Fix invalid defaultBondingPolicy conditions, Add ZT_MultipathFlowRebalanceStrategy, Add basic hysteresis mechanism to flow re-assignment

This commit is contained in:
Joseph Henry 2020-06-16 12:30:21 -07:00
parent fa5c8ef434
commit 5f0ee4fc78
9 changed files with 166 additions and 158 deletions

View File

@ -521,6 +521,33 @@ enum ZT_MultipathMonitorStrategy
ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC = 3
};
/**
* Strategy for re-balancing protocol flows
*/
enum ZT_MultipathFlowRebalanceStrategy
{
/**
* Flows will only be re-balanced among slaves during
* assignment or failover. This minimizes the possibility
* of sequence reordering and is thus the default setting.
*/
ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_PASSIVE = 0,
/**
* Flows that are active may be re-assigned to a new more
* suitable slave if it can be done without disrupting the flow.
* This setting can sometimes cause sequence re-ordering.
*/
ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_OPPORTUNISTIC = 0,
/**
* Flows will be continuously re-assigned the most suitable slave
* in order to maximize "balance". This can often cause sequence
* reordering and is thus only reccomended for protocols like UDP.
*/
ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_AGGRESSIVE = 2
};
/**
* Indices for the path quality weight vector
*/

View File

@ -25,6 +25,10 @@ Bond::Bond(const RuntimeEnvironment *renv, int policy, const SharedPtr<Peer>& pe
RR(renv),
_peer(peer)
{
// TODO: Remove for production
_header=false;
_lastLogTS = RR->node->now();
_lastPrintTS = RR->node->now();
setReasonableDefaults(policy, SharedPtr<Bond>(), false);
_policyAlias = BondController::getPolicyStrByCode(policy);
}
@ -41,6 +45,10 @@ Bond::Bond(const RuntimeEnvironment *renv, SharedPtr<Bond> originalBond, const S
RR(renv),
_peer(peer)
{
// TODO: Remove for production
_header=false;
_lastLogTS = RR->node->now();
_lastPrintTS = RR->node->now();
setReasonableDefaults(originalBond->_bondingPolicy, originalBond, true);
}
@ -162,7 +170,7 @@ SharedPtr<Path> Bond::getAppropriatePath(int64_t now, int32_t flowId)
void Bond::recordIncomingInvalidPacket(const SharedPtr<Path>& path)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordIncomingInvalidPacket() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
// char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordIncomingInvalidPacket() %s %s\n", getSlave(path)->ifname().c_str(), pathStr);
Mutex::Lock _l(_paths_m);
for (int i=0; i<ZT_MAX_PEER_NETWORK_PATHS; ++i) {
if (_paths[i] == path) {
@ -174,7 +182,7 @@ void Bond::recordIncomingInvalidPacket(const SharedPtr<Path>& path)
void Bond::recordOutgoingPacket(const SharedPtr<Path> &path, const uint64_t packetId,
uint16_t payloadLength, const Packet::Verb verb, const int32_t flowId, int64_t now)
{
//char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordOutgoingPacket() %s %s, packetId=%llx, payloadLength=%d, verb=%x, flowId=%lx\n", getSlave(path)->ifname().c_str(), pathStr, packetId, payloadLength, verb, flowId);
// char pathStr[128];path->address().toString(pathStr);fprintf(stderr, "recordOutgoingPacket() %s %s, packetId=%llx, payloadLength=%d, verb=%x, flowId=%lx\n", getSlave(path)->ifname().c_str(), pathStr, packetId, payloadLength, verb, flowId);
_freeRandomByte += (unsigned char)(packetId >> 8); // Grab entropy to use in path selection logic
if (!_shouldCollectPathStatistics) {
