Remove ASM Salsa20 since it will not be the default in 2.x any more... reduce build complexity.

This commit is contained in:
Adam Ierymenko 2019-08-16 14:26:25 -07:00
parent 2b681c37ac
commit 51a25fdec9
No known key found for this signature in database
GPG Key ID: 1657198823E52A61
5 changed files with 284 additions and 230 deletions

View File

@ -1,11 +1,15 @@
# Common makefile -- loads make rules for each platform
BUILDDIR := build
CMAKE_OPTS := -DCMAKE_BUILD_TYPE=Release
.PHONY: all
all:
mkdir -p ${BUILDDIR} && cd ${BUILDDIR} && cmake .. && $(MAKE)
mkdir -p ${BUILDDIR} && cd ${BUILDDIR} && cmake .. ${CMAKE_OPTS} && $(MAKE)
clean:
rm -rf ${BUILDDIR}
distclean:
rm -rf ${BUILDDIR}

View File

@ -57,15 +57,12 @@ public:
inline AES() {}
inline AES(const uint8_t key[32]) { this->init(key); }
inline ~AES()
{
Utils::burn(&_k,sizeof(_k));
}
inline ~AES() { Utils::burn(&_k,sizeof(_k)); }
inline void init(const uint8_t key[32])
{
#ifdef ZT_AES_AESNI
if (HW_ACCEL) {
if (likely(HW_ACCEL)) {
_init_aesni(key);
return;
}
@ -76,7 +73,7 @@ public:
inline void encrypt(const uint8_t in[16],uint8_t out[16]) const
{
#ifdef ZT_AES_AESNI
if (HW_ACCEL) {
if (likely(HW_ACCEL)) {
_encrypt_aesni(in,out);
return;
}
@ -84,10 +81,53 @@ public:
_encryptSW(in,out);
}
inline void ecbEncrypt(const void *in,unsigned int inlen,void *out)
{
if (inlen < 16)
return;
#ifdef ZT_AES_AESNI
if (likely(HW_ACCEL)) {
const uint8_t *i = (const uint8_t *)in;
uint8_t *o = (uint8_t *)out;
while (inlen >= 128) {
_encrypt_8xecb_aesni(i,o);
i += 128;
o += 128;
inlen -= 128;
}
while (inlen >= 16) {
_encrypt_aesni(i,o);
i += 16;
o += 16;
inlen -= 16;
}
if (inlen != 0) {
i -= (16 - inlen);
o -= (16 - inlen);
_encrypt_aesni(i,o);
}
return;
}
#endif
const uint8_t *i = (const uint8_t *)in;
uint8_t *o = (uint8_t *)out;
while (inlen >= 16) {
_encryptSW(i,o);
i += 16;
o += 16;
inlen -= 16;
}
if (inlen != 0) {
i -= (16 - inlen);
o -= (16 - inlen);
_encryptSW(i,o);
}
}
inline void gcmEncrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,uint8_t *tag,unsigned int taglen)
{
#ifdef ZT_AES_AESNI
if (HW_ACCEL) {
if (likely(HW_ACCEL)) {
_encrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tag,taglen);
return;
}
@ -98,7 +138,7 @@ public:
inline bool gcmDecrypt(const uint8_t iv[12],const void *in,unsigned int inlen,const void *assoc,unsigned int assoclen,void *out,const uint8_t *tag,unsigned int taglen)
{
#ifdef ZT_AES_AESNI
if (HW_ACCEL) {
if (likely(HW_ACCEL)) {
uint8_t tagbuf[16];
_decrypt_gcm256_aesni(inlen,(const uint8_t *)in,(uint8_t *)out,iv,assoclen,(const uint8_t *)assoc,tagbuf,taglen);
