mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-21 03:55:19 +00:00
Refactor path stability stuff and add basic multipath support.
This commit is contained in:
parent
0d8b8d8426
commit
459f1e7bfb
@ -268,16 +268,6 @@
|
||||
*/
|
||||
#define ZT_PATH_HEARTBEAT_PERIOD 14000
|
||||
|
||||
/**
|
||||
* Paths are considered inactive if they have not received traffic in this long
|
||||
*/
|
||||
#define ZT_PATH_ALIVE_TIMEOUT 45000
|
||||
|
||||
/**
|
||||
* Minimum time between attempts to check dead paths to see if they can be re-awakened
|
||||
*/
|
||||
#define ZT_PATH_MIN_REACTIVATE_INTERVAL 2500
|
||||
|
||||
/**
|
||||
* Do not accept HELLOs over a given path more often than this
|
||||
*/
|
||||
|
@ -42,11 +42,6 @@ namespace ZeroTier {
|
||||
|
||||
/**
|
||||
* A minimal hash table implementation for the ZeroTier core
|
||||
*
|
||||
* This is not a drop-in replacement for STL containers, and has several
|
||||
* limitations. Keys can be uint64_t or an object, and if the latter they
|
||||
* must implement a method called hashCode() that returns an unsigned long
|
||||
* value that is evenly distributed.
|
||||
*/
|
||||
template<typename K,typename V>
|
||||
class Hashtable
|
||||
|
@ -446,7 +446,8 @@ bool IncomingPacket::_doOK(const RuntimeEnvironment *RR,void *tPtr,const SharedP
|
||||
}
|
||||
|
||||
if (!hops())
|
||||
peer->addDirectLatencyMeasurment((unsigned int)latency);
|
||||
_path->updateLatency((unsigned int)latency);
|
||||
|
||||
peer->setRemoteVersion(vProto,vMajor,vMinor,vRevision);
|
||||
|
||||
if ((externalSurfaceAddress)&&(hops() == 0))
|
||||
@ -1091,7 +1092,7 @@ bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment *RR,void *tPt
|
||||
(RR->node->shouldUsePathForZeroTierTraffic(tPtr,peer->address(),_path->localSocket(),a)) ) // should use path
|
||||
{
|
||||
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
|
||||
peer->redirect(tPtr,_path->localSocket(),a,now);
|
||||
peer->clusterRedirect(tPtr,_path->localSocket(),a,now);
|
||||
} else if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
|
||||
peer->attemptToContactAt(tPtr,InetAddress(),a,now,false,0);
|
||||
}
|
||||
@ -1105,7 +1106,7 @@ bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment *RR,void *tPt
|
||||
(RR->node->shouldUsePathForZeroTierTraffic(tPtr,peer->address(),_path->localSocket(),a)) ) // should use path
|
||||
{
|
||||
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
|
||||
peer->redirect(tPtr,_path->localSocket(),a,now);
|
||||
peer->clusterRedirect(tPtr,_path->localSocket(),a,now);
|
||||
} else if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
|
||||
peer->attemptToContactAt(tPtr,InetAddress(),a,now,false,0);
|
||||
}
|
||||
|
@ -273,9 +273,8 @@ InetAddress InetAddress::network() const
|
||||
return r;
|
||||
}
|
||||
|
||||
#ifdef ZT_SDK
|
||||
bool InetAddress::isEqualPrefix(const InetAddress &addr) const
|
||||
{
|
||||
bool InetAddress::isEqualPrefix(const InetAddress &addr) const
|
||||
{
|
||||
if (addr.ss_family == ss_family) {
|
||||
switch(ss_family) {
|
||||
case AF_INET6: {
|
||||
@ -294,8 +293,7 @@ InetAddress InetAddress::network() const
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
bool InetAddress::containsAddress(const InetAddress &addr) const
|
||||
{
|
||||
|
@ -330,7 +330,6 @@ struct InetAddress : public sockaddr_storage
|
||||
*/
|
||||
InetAddress network() const;
|
||||
|
||||
#ifdef ZT_SDK
|
||||
/**
|
||||
* Test whether this IPv6 prefix matches the prefix of a given IPv6 address
|
||||
*
|
||||
@ -338,7 +337,6 @@ struct InetAddress : public sockaddr_storage
|
||||
* @return True if this IPv6 prefix matches the prefix of a given IPv6 address
|
||||
*/
|
||||
bool isEqualPrefix(const InetAddress &addr) const;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Test whether this IP/netmask contains this address
|
||||
|
@ -191,12 +191,13 @@ public:
|
||||
{
|
||||
const std::vector<InetAddress> *const upstreamStableEndpoints = _upstreamsToContact.get(p->address());
|
||||
if (upstreamStableEndpoints) {
|
||||
bool contacted = false;
|
||||
|
||||
// Upstreams must be pinged constantly over both IPv4 and IPv6 to allow
|
||||
// them to perform three way handshake introductions for both stacks.