return;
@ -320,6 +328,7 @@ bool Bond::assignFlowToBondedPath(SharedPtr<Flow> &flow, int64_t now)
idx = abs((int)(flow->id() % (_numBondedPaths)));
//fprintf(stderr, "flow->id()=%d, %x, _numBondedPaths=%d, idx=%d\n", flow->id(), flow->id(), _numBondedPaths, idx);
flow->assignPath(_paths[_bondedIdx[idx]],now);
++(_paths[_bondedIdx[idx]]->_assignedFlowCount);
}
if (_bondingPolicy == ZT_BONDING_POLICY_BALANCE_AWARE) {
unsigned char entropy;
@ -341,29 +350,32 @@ bool Bond::assignFlowToBondedPath(SharedPtr<Flow> &flow, int64_t now)
totalIncompleteAllocation += _paths[i]->_allocation;
}
}
fprintf(stderr, "entropy = %d, totalIncompleteAllocation=%d\n", entropy, totalIncompleteAllocation);
//fprintf(stderr, "entropy = %d, totalIncompleteAllocation=%d\n", entropy, totalIncompleteAllocation);
entropy %= totalIncompleteAllocation;
fprintf(stderr, "new entropy = %d\n", entropy);
//fprintf(stderr, "new entropy = %d\n", entropy);
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i] && _paths[i]->bonded()) {
SharedPtr<Slave> slave = RR->bc->getSlaveBySocket(_policyAlias, _paths[i]->localSocket());
_paths[i]->address().toString(curPathStr);
uint8_t probabilitySegment = (_totalBondUnderload > 0) ? _paths[i]->_affinity : _paths[i]->_allocation;
fprintf(stderr, "i=%2d, entropy=%3d, alloc=%3d, byteload=%4d, segment=%3d, _totalBondUnderload=%3d, ifname=%s, path=%20s\n", i, entropy, _paths[i]->_allocation, _paths[i]->_relativeByteLoad, probabilitySegment, _totalBondUnderload, slave->ifname().c_str(), curPathStr);
//fprintf(stderr, "i=%2d, entropy=%3d, alloc=%3d, byteload=%4d, segment=%3d, _totalBondUnderload=%3d, ifname=%s, path=%20s\n", i, entropy, _paths[i]->_allocation, _paths[i]->_relativeByteLoad, probabilitySegment, _totalBondUnderload, slave->ifname().c_str(), curPathStr);
if (entropy <= probabilitySegment) {
idx = i;
fprintf(stderr, "\t is best path\n");
//fprintf(stderr, "\t is best path\n");
break;
}
entropy -= probabilitySegment;
}
}
if (idx < ZT_MAX_PEER_NETWORK_PATHS) {
if (flow->_assignedPath) {
flow->_previouslyAssignedPath = flow->_assignedPath;
}
flow->assignPath(_paths[idx],now);
++(_paths[idx]->_assignedFlowCount);
}
else {
fprintf(stderr, "could not assign flow?\n"); exit(0); // TODO: Remove
fprintf(stderr, "could not assign flow?\n"); exit(0); // TODO: Remove for production
return false;
}
}
@ -397,6 +409,7 @@ SharedPtr<Flow> Bond::createFlow(const SharedPtr<Path> &path, int32_t flowId, un
if (path) {
flow->assignPath(path,now);
path->address().toString(curPathStr);
path->_assignedFlowCount++;
SharedPtr<Slave> slave = RR->bc->getSlaveBySocket(_policyAlias, flow->assignedPath()->localSocket());
fprintf(stderr, "assigned (rx) flow %x with peer %llx to path %s on %s\n", flow->id(), _peer->_id.address().toInt(), curPathStr, slave->ifname().c_str());
}
@ -818,7 +831,7 @@ void Bond::curateBond(const int64_t now, bool rebuildBond)
++it;
++updatedBondedPathCount;
_paths[_bondedIdx[i]]->address().toString(pathStr);
fprintf(stderr, "setting i=%d, _bondedIdx[%d]=%d to bonded (%s %s)\n", i, i, _bondedIdx[i], getSlave(_paths[_bondedIdx[i]])->ifname().c_str(), pathStr);
//fprintf(stderr, "setting i=%d, _bondedIdx[%d]=%d to bonded (%s %s)\n", i, i, _bondedIdx[i], getSlave(_paths[_bondedIdx[i]])->ifname().c_str(), pathStr);
}
}
_numBondedPaths = updatedBondedPathCount;
@ -834,8 +847,6 @@ void Bond::curateBond(const int64_t now, bool rebuildBond)