return Utils::secureEq(tagbuf,tag,taglen);
@ -218,6 +258,160 @@ private:
tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]);
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14]));
}
inline void _encrypt_8xecb_aesni(const void *in,void *out) const
{
__m128i tmp0 = _mm_loadu_si128((const __m128i *)in);
__m128i tmp1 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 16));
__m128i tmp2 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 32));
__m128i tmp3 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 48));
__m128i tmp4 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 64));
__m128i tmp5 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 80));
__m128i tmp6 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 96));
__m128i tmp7 = _mm_loadu_si128((const __m128i *)((const uint8_t *)in + 112));
{
__m128i k0 = _k.ni.k[0];
__m128i k1 = _k.ni.k[1];
__m128i k2 = _k.ni.k[2];
__m128i k3 = _k.ni.k[3];
tmp0 = _mm_xor_si128(tmp0,k0);
tmp1 = _mm_xor_si128(tmp1,k0);
tmp2 = _mm_xor_si128(tmp2,k0);
tmp3 = _mm_xor_si128(tmp3,k0);
tmp4 = _mm_xor_si128(tmp4,k0);
tmp5 = _mm_xor_si128(tmp5,k0);
tmp6 = _mm_xor_si128(tmp6,k0);
tmp7 = _mm_xor_si128(tmp7,k0);
tmp0 = _mm_aesenc_si128(tmp0,k1);
tmp1 = _mm_aesenc_si128(tmp1,k1);
tmp2 = _mm_aesenc_si128(tmp2,k1);
tmp3 = _mm_aesenc_si128(tmp3,k1);
tmp4 = _mm_aesenc_si128(tmp4,k1);
tmp5 = _mm_aesenc_si128(tmp5,k1);
tmp6 = _mm_aesenc_si128(tmp6,k1);
tmp7 = _mm_aesenc_si128(tmp7,k1);
tmp0 = _mm_aesenc_si128(tmp0,k2);
tmp1 = _mm_aesenc_si128(tmp1,k2);
tmp2 = _mm_aesenc_si128(tmp2,k2);
tmp3 = _mm_aesenc_si128(tmp3,k2);
tmp4 = _mm_aesenc_si128(tmp4,k2);
tmp5 = _mm_aesenc_si128(tmp5,k2);
tmp6 = _mm_aesenc_si128(tmp6,k2);
tmp7 = _mm_aesenc_si128(tmp7,k2);
tmp0 = _mm_aesenc_si128(tmp0,k3);
tmp1 = _mm_aesenc_si128(tmp1,k3);
tmp2 = _mm_aesenc_si128(tmp2,k3);
tmp3 = _mm_aesenc_si128(tmp3,k3);
tmp4 = _mm_aesenc_si128(tmp4,k3);
tmp5 = _mm_aesenc_si128(tmp5,k3);
tmp6 = _mm_aesenc_si128(tmp6,k3);
tmp7 = _mm_aesenc_si128(tmp7,k3);
}
{
__m128i k4 = _k.ni.k[4];
__m128i k5 = _k.ni.k[5];
__m128i k6 = _k.ni.k[6];
__m128i k7 = _k.ni.k[7];
tmp0 = _mm_aesenc_si128(tmp0,k4);
tmp1 = _mm_aesenc_si128(tmp1,k4);
tmp2 = _mm_aesenc_si128(tmp2,k4);
tmp3 = _mm_aesenc_si128(tmp3,k4);
tmp4 = _mm_aesenc_si128(tmp4,k4);
tmp5 = _mm_aesenc_si128(tmp5,k4);
tmp6 = _mm_aesenc_si128(tmp6,k4);
tmp7 = _mm_aesenc_si128(tmp7,k4);
tmp0 = _mm_aesenc_si128(tmp0,k5);
tmp1 = _mm_aesenc_si128(tmp1,k5);
tmp2 = _mm_aesenc_si128(tmp2,k5);
tmp3 = _mm_aesenc_si128(tmp3,k5);
tmp4 = _mm_aesenc_si128(tmp4,k5);
tmp5 = _mm_aesenc_si128(tmp5,k5);