|
||||
|
||||
if (!p->doPingAndKeepalive(_tPtr,_now,AF_INET)) {
|
||||
const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now);
|
||||
bool contacted = (sent != 0);
|
||||
|
||||
if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent
|
||||
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)upstreamStableEndpoints->size();++k) {
|
||||
const InetAddress &addr = (*upstreamStableEndpoints)[ptr++ % upstreamStableEndpoints->size()];
|
||||
if (addr.ss_family == AF_INET) {
|
||||
@ -205,8 +206,9 @@ public:
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else contacted = true;
|
||||
if (!p->doPingAndKeepalive(_tPtr,_now,AF_INET6)) {
|
||||
}
|
||||
|
||||
if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent
|
||||
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)upstreamStableEndpoints->size();++k) {
|
||||
const InetAddress &addr = (*upstreamStableEndpoints)[ptr++ % upstreamStableEndpoints->size()];
|
||||
if (addr.ss_family == AF_INET6) {
|
||||
@ -215,8 +217,10 @@ public:
|
||||
break;
|
||||
}
|
||||
}
|
||||
} else contacted = true;
|
||||
}
|
||||
|
||||
// If we have no memoized addresses for this upstream peer, attempt to contact
|
||||
// it indirectly so we will be introduced.
|
||||
if ((!contacted)&&(_bestCurrentUpstream)) {
|
||||
const SharedPtr<Path> up(_bestCurrentUpstream->getBestPath(_now,true));
|
||||
if (up)
|
||||
@ -224,9 +228,11 @@ public:
|
||||
}
|
||||
|
||||
lastReceiveFromUpstream = std::max(p->lastReceive(),lastReceiveFromUpstream);
|
||||
_upstreamsToContact.erase(p->address()); // erase from upstreams to contact so that we can WHOIS those that remain
|
||||
|
||||
_upstreamsToContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain
|
||||
} else if (p->isActive(_now)) {
|
||||
p->doPingAndKeepalive(_tPtr,_now,-1);
|
||||
// Regular non-upstream nodes get pinged if they appear active.
|
||||
p->doPingAndKeepalive(_tPtr,_now);
|
||||
}
|
||||
}
|
||||
|
||||
@ -420,7 +426,7 @@ ZT_PeerList *Node::peers() const
|
||||
p->versionMinor = -1;
|
||||
p->versionRev = -1;
|
||||
}
|
||||
p->latency = pi->second->latency();
|
||||
p->latency = pi->second->latency(_now);
|
||||
p->role = RR->topology->role(pi->second->identity().address());
|
||||
|
||||
std::vector< SharedPtr<Path> > paths(pi->second->paths(_now));
|
||||
|
@ -100,6 +100,7 @@ public:
|
||||
_incomingLinkQualitySlowLogCounter(-64), // discard first fast log
|
||||
_incomingLinkQualityPreviousPacketCounter(0),
|
||||
_outgoingPacketCounter(0),
|
||||
_latency(0xffff),
|
||||
_addr(),
|
||||
_ipScope(InetAddress::IP_SCOPE_NONE)
|
||||
{
|
||||
@ -117,6 +118,7 @@ public:
|
||||
_incomingLinkQualitySlowLogCounter(-64), // discard first fast log
|
||||
_incomingLinkQualityPreviousPacketCounter(0),
|
||||
_outgoingPacketCounter(0),
|
||||
_latency(0xffff),
|
||||
_addr(addr),
|
||||
_ipScope(addr.ipScope())
|
||||
{
|
||||
@ -188,6 +190,19 @@ public:
|
||||
*/
|
||||
inline void sent(const int64_t t) { _lastOut = t; }
|
||||
|
||||
/**
|
||||
* Update path latency with a new measurement
|
||||
*
|
||||
* @param l Measured latency
|
||||
*/
|
||||
inline void updateLatency(const unsigned int l)
|
||||
{
|
||||
unsigned int pl = _latency;
|
||||
if (pl < 0xffff)
|
||||
_latency = (pl + l) / 2;
|
||||
else _latency = l;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return Local socket as specified by external code
|
||||
*/
|
||||
@ -259,9 +274,19 @@ public:
|
||||
}
|
||||
|
||||
/**
|
||||
* @return True if path appears alive
|
||||
* @return Latency or 0xffff if unknown
|
||||
*/
|
||||
inline bool alive(const int64_t now) const { return ((now - _lastIn) <= ZT_PATH_ALIVE_TIMEOUT); }
|
||||
inline unsigned int latency() const { return _latency; }
|
||||
|
||||
/**
|
||||
* @return Path quality -- lower is better
|
||||
*/
|
||||
inline int quality(const int64_t now) const
|
||||
{
|
||||
const int l = (int)_latency;
|
||||
const int age = (int)std::min((now - _lastIn),(int64_t)(ZT_PATH_HEARTBEAT_PERIOD * 10)); // set an upper sanity limit to avoid overflow
|
||||
return (((age < (ZT_PATH_HEARTBEAT_PERIOD + 5000)) ? l : (l + 0xffff + age)) * (int)((ZT_INETADDRESS_MAX_SCOPE - _ipScope) + 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* @return True if this path needs a heartbeat
|
||||
@ -300,6 +325,7 @@ private:
|
||||
volatile signed int _incomingLinkQualitySlowLogCounter;
|
||||
volatile unsigned int _incomingLinkQualityPreviousPacketCounter;
