(AES_TEST_VECTOR_0_IN,(uint8_t *)buf1);
if (memcmp(buf1,AES_TEST_VECTOR_0_OUT,16) != 0) {
@ -458,6 +458,60 @@ static int testCrypto()
std::cout << "[crypto] ECDSA Test Vector: PASS" ZT_EOL_S;
}
std::cout << "[crypto] Benchmarking asymmetric crypto..." ZT_EOL_S;
{
uint8_t pub[128],priv[128],hash[128],sig[128];
volatile uint8_t foo = 0;
Utils::getSecureRandom(hash,sizeof(hash));
C25519::generate(pub,priv);
int64_t start = OSUtils::now();
for(int k=0;k<1500;++k) {
++hash[0];
C25519::sign(priv,pub,hash,sizeof(hash),sig);
foo = sig[0];
}
int64_t end = OSUtils::now();
std::cout << " Ed25519 sign: " << (1500.0 / ((double)(end - start) / 1000.0)) << " signatures/second" ZT_EOL_S;
start = OSUtils::now();
for(int k=0;k<1000;++k) {
++sig[0];
foo = (uint8_t)C25519::verify(pub,hash,sizeof(hash),sig,ZT_C25519_SIGNATURE_LEN);
}
end = OSUtils::now();
std::cout << " Ed25519 verify: " << (1000.0 / ((double)(end - start) / 1000.0)) << " verifications/second" ZT_EOL_S;
start = OSUtils::now();
for(int k=0;k<1000;++k) {
C25519::agree(priv,pub,hash);
foo = hash[0];
}
end = OSUtils::now();
std::cout << " C25519 ECDH: " << (1000.0 / ((double)(end - start) / 1000.0)) << " agreements/second" ZT_EOL_S;
ECC384GenerateKey(pub,priv);
start = OSUtils::now();
for(int k=0;k<1000;++k) {
++hash[0];
ECC384ECDSASign(priv,hash,sig);
foo = sig[0];
}
end = OSUtils::now();
std::cout << " ECC P-384 sign: " << (1000.0 / ((double)(end - start) / 1000.0)) << " signatures/second" ZT_EOL_S;
start = OSUtils::now();
for(int k=0;k<1000;++k) {
foo = ECC384ECDSAVerify(pub,hash,sig);
}
end = OSUtils::now();
std::cout << " ECC P-384 verify: " << (1000.0 / ((double)(end - start) / 1000.0)) << " verifications/second" ZT_EOL_S;
start = OSUtils::now();
for(int k=0;k<1000;++k) {
ECC384ECDH(pub,priv,hash);
foo = hash[0];
}
end = OSUtils::now();
std::cout << " ECC P-384 ECDH: " << (1000.0 / ((double)(end - start) / 1000.0)) << " agreements/second" ZT_EOL_S;
}
return 0;
}
@ -786,172 +840,6 @@ static int testOther()
std::cout << " " << InetAddress("").toString(buf);
std::cout << ZT_EOL_S;
#if 0
std::cout << "[other] Testing Hashtable... "; std::cout.flush();
{
Hashtable<uint64_t,std::string> ht;
std::map<uint64_t,std::string> ref; // assume std::map works correctly :)
for(int x=0;x<2;++x) {
for(int i=0;i<77777;++i) {
uint64_t k = rand();
while ((k == 0)||(ref.count(k) > 0))
++k;
std::string v("!");
for(int j=0;j<(int)(k % 64);++j)
v.push_back("0123456789"[rand() % 10]);
ref[k] = v;
ht.set(0xffffffffffffffffULL,v);
std::string &vref = ht[k];
vref = v;
ht.erase(0xffffffffffffffffULL);
}
if (ht.size() != ref.size()) {
std::cout << "FAILED! (size mismatch, original)" ZT_EOL_S;
return -1;
}
{
Hashtable<uint64_t,std::string>::Iterator i(ht);
uint64_t *k = (uint64_t *)0;
std::string *v = (std::string *)0;
while(i.next(k,v)) {
if (ref.find(*k)->second != *v) {
std::cout << "FAILED! (data mismatch!)" ZT_EOL_S;
return -1;
}
}
}
for(std::map<uint64_t,std::string>::const_iterator i(ref.begin());i!=ref.end();++i) {