void Bond::estimatePathQuality(const int64_t now)
{
char pathStr[128];
//---
uint32_t totUserSpecifiedSlaveSpeed = 0;
if (_numBondedPaths) { // Compute relative user-specified speeds of slaves
for(unsigned int i=0;i<_numBondedPaths;++i) {
@ -856,17 +867,11 @@ void Bond::estimatePathQuality(const int64_t now)
float pdv[ZT_MAX_PEER_NETWORK_PATHS];
float plr[ZT_MAX_PEER_NETWORK_PATHS];
float per[ZT_MAX_PEER_NETWORK_PATHS];
float thr[ZT_MAX_PEER_NETWORK_PATHS];
float thm[ZT_MAX_PEER_NETWORK_PATHS];
float thv[ZT_MAX_PEER_NETWORK_PATHS];
float maxLAT = 0;
float maxPDV = 0;
float maxPLR = 0;
float maxPER = 0;
float maxTHR = 0;
float maxTHM = 0;
float maxTHV = 0;
float quality[ZT_MAX_PEER_NETWORK_PATHS];
uint8_t alloc[ZT_MAX_PEER_NETWORK_PATHS];
@ -877,9 +882,6 @@ void Bond::estimatePathQuality(const int64_t now)
memset(&pdv, 0, sizeof(pdv));
memset(&plr, 0, sizeof(plr));
memset(&per, 0, sizeof(per));
memset(&thr, 0, sizeof(thr));
memset(&thm, 0, sizeof(thm));
memset(&thv, 0, sizeof(thv));
memset(&quality, 0, sizeof(quality));
memset(&alloc, 0, sizeof(alloc));
@ -901,24 +903,6 @@ void Bond::estimatePathQuality(const int64_t now)
_paths[i]->_throughputVariance = 0;
}
}
/*
else {
// Use estimated metrics
if (_paths[i]->throughputSamples.count()) {
// If we have samples, use them
_paths[i]->throughputMean = (uint64_t)_paths[i]->throughputSamples.mean();
if (_paths[i]->throughputMean > 0) {
_paths[i]->throughputVarianceSamples.push((float)_paths[i]->throughputSamples.stddev() / (float)_paths[i]->throughputMean);
_paths[i]->throughputVariance = _paths[i]->throughputVarianceSamples.mean();
}
}
else {
// No samples have been collected yet, assume best case scenario
_paths[i]->throughputMean = ZT_QOS_THR_NORM_MAX;
_paths[i]->throughputVariance = 0;
}
}
*/
// Drain unacknowledged QoS records
std::map<uint64_t,uint64_t>::iterator it = _paths[i]->qosStatsOut.begin();
uint64_t currentLostRecords = 0;
@ -934,23 +918,16 @@ void Bond::estimatePathQuality(const int64_t now)
quality[i]=0;
totQuality=0;
// Normalize raw observations according to sane limits and/or user specified values
lat[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_latencyMean, 0, _maxAcceptableLatency, 0, 1));
pdv[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_latencyVariance, 0, _maxAcceptablePacketDelayVariance, 0, 1));
plr[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_packetLossRatio, 0, _maxAcceptablePacketLossRatio, 0, 1));
per[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_packetErrorRatio, 0, _maxAcceptablePacketErrorRatio, 0, 1));
//thr[i] = 1.0; //Utils::normalize(_paths[i]->throughputMean, 0, ZT_QOS_THR_NORM_MAX, 0, 1);
//thm[i] = 1.0; //Utils::normalize(_paths[i]->throughputMax, 0, ZT_QOS_THM_NORM_MAX, 0, 1);
//thv[i] = 1.0; //1.0 / expf(4*Utils::normalize(_paths[i]->throughputVariance, 0, ZT_QOS_THV_NORM_MAX, 0, 1));
lat[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_latencyMean, 0, _maxAcceptableLatency, 0, 1));
pdv[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_latencyVariance, 0, _maxAcceptablePacketDelayVariance, 0, 1));
plr[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_packetLossRatio, 0, _maxAcceptablePacketLossRatio, 0, 1));
per[i] = 1.0 / expf(4*Utils::normalize(_paths[i]->_packetErrorRatio, 0, _maxAcceptablePacketErrorRatio, 0, 1));