|
||||
volatile unsigned int _outgoingPacketCounter;
|
||||
volatile unsigned int _latency;
|
||||
InetAddress _addr;
|
||||
InetAddress::IpScope _ipScope; // memoize this since it's a computed value checked often
|
||||
volatile uint8_t _incomingLinkQualitySlowLog[32];
|
||||
|
346
node/Peer.cpp
346
node/Peer.cpp
@ -52,12 +52,12 @@ Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Ident
|
||||
_lastComRequestSent(0),
|
||||
_lastCredentialsReceived(0),
|
||||
_lastTrustEstablishedPacketReceived(0),
|
||||
_lastSentFullHello(0),
|
||||
_vProto(0),
|
||||
_vMajor(0),
|
||||
_vMinor(0),
|
||||
_vRevision(0),
|
||||
_id(peerIdentity),
|
||||
_latency(0),
|
||||
_directPathPushCutoffCount(0),
|
||||
_credentialsCutoffCount(0)
|
||||
{
|
||||
@ -148,59 +148,47 @@ void Peer::received(
|
||||
|
||||
if (hops == 0) {
|
||||
// If this is a direct packet (no hops), update existing paths or learn new ones
|
||||
bool pathAlreadyKnown = false;
|
||||
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
if ((path->address().ss_family == AF_INET)&&(_v4Path.p)) {
|
||||
const struct sockaddr_in *const r = reinterpret_cast<const struct sockaddr_in *>(&(path->address()));
|
||||
const struct sockaddr_in *const l = reinterpret_cast<const struct sockaddr_in *>(&(_v4Path.p->address()));
|
||||
if ((r->sin_addr.s_addr == l->sin_addr.s_addr)&&(r->sin_port == l->sin_port)&&(path->localSocket() == _v4Path.p->localSocket())) {
|
||||
_v4Path.lr = now;
|
||||
pathAlreadyKnown = true;
|
||||
}
|
||||
} else if ((path->address().ss_family == AF_INET6)&&(_v6Path.p)) {
|
||||
const struct sockaddr_in6 *const r = reinterpret_cast<const struct sockaddr_in6 *>(&(path->address()));
|
||||
const struct sockaddr_in6 *const l = reinterpret_cast<const struct sockaddr_in6 *>(&(_v6Path.p->address()));
|
||||
if ((!memcmp(r->sin6_addr.s6_addr,l->sin6_addr.s6_addr,16))&&(r->sin6_port == l->sin6_port)&&(path->localSocket() == _v6Path.p->localSocket())) {
|
||||
_v6Path.lr = now;
|
||||
pathAlreadyKnown = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ( (!pathAlreadyKnown) && (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address())) ) {
|
||||
Mutex::Lock _l(_paths_m);
|
||||
|
||||
_PeerPath *replacablePath = (_PeerPath *)0;
|
||||
if (path->address().ss_family == AF_INET) {
|
||||
if ( ( (!_v4Path.p) || (!_v4Path.p->alive(now)) || (path->preferenceRank() >= _v4Path.p->preferenceRank()) ) && ( (now - _v4Path.sticky) > ZT_PEER_PATH_EXPIRATION ) ) {
|
||||
replacablePath = &_v4Path;
|
||||
unsigned int worstQualityPath = 0;
|
||||
int worstQuality = 0;
|
||||
bool havePath = false;
|
||||
for(unsigned int p=0;p<ZT_PEER_MAX_PATHS;++p) {
|
||||
if (_paths[p].p) {
|
||||
if (_paths[p].p == path) {
|
||||
_paths[p].lr = now;
|
||||
havePath = true;
|
||||
break;
|
||||
}
|
||||
} else if (path->address().ss_family == AF_INET6) {
|
||||
if ( ( (!_v6Path.p) || (!_v6Path.p->alive(now)) || (path->preferenceRank() >= _v6Path.p->preferenceRank()) ) && ( (now - _v6Path.sticky) > ZT_PEER_PATH_EXPIRATION ) ) {
|
||||
replacablePath = &_v6Path;
|
||||
const int q = _paths[p].p->quality(now) / _paths[p].priority;
|
||||
if (q >= worstQuality) {
|
||||
worstQuality = q;
|
||||
worstQualityPath = p;
|
||||
}
|
||||
}
|
||||
|
||||
if (replacablePath) {
|
||||
if (verb == Packet::VERB_OK) {
|
||||
RR->t->peerLearnedNewPath(tPtr,networkId,*this,replacablePath->p,path,packetId);
|
||||
replacablePath->lr = now;
|
||||
replacablePath->p = path;
|
||||
} else {
|
||||
RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);
|
||||
worstQualityPath = p;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if ((!havePath)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id.address(),path->localSocket(),path->address()))) {
|
||||
if (verb == Packet::VERB_OK) {
|
||||
RR->t->peerLearnedNewPath(tPtr,networkId,*this,_paths[worstQualityPath].p,path,packetId);
|
||||
_paths[worstQualityPath].lr = now;
|
||||
_paths[worstQualityPath].p = path;
|
||||
_paths[worstQualityPath].priority = 1;
|
||||
} else {
|
||||
attemptToContactAt(tPtr,path->localSocket(),path->address(),now,true,path->nextOutgoingCounter());
|
||||
path->sent(now);
|
||||
}
|
||||
RR->t->peerConfirmingUnknownPath(tPtr,networkId,*this,path,packetId,verb);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// If we are being relayed or if we're using a global address, send PUSH_DIRECT_PATHS.