if (ht[i->first] != i->second) {
std::cout << "FAILED! (data mismatch!)" ZT_EOL_S;
return -1;
}
}
Hashtable<uint64_t,std::string> ht2;
ht2 = ht;
Hashtable<uint64_t,std::string> ht3(ht2);
if (ht2.size() != ref.size()) {
std::cout << "FAILED! (size mismatch, assigned)" ZT_EOL_S;
return -1;
}
if (ht3.size() != ref.size()) {
std::cout << "FAILED! (size mismatch, copied)" ZT_EOL_S;
return -1;
}
for(std::map<uint64_t,std::string>::iterator i(ref.begin());i!=ref.end();++i) {
std::string *v = ht.get(i->first);
if (!v) {
std::cout << "FAILED! (key " << i->first << " not found, original)" ZT_EOL_S;
return -1;
}
if (*v != i->second) {
std::cout << "FAILED! (key " << i->first << " not equal, original)" ZT_EOL_S;
return -1;
}
v = ht2.get(i->first);
if (!v) {
std::cout << "FAILED! (key " << i->first << " not found, assigned)" ZT_EOL_S;
return -1;
}
if (*v != i->second) {
std::cout << "FAILED! (key " << i->first << " not equal, assigned)" ZT_EOL_S;
return -1;
}
v = ht3.get(i->first);
if (!v) {
std::cout << "FAILED! (key " << i->first << " not found, copied)" ZT_EOL_S;
return -1;
}
if (*v != i->second) {
std::cout << "FAILED! (key " << i->first << " not equal, copied)" ZT_EOL_S;
return -1;
}
}
{
uint64_t *k;
std::string *v;
Hashtable<uint64_t,std::string>::Iterator i(ht);
unsigned long ic = 0;
while (i.next(k,v)) {
if (ref[*k] != *v) {
std::cout << "FAILED! (iterate)" ZT_EOL_S;
return -1;
}
++ic;
}
if (ic != ht.size()) {
std::cout << "FAILED! (iterate coverage)" ZT_EOL_S;
return -1;
}
}
for(std::map<uint64_t,std::string>::iterator i(ref.begin());i!=ref.end();) {
if (!ht.get(i->first)) {
std::cout << "FAILED! (erase, check if exists)" ZT_EOL_S;
return -1;
}
ht.erase(i->first);
if (ht.get(i->first)) {
std::cout << "FAILED! (erase, check if erased)" ZT_EOL_S;
return -1;
}
ref.erase(i++);
if (ht.size() != ref.size()) {
std::cout << "FAILED! (erase, size)" ZT_EOL_S;
return -1;
}
}
if (!ht.empty()) {
std::cout << "FAILED! (erase, empty)" ZT_EOL_S;
return -1;
}
for(int i=0;i<10000;++i) {
uint64_t k = rand();
while ((k == 0)||(ref.count(k) > 0))
++k;
std::string v;
for(int j=0;j<(int)(k % 64);++j)
v.push_back("0123456789"[rand() % 10]);
ht.set(k,v);
ref[k] = v;
}
if (ht.size() != ref.size()) {
std::cout << "FAILED! (second populate)" ZT_EOL_S;
return -1;
}
ht.clear();
ref.clear();
if (ht.size() != ref.size()) {
std::cout << "FAILED! (clear)" ZT_EOL_S;
return -1;
}
for(int i=0;i<10000;++i) {
uint64_t k = rand();
while ((k == 0)||(ref.count(k) > 0))
++k;
std::string v;
for(int j=0;j<(int)(k % 64);++j)
v.push_back("0123456789"[rand() % 10]);
ht.set(k,v);
ref[k] = v;
}
{
Hashtable<uint64_t,std::string>::Iterator i(ht);
uint64_t *k;
std::string *v;
while (i.next(k,v))
ht.erase(*k);
}
ref.clear();
if (ht.size() != ref.size()) {
std::cout << "FAILED! (clear by iterate, " << ht.size() << ")" ZT_EOL_S;
return -1;
}
}
}
std::cout << "PASS" ZT_EOL_S;
#endif
{
std::cout << "[other] Testing/fuzzing Dictionary... "; std::cout.flush();
for(int k=0;k<250;++k) {