//scp[i] = _paths[i]->ipvPref != 0 ? 1.0 : Utils::normalize(_paths[i]->ipScope(), InetAddress::IP_SCOPE_NONE, InetAddress::IP_SCOPE_PRIVATE, 0, 1);
// Record bond-wide maximums to determine relative values
maxLAT = lat[i] > maxLAT ? lat[i] : maxLAT;
maxPDV = pdv[i] > maxPDV ? pdv[i] : maxPDV;
maxPLR = plr[i] > maxPLR ? plr[i] : maxPLR;
maxPER = per[i] > maxPER ? per[i] : maxPER;
//maxTHR = thr[i] > maxTHR ? thr[i] : maxTHR;
//maxTHM = thm[i] > maxTHM ? thm[i] : maxTHM;
//maxTHV = thv[i] > maxTHV ? thv[i] : maxTHV;
//fprintf(stdout, "EH %d: lat=%8.3f, ltm=%8.3f, pdv=%8.3f, plr=%5.3f, per=%5.3f, thr=%8f, thm=%5.3f, thv=%5.3f, avl=%5.3f, age=%8.2f, scp=%4d, q=%5.3f, qtot=%5.3f, ac=%d if=%s, path=%s\n",
// i, lat[i], ltm[i], pdv[i], plr[i], per[i], thr[i], thm[i], thv[i], avl[i], age[i], scp[i], quality[i], totQuality, alloc[i], getSlave(_paths[i])->ifname().c_str(), pathStr);
@ -962,9 +939,6 @@ void Bond::estimatePathQuality(const int64_t now)
quality[i] += ((maxPDV > 0.0f ? pdv[i] / maxPDV : 0.0f) * _qualityWeights[ZT_QOS_PDV_IDX]);
quality[i] += ((maxPLR > 0.0f ? plr[i] / maxPLR : 0.0f) * _qualityWeights[ZT_QOS_PLR_IDX]);
quality[i] += ((maxPER > 0.0f ? per[i] / maxPER : 0.0f) * _qualityWeights[ZT_QOS_PER_IDX]);
//quality[i] += ((maxTHR > 0.0f ? thr[i] / maxTHR : 0.0f) * _qualityWeights[ZT_QOS_THR_IDX]);
//quality[i] += ((maxTHM > 0.0f ? thm[i] / maxTHM : 0.0f) * _qualityWeights[ZT_QOS_THM_IDX]);
//quality[i] += ((maxTHV > 0.0f ? thv[i] / maxTHV : 0.0f) * _qualityWeights[ZT_QOS_THV_IDX]);
//quality[i] += (scp[i] * _qualityWeights[ZT_QOS_SCP_IDX]);
totQuality += quality[i];
}
@ -1007,6 +981,7 @@ void Bond::estimatePathQuality(const int64_t now)
}
_header=true;
}
/*
fprintf(stdout, "%ld, %d, %d, %d, ",((now - RR->bc->getBondStartTime())),_numBondedPaths,_totalBondUnderload, _flows.size());
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (_paths[i]) {
@ -1015,15 +990,27 @@ void Bond::estimatePathQuality(const int64_t now)
getSlave(_paths[i])->ifname().c_str(), pathStr, _paths[i]->_latencyMean, lat[i],pdv[i], _paths[i]->_packetLossRatio, plr[i],per[i],thr[i],thm[i],thv[i],(now - _paths[i]->lastIn()),quality[i],alloc[i],
_paths[i]->_relativeByteLoad, _paths[i]->_assignedFlowCount, _paths[i]->alive(now, true), _paths[i]->eligible(now,_ackSendInterval), _paths[i]->qosStatsOut.size());
}
}
fprintf(stdout, "\n");
}*/
//fprintf(stdout, "\n");
}
}
void Bond::processBalanceTasks(const int64_t now)
{
//fprintf(stderr, "processBalanceTasks\n");
char curPathStr[128];
// TODO: Generalize
int totalAllocation = 0;
for (int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) {
continue;
}
if (_paths[i] && _paths[i]->bonded() && _paths[i]->eligible(now,_ackSendInterval)) {
totalAllocation+=_paths[i]->_allocation;
}
}
unsigned char minimumAllocationValue = 0.33 * ((float)totalAllocation / (float)_numBondedPaths);
if (_allowFlowHashing) {
/**
* Clean up and reset flows if necessary
@ -1067,6 +1054,32 @@ void Bond::processBalanceTasks(const int64_t now)
}
}
}
/**
* Re-allocate flows from under-performing
* NOTE: This could be part of the above block but was kept separate for clarity.
*/
if (_bondingPolicy == ZT_BONDING_POLICY_BALANCE_XOR || _bondingPolicy == ZT_BONDING_POLICY_BALANCE_AWARE) {
Mutex::Lock _l(_flows_m);
for (int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if (!_paths[i]) {
continue;
}