|
||||
// In the global address case we push only configured direct paths to accomplish
|
||||
// fall-forward to local backplane networks over e.g. LAN or Amazon VPC.
|
||||
if ( ((hops > 0)||(path->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) && (this->trustEstablished(now)) ) {
|
||||
// If we have a trust relationship periodically push a message enumerating
|
||||
// all known external addresses for ourselves. We now do this even if we
|
||||
// have a current path since we'll want to use new ones too.
|
||||
if (this->trustEstablished(now)) {
|
||||
if ((now - _lastDirectPathPushSent) >= ZT_DIRECT_PATH_PUSH_INTERVAL) {
|
||||
_lastDirectPathPushSent = now;
|
||||
|
||||
@ -210,6 +198,7 @@ void Peer::received(
|
||||
for(std::vector<InetAddress>::const_iterator i(dps.begin());i!=dps.end();++i)
|
||||
pathsToPush.push_back(*i);
|
||||
|
||||
// Do symmetric NAT prediction if we are communicating indirectly.
|
||||
if (hops > 0) {
|
||||
std::vector<InetAddress> sym(RR->sa->getSymmetricNatPredictions());
|
||||
for(unsigned long i=0,added=0;i<sym.size();++i) {
|
||||
@ -264,52 +253,148 @@ void Peer::received(
|
||||
}
|
||||
}
|
||||
|
||||
bool Peer::sendDirect(void *tPtr,const void *data,unsigned int len,int64_t now,bool force)
|
||||
SharedPtr<Path> Peer::getBestPath(int64_t now,bool includeExpired) const
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
|
||||
int64_t v6lr = 0;
|
||||
if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) )
|
||||
v6lr = _v6Path.p->lastIn();
|
||||
int64_t v4lr = 0;
|
||||
if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) )
|
||||
v4lr = _v4Path.p->lastIn();
|
||||
|
||||
if ( (v6lr > v4lr) && ((now - v6lr) < ZT_PATH_ALIVE_TIMEOUT) ) {
|
||||
return _v6Path.p->send(RR,tPtr,data,len,now);
|
||||
} else if ((now - v4lr) < ZT_PATH_ALIVE_TIMEOUT) {
|
||||
return _v4Path.p->send(RR,tPtr,data,len,now);
|
||||
} else if (force) {
|
||||
if (v6lr > v4lr) {
|
||||
return _v6Path.p->send(RR,tPtr,data,len,now);
|
||||
} else if (v4lr) {
|
||||
return _v4Path.p->send(RR,tPtr,data,len,now);
|
||||
unsigned int bestPath = ZT_PEER_MAX_PATHS;
|
||||
int bestPathQuality = 2147483647; // INT_MAX
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
if ((includeExpired)||((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)) {
|
||||
const int q = _paths[i].p->quality(now) / _paths[i].priority;
|
||||
if (q < bestPathQuality) {
|
||||
bestPathQuality = q;
|
||||
bestPath = i;
|
||||
}
|
||||
}
|
||||
} else break;
|
||||
}
|
||||
|
||||
return false;
|
||||
if (bestPath != ZT_PEER_MAX_PATHS)
|
||||
return _paths[bestPath].p;
|
||||
return SharedPtr<Path>();
|
||||
}
|
||||
|
||||
SharedPtr<Path> Peer::getBestPath(int64_t now,bool includeExpired)
|
||||
void Peer::introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
|
||||
int64_t v6lr = 0;
|
||||
if ((includeExpired || ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION)) && (_v6Path.p)) {
|
||||
v6lr = _v6Path.p->lastIn();
|
||||
}
|
||||
int64_t v4lr = 0;
|
||||
if ((includeExpired || ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION)) && (_v4Path.p)) {
|
||||
v4lr = _v4Path.p->lastIn();
|
||||
unsigned int myBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
unsigned int myBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
int myBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
int myBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
unsigned int theirBestV4ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
unsigned int theirBestV6ByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
int theirBestV4QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
int theirBestV6QualityByScope[ZT_INETADDRESS_MAX_SCOPE+1];
|
||||
for(int i=0;i<=ZT_INETADDRESS_MAX_SCOPE;++i) {
|
||||
myBestV4ByScope[i] = ZT_PEER_MAX_PATHS;
|
||||
myBestV6ByScope[i] = ZT_PEER_MAX_PATHS;
|
||||
myBestV4QualityByScope[i] = 2147483647;
|
||||
myBestV6QualityByScope[i] = 2147483647;
|
||||