tmp6 = _mm_aesenc_si128(tmp6,k5);
tmp7 = _mm_aesenc_si128(tmp7,k5);
tmp0 = _mm_aesenc_si128(tmp0,k6);
tmp1 = _mm_aesenc_si128(tmp1,k6);
tmp2 = _mm_aesenc_si128(tmp2,k6);
tmp3 = _mm_aesenc_si128(tmp3,k6);
tmp4 = _mm_aesenc_si128(tmp4,k6);
tmp5 = _mm_aesenc_si128(tmp5,k6);
tmp6 = _mm_aesenc_si128(tmp6,k6);
tmp7 = _mm_aesenc_si128(tmp7,k6);
tmp0 = _mm_aesenc_si128(tmp0,k7);
tmp1 = _mm_aesenc_si128(tmp1,k7);
tmp2 = _mm_aesenc_si128(tmp2,k7);
tmp3 = _mm_aesenc_si128(tmp3,k7);
tmp4 = _mm_aesenc_si128(tmp4,k7);
tmp5 = _mm_aesenc_si128(tmp5,k7);
tmp6 = _mm_aesenc_si128(tmp6,k7);
tmp7 = _mm_aesenc_si128(tmp7,k7);
}
{
__m128i k8 = _k.ni.k[8];
__m128i k9 = _k.ni.k[9];
__m128i k10 = _k.ni.k[10];
__m128i k11 = _k.ni.k[11];
tmp0 = _mm_aesenc_si128(tmp0,k8);
tmp1 = _mm_aesenc_si128(tmp1,k8);
tmp2 = _mm_aesenc_si128(tmp2,k8);
tmp3 = _mm_aesenc_si128(tmp3,k8);
tmp4 = _mm_aesenc_si128(tmp4,k8);
tmp5 = _mm_aesenc_si128(tmp5,k8);
tmp6 = _mm_aesenc_si128(tmp6,k8);
tmp7 = _mm_aesenc_si128(tmp7,k8);
tmp0 = _mm_aesenc_si128(tmp0,k9);
tmp1 = _mm_aesenc_si128(tmp1,k9);
tmp2 = _mm_aesenc_si128(tmp2,k9);
tmp3 = _mm_aesenc_si128(tmp3,k9);
tmp4 = _mm_aesenc_si128(tmp4,k9);
tmp5 = _mm_aesenc_si128(tmp5,k9);
tmp6 = _mm_aesenc_si128(tmp6,k9);
tmp7 = _mm_aesenc_si128(tmp7,k9);
tmp0 = _mm_aesenc_si128(tmp0,k10);
tmp1 = _mm_aesenc_si128(tmp1,k10);
tmp2 = _mm_aesenc_si128(tmp2,k10);
tmp3 = _mm_aesenc_si128(tmp3,k10);
tmp4 = _mm_aesenc_si128(tmp4,k10);
tmp5 = _mm_aesenc_si128(tmp5,k10);
tmp6 = _mm_aesenc_si128(tmp6,k10);
tmp7 = _mm_aesenc_si128(tmp7,k10);
tmp0 = _mm_aesenc_si128(tmp0,k11);
tmp1 = _mm_aesenc_si128(tmp1,k11);
tmp2 = _mm_aesenc_si128(tmp2,k11);
tmp3 = _mm_aesenc_si128(tmp3,k11);
tmp4 = _mm_aesenc_si128(tmp4,k11);
tmp5 = _mm_aesenc_si128(tmp5,k11);
tmp6 = _mm_aesenc_si128(tmp6,k11);
tmp7 = _mm_aesenc_si128(tmp7,k11);
}
{
__m128i k12 = _k.ni.k[12];
__m128i k13 = _k.ni.k[13];
__m128i k14 = _k.ni.k[14];
tmp0 = _mm_aesenc_si128(tmp0,k12);
tmp1 = _mm_aesenc_si128(tmp1,k12);
tmp2 = _mm_aesenc_si128(tmp2,k12);
tmp3 = _mm_aesenc_si128(tmp3,k12);
tmp4 = _mm_aesenc_si128(tmp4,k12);
tmp5 = _mm_aesenc_si128(tmp5,k12);
tmp6 = _mm_aesenc_si128(tmp6,k12);
tmp7 = _mm_aesenc_si128(tmp7,k12);
tmp0 = _mm_aesenc_si128(tmp0,k13);
tmp1 = _mm_aesenc_si128(tmp1,k13);
tmp2 = _mm_aesenc_si128(tmp2,k13);
tmp3 = _mm_aesenc_si128(tmp3,k13);
tmp4 = _mm_aesenc_si128(tmp4,k13);
tmp5 = _mm_aesenc_si128(tmp5,k13);
tmp6 = _mm_aesenc_si128(tmp6,k13);
tmp7 = _mm_aesenc_si128(tmp7,k13);
_mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp0,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 16),_mm_aesenclast_si128(tmp1,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 32),_mm_aesenclast_si128(tmp2,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 48),_mm_aesenclast_si128(tmp3,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 64),_mm_aesenclast_si128(tmp4,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 80),_mm_aesenclast_si128(tmp5,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 96),_mm_aesenclast_si128(tmp6,k14));
_mm_storeu_si128((__m128i *)((uint8_t *)out + 112),_mm_aesenclast_si128(tmp7,k14));
}
}
static inline __m128i _swap128_aesni(__m128i x) { return _mm_shuffle_epi8(x,_mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)); }
static inline __m128i _mult_block_aesni(__m128i h,__m128i y)
@ -458,28 +652,16 @@ private:
__m128i *bi = (__m128i *)in;
__m128i *bo = (__m128i *)out;
__m128i k0 = _k.ni.k[0];
__m128i k1 = _k.ni.k[1];
__m128i k2 = _k.ni.k[2];
__m128i k3 = _k.ni.k[3];
__m128i k4 = _k.ni.k[4];
__m128i k5 = _k.ni.k[5];
__m128i k6 = _k.ni.k[6];
__m128i k7 = _k.ni.k[7];
__m128i k8 = _k.ni.k[8];
__m128i k9 = _k.ni.k[9];
__m128i k10 = _k.ni.k[10];
__m128i k11 = _k.ni.k[11];
__m128i k12 = _k.ni.k[12];
__m128i k13 = _k.ni.k[13];
__m128i k14 = _k.ni.k[14];
unsigned int i;
for (i=0;i<pblocks;i+=4) {
__m128i d1 = _mm_loadu_si128(bi + i + 0);
__m128i d2 = _mm_loadu_si128(bi + i + 1);
__m128i d3 = _mm_loadu_si128(bi + i + 2);
__m128i d4 = _mm_loadu_si128(bi + i + 3);
__m128i k0 = _k.ni.k[0];
__m128i k1 = _k.ni.k[1];
__m128i k2 = _k.ni.k[2];
__m128i k3 = _k.ni.k[3];
__m128i t1 = _mm_xor_si128(cb,k0);
cb = _increment_be_aesni(cb);
__m128i t2 = _mm_xor_si128(cb,k0);
@ -500,6 +682,10 @@ private:
t2 = _mm_aesenc_si128(t2,k3);
t3 = _mm_aesenc_si128(t3,k3);
t4 = _mm_aesenc_si128(t4,k3);
__m128i k4 = _k.ni.k[4];
__m128i k5 = _k.ni.k[5];
__m128i k6 = _k.ni.k[6];
__m128i k7 = _k.ni.k[7];
t1 = _mm_aesenc_si128(t1,k4);
t2 = _mm_aesenc_si128(t2,k4);
t3 = _mm_aesenc_si128(t3,k4);
@ -516,6 +702,10 @@ private:
t2 = _mm_aesenc_si128(t2,k7);
t3 = _mm_aesenc_si128(t3,k7);
t4 = _mm_aesenc_si128(t4,k7);
__m128i k8 = _k.ni.k[8];
__m128i k9 = _k.ni.k[9];
__m128i k10 = _k.ni.k[10];
__m128i k11 = _k.ni.k[11];
t1 = _mm_aesenc_si128(t1,k8);
t2 = _mm_aesenc_si128(t2,k8);
t3 = _mm_aesenc_si128(t3,k8);
@ -532,6 +722,9 @@ private:
t2 = _mm_aesenc_si128(t2,k11);
t3 = _mm_aesenc_si128(t3,k11);
t4 = _mm_aesenc_si128(t4,k11);
__m128i k12 = _k.ni.k[12];
__m128i k13 = _k.ni.k[13];
__m128i k14 = _k.ni.k[14];
t1 = _mm_aesenc_si128(t1,k12);
t2 = _mm_aesenc_si128(t2,k12);
t3 = _mm_aesenc_si128(t3,k12);