if (_paths[i] && _paths[i]->bonded() && _paths[i]->eligible(now,_ackSendInterval) && (_paths[i]->_allocation < minimumAllocationValue) && _paths[i]->_assignedFlowCount) {
_paths[i]->address().toString(curPathStr);
fprintf(stderr, "%d reallocating flows from under-performing path %s on %s\n", (RR->node->now() - RR->bc->getBondStartTime()), curPathStr, getSlave(_paths[i])->ifname().c_str());
std::map<int32_t,SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->assignedPath() == _paths[i]) {
if(assignFlowToBondedPath(flow_it->second, now)) {
_paths[i]->_assignedFlowCount--;
}
}
++flow_it;
}
_paths[i]->_shouldReallocateFlows = false;
}
}
}
}
/**
* Tasks specific to (Balance Round Robin)
@ -1091,70 +1104,47 @@ void Bond::processBalanceTasks(const int64_t now)
if (_bondingPolicy == ZT_BONDING_POLICY_BALANCE_AWARE) {
if (_allowFlowHashing) {
Mutex::Lock _l(_flows_m);
/**
* Re-balance flows in proportion to slave capacity (or when eligibility changes)
*/
if ((now - _lastFlowRebalance) > ZT_FLOW_REBALANCE_INTERVAL) {
if (_flowRebalanceStrategy == ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_PASSIVE) {
// Do nothing here, this is taken care of in the more general case above.
}
if (_flowRebalanceStrategy == ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_OPPORTUNISTIC) {
// If the flow is temporarily inactive we should take this opportunity to re-assign the flow if needed.
}
if (_flowRebalanceStrategy == ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_AGGRESSIVE) {
/**
* Determine "load" for bonded paths
* Return flows to the original path if it has once again become available
*/
uint64_t totalBytes = 0;
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) { // first pass: compute absolute byte load and total
if (_paths[i] && _paths[i]->bonded()) {
_paths[i]->_byteLoad = 0;
std::map<int32_t,SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->assignedPath() == _paths[i]) {
_paths[i]->_byteLoad += flow_it->second->totalBytes();
}
++flow_it;
if ((now - _lastFlowRebalance) > ZT_FLOW_REBALANCE_INTERVAL) {
std::map<int32_t,SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->_previouslyAssignedPath && flow_it->second->_previouslyAssignedPath->eligible(now, _ackSendInterval)
&& (flow_it->second->_previouslyAssignedPath->_allocation >= (minimumAllocationValue * 2))) {
fprintf(stderr, "moving flow back onto its previous path assignment (based on eligibility)\n");
(flow_it->second->_assignedPath->_assignedFlowCount)--;
flow_it->second->assignPath(flow_it->second->_previouslyAssignedPath,now);
(flow_it->second->_previouslyAssignedPath->_assignedFlowCount)++;
}
totalBytes += _paths[i]->_byteLoad;
++flow_it;
}
_lastFlowRebalance = now;
}
/**
* Determine "affinity" for bonded path
* Return flows to the original path if it has once again become (performant)
*/
//fprintf(stderr, "\n\n");
_totalBondUnderload = 0;
/*
for(unsigned int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) { // second pass: compute relative byte loads and total imbalance
if (_paths[i] && _paths[i]->bonded()) {
if (totalBytes) {
uint8_t relativeByteLoad = std::ceil(((float)_paths[i]->_byteLoad / (float)totalBytes) * (float)255);
//fprintf(stderr, "lastComputedAllocation = %d\n", _paths[i]->allocation);
//fprintf(stderr, " relativeByteLoad = %d\n", relativeByteLoad);
_paths[i]->_relativeByteLoad = relativeByteLoad;
uint8_t relativeUnderload = std::max(0, (int)_paths[i]->_allocation - (int)relativeByteLoad);