theirBestV4ByScope[i] = ZT_PEER_MAX_PATHS;
|
||||
theirBestV6ByScope[i] = ZT_PEER_MAX_PATHS;
|
||||
theirBestV4QualityByScope[i] = 2147483647;
|
||||
theirBestV6QualityByScope[i] = 2147483647;
|
||||
}
|
||||
|
||||
if (v6lr > v4lr) {
|
||||
return _v6Path.p;
|
||||
} else if (v4lr) {
|
||||
return _v4Path.p;
|
||||
Mutex::Lock _l1(_paths_m);
|
||||
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
const int q = _paths[i].p->quality(now) / _paths[i].priority;
|
||||
const unsigned int s = (unsigned int)_paths[i].p->ipScope();
|
||||
switch(_paths[i].p->address().ss_family) {
|
||||
case AF_INET:
|
||||
if (q < myBestV4QualityByScope[s]) {
|
||||
myBestV4QualityByScope[s] = q;
|
||||
myBestV4ByScope[s] = i;
|
||||
}
|
||||
break;
|
||||
case AF_INET6:
|
||||
if (q < myBestV6QualityByScope[s]) {
|
||||
myBestV6QualityByScope[s] = q;
|
||||
myBestV6ByScope[s] = i;
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else break;
|
||||
}
|
||||
|
||||
return SharedPtr<Path>();
|
||||
Mutex::Lock _l2(other->_paths_m);
|
||||
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (other->_paths[i].p) {
|
||||
const int q = other->_paths[i].p->quality(now) / other->_paths[i].priority;
|
||||
const unsigned int s = (unsigned int)other->_paths[i].p->ipScope();
|
||||
switch(other->_paths[i].p->address().ss_family) {
|
||||
case AF_INET:
|
||||
if (q < theirBestV4QualityByScope[s]) {
|
||||
theirBestV4QualityByScope[s] = q;
|
||||
theirBestV4ByScope[s] = i;
|
||||
}
|
||||
break;
|
||||
case AF_INET6:
|
||||
if (q < theirBestV6QualityByScope[s]) {
|
||||
theirBestV6QualityByScope[s] = q;
|
||||
theirBestV6ByScope[s] = i;
|
||||
}
|
||||
break;
|
||||
}
|
||||
} else break;
|
||||
}
|
||||
|
||||
unsigned int mine = ZT_PEER_MAX_PATHS;
|
||||
unsigned int theirs = ZT_PEER_MAX_PATHS;
|
||||
|
||||
for(int s=ZT_INETADDRESS_MAX_SCOPE;s>=0;--s) {
|
||||
if ((myBestV6ByScope[s] != ZT_PEER_MAX_PATHS)&&(theirBestV6ByScope[s] != ZT_PEER_MAX_PATHS)) {
|
||||
mine = myBestV6ByScope[s];
|
||||
theirs = theirBestV6ByScope[s];
|
||||
break;
|
||||
}
|
||||
if ((myBestV4ByScope[s] != ZT_PEER_MAX_PATHS)&&(theirBestV4ByScope[s] != ZT_PEER_MAX_PATHS)) {
|
||||
mine = myBestV4ByScope[s];
|
||||
theirs = theirBestV4ByScope[s];
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (mine != ZT_PEER_MAX_PATHS) {
|
||||
unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for black magickal NAT-t reasons
|
||||
const unsigned int completed = alt + 2;
|
||||
while (alt != completed) {
|
||||
if ((alt & 1) == 0) {
|
||||
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
||||
outp.append((uint8_t)0);
|
||||
other->_id.address().appendTo(outp);
|
||||
outp.append((uint16_t)other->_paths[theirs].p->address().port());
|
||||
if (other->_paths[theirs].p->address().ss_family == AF_INET6) {
|
||||
outp.append((uint8_t)16);
|
||||
outp.append(other->_paths[theirs].p->address().rawIpData(),16);
|
||||
} else {
|
||||
outp.append((uint8_t)4);
|
||||
outp.append(other->_paths[theirs].p->address().rawIpData(),4);
|
||||
}
|
||||
outp.armor(_key,true,_paths[mine].p->nextOutgoingCounter());
|
||||
_paths[mine].p->send(RR,tPtr,outp.data(),outp.size(),now);
|
||||
} else {
|
||||
Packet outp(other->_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
||||
outp.append((uint8_t)0);
|
||||
_id.address().appendTo(outp);
|
||||
outp.append((uint16_t)_paths[mine].p->address().port());
|
||||
if (_paths[mine].p->address().ss_family == AF_INET6) {
|
||||
outp.append((uint8_t)16);
|
||||
outp.append(_paths[mine].p->address().rawIpData(),16);
|
||||
} else {
|
||||
outp.append((uint8_t)4);
|
||||
outp.append(_paths[mine].p->address().rawIpData(),4);
|
||||
}
|
||||
outp.armor(other->_key,true,other->_paths[theirs].p->nextOutgoingCounter());
|
||||
other->_paths[theirs].p->send(RR,tPtr,outp.data(),outp.size(),now);
|
||||
}
|
||||
++alt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now,unsigned int counter)
|
||||