@ -558,18 +751,33 @@ private:
for (i=pblocks;i<blocks;++i) {
__m128i d1 = _mm_loadu_si128(bi + i);
__m128i k0 = _k.ni.k[0];
__m128i k1 = _k.ni.k[1];
__m128i k2 = _k.ni.k[2];
__m128i k3 = _k.ni.k[3];
__m128i t1 = _mm_xor_si128(cb,k0);
t1 = _mm_aesenc_si128(t1,k1);
t1 = _mm_aesenc_si128(t1,k2);
t1 = _mm_aesenc_si128(t1,k3);
__m128i k4 = _k.ni.k[4];
__m128i k5 = _k.ni.k[5];
__m128i k6 = _k.ni.k[6];
__m128i k7 = _k.ni.k[7];
t1 = _mm_aesenc_si128(t1,k4);
t1 = _mm_aesenc_si128(t1,k5);
t1 = _mm_aesenc_si128(t1,k6);
t1 = _mm_aesenc_si128(t1,k7);
__m128i k8 = _k.ni.k[8];
__m128i k9 = _k.ni.k[9];
__m128i k10 = _k.ni.k[10];
__m128i k11 = _k.ni.k[11];
t1 = _mm_aesenc_si128(t1,k8);
t1 = _mm_aesenc_si128(t1,k9);
t1 = _mm_aesenc_si128(t1,k10);
t1 = _mm_aesenc_si128(t1,k11);
__m128i k12 = _k.ni.k[12];
__m128i k13 = _k.ni.k[13];
__m128i k14 = _k.ni.k[14];
t1 = _mm_aesenc_si128(t1,k12);
t1 = _mm_aesenc_si128(t1,k13);
t1 = _mm_aesenclast_si128(t1,k14);

View File

@ -32,13 +32,6 @@
#include "Packet.hpp"
#ifdef ZT_USE_X64_ASM_SALSA2012
#include "../ext/x64-salsa2012-asm/salsa2012.h"
#endif
#ifdef ZT_USE_ARM32_NEON_ASM_SALSA2012
#include "../ext/arm32-neon-salsa2012-asm/salsa2012.h"
#endif
#ifdef _MSC_VER
#define FORCE_INLINE static __forceinline
#include <intrin.h>
@ -50,37 +43,6 @@
namespace ZeroTier {
/************************************************************************** */
/* Set up macros for fast single-pass ASM Salsa20/12 crypto, if we have it */
// x64 SSE crypto
#ifdef ZT_USE_X64_ASM_SALSA2012
#define ZT_HAS_FAST_CRYPTO() (true)
#define ZT_FAST_SINGLE_PASS_SALSA2012(b,l,n,k) zt_salsa2012_amd64_xmm6(reinterpret_cast<unsigned char *>(b),(l),reinterpret_cast<const unsigned char *>(n),reinterpret_cast<const unsigned char *>(k))
#endif
// ARM (32-bit) NEON crypto (must be detected)
#ifdef ZT_USE_ARM32_NEON_ASM_SALSA2012
class _FastCryptoChecker
{
public:
_FastCryptoChecker() : canHas(zt_arm_has_neon()) {}
bool canHas;
};
static const _FastCryptoChecker _ZT_FAST_CRYPTO_CHECK;
#define ZT_HAS_FAST_CRYPTO() (_ZT_FAST_CRYPTO_CHECK.canHas)
#define ZT_FAST_SINGLE_PASS_SALSA2012(b,l,n,k) zt_salsa2012_armneon3_xor(reinterpret_cast<unsigned char *>(b),(const unsigned char *)0,(l),reinterpret_cast<const unsigned char *>(n),reinterpret_cast<const unsigned char *>(k))
#endif
// No fast crypto available
#ifndef ZT_HAS_FAST_CRYPTO
#define ZT_HAS_FAST_CRYPTO() (false)
#define ZT_FAST_SINGLE_PASS_SALSA2012(b,l,n,k) {}
#endif
/************************************************************************** */
/* LZ4 is shipped encapsulated into Packet in an anonymous namespace.