//fprintf(stderr, " relativeUnderload = %d\n", relativeUnderload);
_totalBondUnderload += relativeUnderload;
//fprintf(stderr, " _totalBondUnderload = %d\n\n", _totalBondUnderload);
//_paths[i]->affinity = (relativeUnderload > 0 ? relativeUnderload : _paths[i]->_allocation);
}
else { // set everything to base values
_totalBondUnderload = 0;
//_paths[i]->affinity = 0;
if ((now - _lastFlowRebalance) > ZT_FLOW_REBALANCE_INTERVAL) {
std::map<int32_t,SharedPtr<Flow> >::iterator flow_it = _flows.begin();
while (flow_it != _flows.end()) {
if (flow_it->second->_previouslyAssignedPath && flow_it->second->_previouslyAssignedPath->eligible(now, _ackSendInterval)
&& (flow_it->second->_previouslyAssignedPath->_allocation >= (minimumAllocationValue * 2))) {
fprintf(stderr, "moving flow back onto its previous path assignment (based on performance)\n");
(flow_it->second->_assignedPath->_assignedFlowCount)--;
flow_it->second->assignPath(flow_it->second->_previouslyAssignedPath,now);
(flow_it->second->_previouslyAssignedPath->_assignedFlowCount)++;
}
++flow_it;
}
_lastFlowRebalance = now;
}
*/
//fprintf(stderr, "_totalBondUnderload=%d (end)\n\n", _totalBondUnderload);
/**
*
*/
//fprintf(stderr, "_lastFlowRebalance\n");
std::map<int32_t, SharedPtr<Flow> >::iterator it = _flows.begin();
while (it != _flows.end()) {
int32_t flowId = it->first;
SharedPtr<Flow> flow = it->second;
if ((now - flow->_lastPathReassignment) > ZT_FLOW_MIN_REBALANCE_INTERVAL) {
//fprintf(stdout, " could move : %x\n", flowId);
}
++it;
}
_lastFlowRebalance = now;
}
}
else if (!_allowFlowHashing) {
@ -1440,7 +1430,7 @@ void Bond::processActiveBackupTasks(const int64_t now)
if (!_abFailoverQueue.empty()) {
fprintf(stderr, "%llu AB: (failure) there are (%lu) slaves in queue to choose from...\n", ((now - RR->bc->getBondStartTime())), _abFailoverQueue.size());
dequeueNextActiveBackupPath(now);
_abPath->address().toString(curPathStr); fprintf(stderr, "%llu sAB: (failure) switched to %s on %s\n", ((now - RR->bc->getBondStartTime())), curPathStr, getSlave(_abPath)->ifname().c_str());
_abPath->address().toString(curPathStr); fprintf(stderr, "%llu AB: (failure) switched to %s on %s\n", ((now - RR->bc->getBondStartTime())), curPathStr, getSlave(_abPath)->ifname().c_str());
} else {
fprintf(stderr, "%llu AB: (failure) nothing available in the slave queue, doing nothing.\n", ((now - RR->bc->getBondStartTime())));
}
@ -1515,12 +1505,16 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
_bondingPolicy= policy;
}
_freeRandomByte = 0;
_lastCheckUserPreferences = 0;
_lastBackgroundTaskCheck = 0;
_downDelay = 0;
_upDelay = 0;
_allowFlowHashing=false;
_bondMonitorInterval=0;
_shouldCollectPathStatistics=false;
_lastBackgroundTaskCheck=0;
// Path negotiation
_allowPathNegotiation=false;
@ -1539,7 +1533,7 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
_lastFlowRebalance=0;
_totalBondUnderload = 0;
//_maxAcceptableLatency
_maxAcceptableLatency = 100;
_maxAcceptablePacketDelayVariance = 50;
_maxAcceptablePacketLossRatio = 0.10;
_maxAcceptablePacketErrorRatio = 0.10;
@ -1547,17 +1541,18 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
_lastFrame=0;
// TODO: Remove
_header=false;
_lastLogTS = RR->node->now();
_lastPrintTS = RR->node->now();
/* ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_PASSIVE is the most conservative strategy and is
least likely to cause unexpected behavior */