@ -377,76 +462,83 @@ void Peer::tryMemorizedPath(void *tPtr,int64_t now)
|
||||
}
|
||||
}
|
||||
|
||||
bool Peer::doPingAndKeepalive(void *tPtr,int64_t now,int inetAddressFamily)
|
||||
unsigned int Peer::doPingAndKeepalive(void *tPtr,int64_t now)
|
||||
{
|
||||
unsigned int sent = 0;
|
||||
|
||||
Mutex::Lock _l(_paths_m);
|
||||
|
||||
if (inetAddressFamily < 0) {
|
||||
int64_t v6lr = 0;
|
||||
if ( ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v6Path.p) )
|
||||
v6lr = _v6Path.p->lastIn();
|
||||
int64_t v4lr = 0;
|
||||
if ( ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) && (_v4Path.p) )
|
||||
v4lr = _v4Path.p->lastIn();
|
||||
const bool sendFullHello = ((now - _lastSentFullHello) >= ZT_PEER_PING_PERIOD);
|
||||
_lastSentFullHello = now;
|
||||
|
||||
if (v6lr > v4lr) {
|
||||
if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) {
|
||||
attemptToContactAt(tPtr,_v6Path.p->localSocket(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
|
||||
_v6Path.p->sent(now);
|
||||
return true;
|
||||
unsigned int j = 0;
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (!_paths[i].p) break;
|
||||
if ((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION) {
|
||||
if ((sendFullHello)||(_paths[i].p->needsHeartbeat(now))) {
|
||||
attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,sendFullHello,_paths[i].p->nextOutgoingCounter());
|
||||
_paths[i].p->sent(now);
|
||||
sent |= (_paths[i].p->address().ss_family == AF_INET) ? 0x1 : 0x2;
|
||||
}
|
||||
} else if (v4lr) {
|
||||
if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) {
|
||||
attemptToContactAt(tPtr,_v4Path.p->localSocket(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
|
||||
_v4Path.p->sent(now);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if ( (inetAddressFamily == AF_INET) && ((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION) ) {
|
||||
if ( ((now - _v4Path.lr) >= ZT_PEER_PING_PERIOD) || (_v4Path.p->needsHeartbeat(now)) ) {
|
||||
attemptToContactAt(tPtr,_v4Path.p->localSocket(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
|
||||
_v4Path.p->sent(now);
|
||||
return true;
|
||||
}
|
||||
} else if ( (inetAddressFamily == AF_INET6) && ((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION) ) {
|
||||
if ( ((now - _v6Path.lr) >= ZT_PEER_PING_PERIOD) || (_v6Path.p->needsHeartbeat(now)) ) {
|
||||
attemptToContactAt(tPtr,_v6Path.p->localSocket(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
|
||||
_v6Path.p->sent(now);
|
||||
return true;
|
||||
if (i != j)
|
||||
_paths[j] = _paths[i];
|
||||
++j;
|
||||
}
|
||||
}
|
||||
while(j < ZT_PEER_MAX_PATHS) {
|
||||
_paths[j].lr = 0;
|
||||
_paths[j].p.zero();
|
||||
_paths[j].priority = 1;
|
||||
++j;
|
||||
}
|
||||
|
||||
return false;
|
||||
return sent;
|
||||
}
|
||||
|
||||
void Peer::redirect(void *tPtr,const int64_t localSocket,const InetAddress &remoteAddress,const int64_t now)
|
||||
void Peer::clusterRedirect(void *tPtr,const int64_t localSocket,const InetAddress &remoteAddress,const int64_t now)
|
||||
{
|
||||
if ((remoteAddress.ss_family != AF_INET)&&(remoteAddress.ss_family != AF_INET6)) // sanity check
|
||||
return;
|
||||
|
||||
SharedPtr<Path> op;
|
||||
SharedPtr<Path> np(RR->topology->getPath(localSocket,remoteAddress));
|
||||
np->received(now);
|
||||
RR->t->peerRedirected(tPtr,0,*this,np);
|
||||
attemptToContactAt(tPtr,localSocket,remoteAddress,now,true,np->nextOutgoingCounter());
|
||||
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
if (remoteAddress.ss_family == AF_INET) {
|
||||
op = _v4Path.p;
|
||||
_v4Path.lr = now;
|
||||
_v4Path.sticky = now;
|
||||
_v4Path.p = np;
|
||||
} else if (remoteAddress.ss_family == AF_INET6) {
|
||||
op = _v6Path.p;
|
||||
_v6Path.lr = now;
|
||||
_v6Path.sticky = now;
|
||||
_v6Path.p = np;
|
||||
int worstQuality = 0;
|
||||
unsigned int worstQualityPath = 0;
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
if (_paths[i].p == np) { // <-- where's my Fields Medal?