*
* We're doing this as a deliberate workaround for various Linux distribution
@ -899,19 +861,6 @@ void Packet::armor(const void *key,bool encryptPayload)
_salsa20MangleKey((const unsigned char *)key,mangledKey);
if (ZT_HAS_FAST_CRYPTO()) {
const unsigned int encryptLen = (encryptPayload) ? (size() - ZT_PACKET_IDX_VERB) : 0;
uint64_t keyStream[(ZT_PROTO_MAX_PACKET_LENGTH + 64 + 8) / 8];
ZT_FAST_SINGLE_PASS_SALSA2012(keyStream,encryptLen + 64,(data + ZT_PACKET_IDX_IV),mangledKey);
Salsa20::memxor(data + ZT_PACKET_IDX_VERB,reinterpret_cast<const uint8_t *>(keyStream + 8),encryptLen);
uint64_t mac[2];
poly1305(mac,data + ZT_PACKET_IDX_VERB,size() - ZT_PACKET_IDX_VERB,keyStream);
#ifdef ZT_NO_TYPE_PUNNING
memcpy(data + ZT_PACKET_IDX_MAC,mac,8);
#else
(*reinterpret_cast<uint64_t *>(data + ZT_PACKET_IDX_MAC)) = mac[0];
#endif
} else {
Salsa20 s20(mangledKey,data + ZT_PACKET_IDX_IV);
uint64_t macKey[4];
s20.crypt12(ZERO_KEY,macKey,sizeof(macKey));
@ -923,7 +872,6 @@ void Packet::armor(const void *key,bool encryptPayload)
poly1305(mac,payload,payloadLen,macKey);
memcpy(data + ZT_PACKET_IDX_MAC,mac,8);
}
}
bool Packet::dearmor(const void *key)
{
@ -935,21 +883,6 @@ bool Packet::dearmor(const void *key)
if ((cs == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)||(cs == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)) {
_salsa20MangleKey((const unsigned char *)key,mangledKey);
if (ZT_HAS_FAST_CRYPTO()) {
uint64_t keyStream[(ZT_PROTO_MAX_PACKET_LENGTH + 64 + 8) / 8];
ZT_FAST_SINGLE_PASS_SALSA2012(keyStream,((cs == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012) ? (payloadLen + 64) : 64),(data + ZT_PACKET_IDX_IV),mangledKey);
uint64_t mac[2];
poly1305(mac,payload,payloadLen,keyStream);
#ifdef ZT_NO_TYPE_PUNNING
if (!Utils::secureEq(mac,data + ZT_PACKET_IDX_MAC,8))
return false;
#else
if ((*reinterpret_cast<const uint64_t *>(data + ZT_PACKET_IDX_MAC)) != mac[0]) // also secure, constant time
return false;
#endif
if (cs == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)
Salsa20::memxor(data + ZT_PACKET_IDX_VERB,reinterpret_cast<const uint8_t *>(keyStream + 8),payloadLen);
} else {
Salsa20 s20(mangledKey,data + ZT_PACKET_IDX_IV);
uint64_t macKey[4];
s20.crypt12(ZERO_KEY,macKey,sizeof(macKey));
@ -964,8 +897,6 @@ bool Packet::dearmor(const void *key)
#endif
if (cs == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)
s20.crypt12(payload,payload,payloadLen);
}
return true;
} else {
return false; // unrecognized cipher suite

View File

@ -34,82 +34,6 @@ public:
inline Salsa20() {}
inline ~Salsa20() { Utils::burn(&_state,sizeof(_state)); }
/**
* XOR d with s
*
* This is done efficiently using e.g. SSE if available. It's used when
* alternative Salsa20 implementations are used in Packet and is here
* since this is where all the SSE stuff is already included.