_flowRebalanceStrategy = ZT_MULTIPATH_FLOW_REBALANCE_STRATEGY_AGGRESSIVE;
/**
* Paths are actively monitored to provide a real-time quality/preference-ordered rapid failover queue.
*/
switch (policy) {
case ZT_BONDING_POLICY_ACTIVE_BACKUP:
_failoverInterval = 5000;
_failoverInterval = 500;
_abSlaveSelectMethod = ZT_MULTIPATH_RESELECTION_POLICY_OPTIMIZE;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.2f;
@ -1581,7 +1576,7 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
* Paths are monitored to determine when/if one needs to be added or removed from the rotation
*/
case ZT_BONDING_POLICY_BALANCE_RR:
_failoverInterval = 5000;
_failoverInterval = 500;
_allowFlowHashing = false;
_packetsPerSlave = 1024;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
@ -1600,8 +1595,8 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
* path and where to place the next flow.
*/
case ZT_BONDING_POLICY_BALANCE_XOR:
_failoverInterval = 5000;;
_upDelay=_bondMonitorInterval*2;
_failoverInterval = 500;
_upDelay = _bondMonitorInterval * 2;
_allowFlowHashing = true;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.4f;
@ -1623,13 +1618,13 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
_failoverInterval = 3000;
_allowFlowHashing = true;
_slaveMonitorStrategy = ZT_MULTIPATH_SLAVE_MONITOR_STRATEGY_DYNAMIC;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.3f;
_qualityWeights[ZT_QOS_LAT_IDX] = 0.4f;
_qualityWeights[ZT_QOS_LTM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_PDV_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PLR_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PER_IDX] = 0.1f;
_qualityWeights[ZT_QOS_PDV_IDX] = 0.4f;
_qualityWeights[ZT_QOS_PLR_IDX] = 0.2f;
_qualityWeights[ZT_QOS_PER_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THR_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THM_IDX] = 0.4f;
_qualityWeights[ZT_QOS_THM_IDX] = 0.0f;
_qualityWeights[ZT_QOS_THV_IDX] = 0.0f;
_qualityWeights[ZT_QOS_SCP_IDX] = 0.0f;
break;
@ -1637,6 +1632,8 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
break;
}
/* If a user has specified custom parameters for this bonding policy, overlay
them onto the defaults that were previously set */
if (useTemplate) {
_policyAlias = templateBond->_policyAlias;
_failoverInterval = templateBond->_failoverInterval;
@ -1742,7 +1739,7 @@ void Bond::dumpInfo(const int64_t now)
fprintf(stderr, "Paths (bp=%d, stats=%d, fh=%d) :\n",
_policy, _shouldCollectPathStatistics, _allowFlowHashing);
}*/
if ((now - _lastPrintTS) < 1000) {
if ((now - _lastPrintTS) < 2000) {
return;
}
_lastPrintTS = now;
@ -1856,30 +1853,7 @@ void Bond::dumpInfo(const int64_t now)
currPathStr);
}
}
/*
if (_allowFlowHashing) {
//Mutex::Lock _l(_flows_m);
if (_flows.size()) {
fprintf(stderr, "\nFlows:\n");
std::map<int32_t,SharedPtr<Flow> >::iterator it = _flows.begin();
while (it != _flows.end()) {
it->second->assignedPath()->address().toString(currPathStr);
SharedPtr<Slave> slave =RR->bc->getSlaveBySocket(_policyAlias, it->second->assignedPath()->localSocket());
fprintf(stderr, " [%4x] in=%16llu, out=%16llu, bytes=%16llu, last=%16llu, if=%8s\t\t%s\n",
it->second->id(),
it->second->bytesInPerUnitTime(),
it->second->bytesOutPerUnitTime(),
it->second->totalBytes(),
it->second->age(now),
slave->ifname().c_str(),
currPathStr);
++it;
}
}
}
*/
}
//fprintf(stderr, "\n\n\n\n\n");
}
} // namespace ZeroTier