|
||||
_paths[i].lr = now; // consider this a "receive"
|
||||
_paths[i].priority += 5; // kind of arbitrary, bumps way up in best path quality order
|
||||
return;
|
||||
}
|
||||
const int q = _paths[i].p->quality(now) / _paths[i].priority;
|
||||
if (q >= worstQuality) {
|
||||
worstQuality = q;
|
||||
worstQualityPath = i;
|
||||
}
|
||||
} else {
|
||||
worstQualityPath = i;
|
||||
break;
|
||||
}
|
||||
}
|
||||
_paths[worstQualityPath].lr = now;
|
||||
_paths[worstQualityPath].p = np;
|
||||
_paths[worstQualityPath].priority = 6; // 1 + 5
|
||||
}
|
||||
}
|
||||
|
||||
RR->t->peerRedirected(tPtr,0,*this,op,np);
|
||||
void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
if ((_paths[i].p->address().ss_family == inetAddressFamily)&&(_paths[i].p->ipScope() == scope)) {
|
||||
attemptToContactAt(tPtr,_paths[i].p->localSocket(),_paths[i].p->address(),now,false,_paths[i].p->nextOutgoingCounter());
|
||||
_paths[i].p->sent(now);
|
||||
_paths[i].lr = 0; // path will not be used unless it speaks again
|
||||
}
|
||||
} else break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace ZeroTier
|
||||
|
173
node/Peer.hpp
173
node/Peer.hpp
@ -53,6 +53,15 @@
|
||||
|
||||
#define ZT_PEER_MAX_SERIALIZED_STATE_SIZE (sizeof(Peer) + 32 + (sizeof(Path) * 2))
|
||||
|
||||
/**
|
||||
* Maximum number of direct paths to a peer
|
||||
*
|
||||
* This can be increased. You'll want about 2X the number of physical links
|
||||
* you are ever likely to want to bundle/trunk since there is likely to be
|
||||
* a path for every protocol (IPv4, IPv6, etc.).
|
||||
*/
|
||||
#define ZT_PEER_MAX_PATHS 16
|
||||
|
||||
namespace ZeroTier {
|
||||
|
||||
/**
|
||||
@ -116,6 +125,8 @@ public:
|
||||
const uint64_t networkId);
|
||||
|
||||
/**
|
||||
* Check whether we have an active path to this peer via the given address
|
||||
*
|
||||
* @param now Current time
|
||||
* @param addr Remote address
|
||||
* @return True if we have an active path to this destination
|
||||
@ -123,7 +134,13 @@ public:
|
||||
inline bool hasActivePathTo(int64_t now,const InetAddress &addr) const
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
return ( ((addr.ss_family == AF_INET)&&(_v4Path.p)&&(_v4Path.p->address() == addr)&&(_v4Path.p->alive(now))) || ((addr.ss_family == AF_INET6)&&(_v6Path.p)&&(_v6Path.p->address() == addr)&&(_v6Path.p->alive(now))) );
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (_paths[i].p) {
|
||||
if (((now - _paths[i].lr) < ZT_PEER_PATH_EXPIRATION)&&(_paths[i].p->address() == addr))
|
||||
return true;
|
||||
} else break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
@ -136,19 +153,27 @@ public:
|
||||
* @param force If true, send even if path is not alive
|
||||
* @return True if we actually sent something
|
||||
*/
|
||||
bool sendDirect(void *tPtr,const void *data,unsigned int len,int64_t now,bool force);
|
||||
inline bool sendDirect(void *tPtr,const void *data,unsigned int len,int64_t now,bool force)
|
||||
{
|
||||
SharedPtr<Path> bp(getBestPath(now,force));
|
||||
if (bp)
|
||||
return bp->send(RR,tPtr,data,len,now);
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the best current direct path
|
||||
*
|
||||
* This does not check Path::alive(), but does return the most recently
|
||||
* active path and does check expiration (which is a longer timeout).
|
||||
*
|
||||
* @param now Current time
|
||||
* @param includeExpired If true, include even expired paths
|
||||
* @return Best current path or NULL if none
|
||||
*/
|
||||
SharedPtr<Path> getBestPath(int64_t now,bool includeExpired);
|
||||
SharedPtr<Path> getBestPath(int64_t now,bool includeExpired) const;
|
||||
|
||||
/**
|
||||
* Send VERB_RENDEZVOUS to this and another peer via the best common IP scope and path
|
||||
*/
|
||||
void introduce(void *const tPtr,const int64_t now,const SharedPtr<Peer> &other) const;
|
||||
|
||||
/**
|
||||
* Send a HELLO to this peer at a specified physical address
|
||||
@ -190,67 +215,39 @@ public:
|
||||
/**
|
||||
* Send pings or keepalives depending on configured timeouts
|
||||
*
|
||||
* This also cleans up some internal data structures. It's called periodically from Node.
|
||||
*
|
||||
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
||||
* @param now Current time
|
||||
* @param inetAddressFamily Keep this address family alive, or -1 for any
|
||||
* @return True if we have at least one direct path of the given family (or any if family is -1)
|
||||
* @return 0 if nothing sent or bit mask: bit 0x1 if IPv4 sent, bit 0x2 if IPv6 sent (0x3 means both sent)
|
||||
*/
|
||||
bool doPingAndKeepalive(void *tPtr,int64_t now,int inetAddressFamily);
|
||||
unsigned int doPingAndKeepalive(void *tPtr,int64_t now);
|
||||
|
||||
/**
|
||||
* Specify remote path for this peer and forget others
|
||||
*
|
||||
* This overrides normal path learning and tells this peer to be found
|
||||
* at this address, at least within the address's family. Other address
|
||||
* families are not modified.