*
* @param d Destination to XOR
* @param s Source bytes to XOR with destination
* @param len Length of s and d
*/
static inline void memxor(uint8_t *d,const uint8_t *s,unsigned int len)
{
#ifdef ZT_SALSA20_SSE
while (len >= 128) {
__m128i s0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s));
__m128i s1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 16));
__m128i s2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 32));
__m128i s3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 48));
__m128i s4 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 64));
__m128i s5 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 80));
__m128i s6 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 96));
__m128i s7 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(s + 112));
__m128i d0 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d));
__m128i d1 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 16));
__m128i d2 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 32));
__m128i d3 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 48));
__m128i d4 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 64));
__m128i d5 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 80));
__m128i d6 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 96));
__m128i d7 = _mm_loadu_si128(reinterpret_cast<__m128i *>(d + 112));
d0 = _mm_xor_si128(d0,s0);
d1 = _mm_xor_si128(d1,s1);
d2 = _mm_xor_si128(d2,s2);
d3 = _mm_xor_si128(d3,s3);
d4 = _mm_xor_si128(d4,s4);
d5 = _mm_xor_si128(d5,s5);
d6 = _mm_xor_si128(d6,s6);
d7 = _mm_xor_si128(d7,s7);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d),d0);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 16),d1);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 32),d2);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 48),d3);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 64),d4);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 80),d5);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 96),d6);
_mm_storeu_si128(reinterpret_cast<__m128i *>(d + 112),d7);
s += 128;
d += 128;
len -= 128;
}
while (len >= 16) {
_mm_storeu_si128(reinterpret_cast<__m128i *>(d),_mm_xor_si128(_mm_loadu_si128(reinterpret_cast<__m128i *>(d)),_mm_loadu_si128(reinterpret_cast<const __m128i *>(s))));
s += 16;
d += 16;
len -= 16;
}
#else
#ifndef ZT_NO_TYPE_PUNNING
while (len >= 16) {
(*reinterpret_cast<uint64_t *>(d)) ^= (*reinterpret_cast<const uint64_t *>(s));
s += 8;
d += 8;
(*reinterpret_cast<uint64_t *>(d)) ^= (*reinterpret_cast<const uint64_t *>(s));
s += 8;
d += 8;
len -= 16;
}
#endif
#endif
while (len) {
--len;
*(d++) ^= *(s++);
}
}
/**
* @param key 256-bit (32 byte) key
* @param iv 64-bit initialization vector

View File

@ -209,13 +209,36 @@ static int testCrypto()
}
double gcmBytes = 0.0;
int64_t start = OSUtils::now();
for(unsigned long i=0;i<150000;++i) {
for(unsigned long i=0;i<100000;++i) {