View File

@ -87,7 +87,7 @@ public:
std::string policyAlias() { return _policyAlias; }
/**
* Inform the bond about the path that its peer just learned about
* Inform the bond about the path that its peer (owning object) just learned about
*
* @param path Newly-learned Path which should now be handled by the Bond
* @param now Current time
@ -434,7 +434,12 @@ public:
inline void setFailoverInterval(uint32_t interval) { _failoverInterval = interval; }
/**
* @param strategy The strategy that the bond uses to prob for path aliveness and quality
* @param strategy Strategy that the bond uses to re-assign protocol flows.
*/
inline void setFlowRebalanceStrategy(uint32_t strategy) { _flowRebalanceStrategy = strategy; }
/**
* @param strategy Strategy that the bond uses to prob for path aliveness and quality
*/
inline void setSlaveMonitorStrategy(uint8_t strategy) { _slaveMonitorStrategy = strategy; }
@ -578,6 +583,7 @@ private:
// balance-aware
uint64_t _totalBondUnderload;
uint8_t _flowRebalanceStrategy;
// dynamic slave monitoring
uint8_t _slaveMonitorStrategy;

View File

@ -11,6 +11,7 @@
*/
/****/
#include "Constants.hpp"
#include "BondController.hpp"
#include "Peer.hpp"
@ -23,6 +24,7 @@ BondController::BondController(const RuntimeEnvironment *renv) :
RR(renv)
{
bondStartTime = RR->node->now();
_defaultBondingPolicy = ZT_BONDING_POLICY_NONE;
}
bool BondController::slaveAllowed(std::string &policyAlias, SharedPtr<Slave> slave)
@ -83,10 +85,9 @@ SharedPtr<Bond> BondController::createTransportTriggeredBond(const RuntimeEnviro
Bond *bond = nullptr;
if (!_bonds.count(identity)) {
std::string policyAlias;
int _defaultBondingPolicy = defaultBondingPolicy();
fprintf(stderr, "new bond, registering for %llx\n", identity);
if (!_policyTemplateAssignments.count(identity)) {
if (defaultBondingPolicy()) {
if (_defaultBondingPolicy) {
fprintf(stderr, " no assignment, using default (%d)\n", _defaultBondingPolicy);
bond = new Bond(renv, _defaultBondingPolicy, peer);
}

View File

@ -341,11 +341,6 @@
*/
#define ZT_QOS_SHORTTERM_SAMPLE_WIN_SIZE 32
/**
* Number of samples to consider when processing long-term trends
*/
#define ZT_QOS_LONGTERM_SAMPLE_WIN_SIZE (ZT_QOS_SHORTTERM_SAMPLE_WIN_SIZE * 4)
/**
* Max allowable time spent in any queue (in ms)
*/

View File

@ -116,6 +116,7 @@ struct Flow
int64_t _lastActivity;
int64_t _lastPathReassignment;
SharedPtr<Path> _assignedPath;
SharedPtr<Path> _previouslyAssignedPath;
};
} // namespace ZeroTier

View File

@ -221,9 +221,11 @@ bool IncomingPacket::_doACK(const RuntimeEnvironment *RR,void *tPtr,const Shared
bool IncomingPacket::_doQOS_MEASUREMENT(const RuntimeEnvironment *RR,void *tPtr,const SharedPtr<Peer> &peer)
{
SharedPtr<Bond> bond = peer->bond();
/* TODO: Fix rate gate issue
if (!bond || !bond->rateGateQoS(RR->node->now())) {
return true;
}
*/
/* Dissect incoming QoS packet. From this we can compute latency values and their variance.
* The latency variance is used as a measure of "jitter". */
if (payloadLength() > ZT_QOS_MAX_PACKET_SIZE || payloadLength() < ZT_QOS_MIN_PACKET_SIZE) {

View File

@ -55,7 +55,8 @@ Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Ident
_remoteMultipathSupported(false),
_canUseMultipath(false),
_shouldCollectPathStatistics(0),
_lastComputedAggregateMeanLatency(0)
_lastComputedAggregateMeanLatency(0),
_bondingPolicy(0)
{
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH)) {
throw ZT_EXCEPTION_INVALID_ARGUMENT;

View File

@ -1621,6 +1621,7 @@ public:
// Bond-specific properties
newTemplateBond->setUpDelay(OSUtils::jsonInt(customPolicy["upDelay"],-1));
newTemplateBond->setDownDelay(OSUtils::jsonInt(customPolicy["downDelay"],-1));
newTemplateBond->setFlowRebalanceStrategy(OSUtils::jsonInt(customPolicy["flowRebalanceStrategy"],(uint64_t)0));
newTemplateBond->setFailoverInterval(OSUtils::jsonInt(customPolicy["failoverInterval"],(uint64_t)0));
newTemplateBond->setPacketsPerSlave(OSUtils::jsonInt(customPolicy["packetsPerSlave"],-1));
std::string slaveMonitorStrategyStr(OSUtils::jsonString(customPolicy["slaveMonitorStrategy"],""));