tv.gcmEncrypt((const uint8_t *)hexbuf,buf1,sizeof(buf1),nullptr,0,buf2,(uint8_t *)(hexbuf + 32),16);
gcmBytes += (double)sizeof(buf1);
tv.gcmEncrypt((const uint8_t *)hexbuf,buf2,sizeof(buf2),nullptr,0,buf1,(uint8_t *)(hexbuf + 32),16);
gcmBytes += (double)(sizeof(buf1) * 2);
}
int64_t end = OSUtils::now();
*dummy = buf1[0];
std::cout << ((gcmBytes / 1048576.0) / ((long double)(end - start) / 1000.0)) << " MiB/second" << std::endl;
std::cout << ((gcmBytes / 1048576.0) / ((double)(end - start) / 1000.0)) << " MiB/second" << std::endl << " AES-256 ECB scramble (benchmark): "; std::cout.flush();
double ecbBytes = 0.0;
start = OSUtils::now();
for(unsigned long i=0;i<100000;++i) {
tv.ecbEncrypt(buf1,sizeof(buf1),buf2);
tv.ecbEncrypt(buf2,sizeof(buf1),buf1);
ecbBytes += (double)(sizeof(buf1) * 2);
}
end = OSUtils::now();
*dummy = buf1[0];
std::cout << ((ecbBytes / 1048576.0) / ((double)(end - start) / 1000.0)) << " MiB/second" << std::endl << " AES-256 GCM + ECB scramble (benchmark): "; std::cout.flush();
ecbBytes = 0.0;
start = OSUtils::now();
for(unsigned long i=0;i<100000;++i) {
tv.gcmEncrypt((const uint8_t *)hexbuf,buf1,sizeof(buf1),nullptr,0,buf2,(uint8_t *)(hexbuf + 32),16);
tv.ecbEncrypt(buf1,sizeof(buf1),buf2);
tv.gcmEncrypt((const uint8_t *)hexbuf,buf2,sizeof(buf2),nullptr,0,buf1,(uint8_t *)(hexbuf + 32),16);
tv.ecbEncrypt(buf2,sizeof(buf1),buf1);
ecbBytes += (double)(sizeof(buf1) * 2);
}
end = OSUtils::now();
*dummy = buf1[0];
std::cout << ((ecbBytes / 1048576.0) / ((double)(end - start) / 1000.0)) << " MiB/second" << std::endl;
std::cout << "[crypto] Testing Salsa20... "; std::cout.flush();
for(unsigned int i=0;i<4;++i) {
@ -275,42 +298,6 @@ static int testCrypto()
::free((void *)bb);
}
#ifdef ZT_USE_X64_ASM_SALSA2012
std::cout << "[crypto] Benchmarking Salsa20/12 fast x64 ASM... "; std::cout.flush();
{
unsigned char *bb = (unsigned char *)::malloc(1234567);
double bytes = 0.0;
uint64_t start = OSUtils::now();
for(unsigned int i=0;i<200;++i) {
zt_salsa2012_amd64_xmm6(bb,1234567,s20TV0Iv,s20TV0Key);
bytes += 1234567.0;
}
uint64_t end = OSUtils::now();
*dummy = bb[0];
std::cout << ((bytes / 1048576.0) / ((double)(end - start) / 1000.0)) << " MiB/second" << std::endl;
::free((void *)bb);
}
#endif
#ifdef ZT_USE_ARM32_NEON_ASM_SALSA2012
if (zt_arm_has_neon()) {
std::cout << "[crypto] Benchmarking Salsa20/12 fast arm32/neon ASM... "; std::cout.flush();
{
unsigned char *bb = (unsigned char *)::malloc(1234567);
double bytes = 0.0;
uint64_t start = OSUtils::now();
for(unsigned int i=0;i<200;++i) {
zt_salsa2012_armneon3_xor(bb,(const unsigned char *)0,1234567,s20TV0Iv,s20TV0Key);
bytes += 1234567.0;
}
uint64_t end = OSUtils::now();
*dummy = bb[0];
std::cout << ((bytes / 1048576.0) / ((double)(end - start) / 1000.0)) << " MiB/second" << std::endl;
::free((void *)bb);
}
}
#endif
std::cout << "[crypto] Benchmarking Salsa20/20... "; std::cout.flush();
{
unsigned char *bb = (unsigned char *)::malloc(1234567);