|
||||
* Process a cluster redirect sent by this peer
|
||||
*
|
||||
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
||||
* @param localSocket Local socket as supplied by external code
|
||||
* @param remoteAddress Remote address
|
||||
* @param now Current time
|
||||
*/
|
||||
void redirect(void *tPtr,const int64_t localSocket,const InetAddress &remoteAddress,const int64_t now);
|
||||
void clusterRedirect(void *tPtr,const int64_t localSocket,const InetAddress &remoteAddress,const int64_t now);
|
||||
|
||||
/**
|
||||
* Reset paths within a given IP scope and address family
|
||||
*
|
||||
* Resetting a path involves sending an ECHO to it and then deactivating
|
||||
* it until or unless it responds.
|
||||
* it until or unless it responds. This is done when we detect a change
|
||||
* to our external IP or another system change that might invalidate
|
||||
* many or all current paths.
|
||||
*
|
||||
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
|
||||
* @param scope IP scope
|
||||
* @param inetAddressFamily Family e.g. AF_INET
|
||||
* @param now Current time
|
||||
*/
|
||||
inline void resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
if ((inetAddressFamily == AF_INET)&&(_v4Path.lr)&&(_v4Path.p->address().ipScope() == scope)) {
|
||||
attemptToContactAt(tPtr,_v4Path.p->localSocket(),_v4Path.p->address(),now,false,_v4Path.p->nextOutgoingCounter());
|
||||
_v4Path.p->sent(now);
|
||||
_v4Path.lr = 0; // path will not be used unless it speaks again
|
||||
} else if ((inetAddressFamily == AF_INET6)&&(_v6Path.lr)&&(_v6Path.p->address().ipScope() == scope)) {
|
||||
attemptToContactAt(tPtr,_v6Path.p->localSocket(),_v6Path.p->address(),now,false,_v6Path.p->nextOutgoingCounter());
|
||||
_v6Path.p->sent(now);
|
||||
_v6Path.lr = 0; // path will not be used unless it speaks again
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Fill parameters with V4 and V6 addresses if known and alive
|
||||
*
|
||||
* @param now Current time
|
||||
* @param v4 Result parameter to receive active IPv4 address, if any
|
||||
* @param v6 Result parameter to receive active IPv6 address, if any
|
||||
*/
|
||||
inline void getRendezvousAddresses(int64_t now,InetAddress &v4,InetAddress &v6) const
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
if (((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION)&&(_v4Path.p->alive(now)))
|
||||
v4 = _v4Path.p->address();
|
||||
if (((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION)&&(_v6Path.p->alive(now)))
|
||||
v6 = _v6Path.p->address();
|
||||
}
|
||||
void resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now);
|
||||
|
||||
/**
|
||||
* @param now Current time
|
||||
@ -260,10 +257,10 @@ public:
|
||||
{
|
||||
std::vector< SharedPtr<Path> > pp;
|
||||
Mutex::Lock _l(_paths_m);
|
||||
if (((now - _v4Path.lr) < ZT_PEER_PATH_EXPIRATION)&&(_v4Path.p->alive(now)))
|
||||
pp.push_back(_v4Path.p);
|
||||
if (((now - _v6Path.lr) < ZT_PEER_PATH_EXPIRATION)&&(_v6Path.p->alive(now)))
|
||||
pp.push_back(_v6Path.p);
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (!_paths[i].p) break;
|
||||
pp.push_back(_paths[i].p);
|
||||
}
|
||||
return pp;
|
||||
}
|
||||
|
||||
@ -283,9 +280,13 @@ public:
|
||||
inline int64_t isActive(int64_t now) const { return ((now - _lastNontrivialReceive) < ZT_PEER_ACTIVITY_TIMEOUT); }
|
||||
|
||||
/**
|
||||
* @return Latency in milliseconds or 0 if unknown
|
||||
* @return Latency in milliseconds of best path or 0xffff if unknown / no paths
|
||||
*/
|
||||
inline unsigned int latency() const { return _latency; }
|
||||
inline unsigned int latency(const int64_t now) const
|
||||
{
|
||||
SharedPtr<Path> bp(getBestPath(now,false));
|
||||
return ((bp) ? bp->latency() : 0xffff);
|
||||
}
|
||||
|
||||
/**
|
||||
* This computes a quality score for relays and root servers
|
||||
@ -303,25 +304,12 @@ public:
|
||||
const uint64_t tsr = now - _lastReceive;
|
||||
if (tsr >= ZT_PEER_ACTIVITY_TIMEOUT)
|
||||
return (~(unsigned int)0);
|
||||
unsigned int l = _latency;
|
||||
unsigned int l = latency(now);
|
||||
if (!l)
|
||||
l = 0xffff;
|
||||
return (l * (((unsigned int)tsr / (ZT_PEER_PING_PERIOD + 1000)) + 1));
|
||||
}
|
||||
|
||||
/**
|
||||
* Update latency with a new direct measurment
|
||||
*
|
||||
* @param l Direct latency measurment in ms
|
||||
*/
|
||||
inline void addDirectLatencyMeasurment(unsigned int l)
|
||||
{
|
||||
unsigned int ol = _latency;
|
||||
if ((ol > 0)&&(ol < 10000))
|
||||
_latency = (ol + std::min(l,(unsigned int)65535)) / 2;
|
||||
else _latency = std::min(l,(unsigned int)65535);
|
||||
}
|
||||
|
||||
/**
|
||||
* @return 256-bit secret symmetric encryption key
|
||||
*/
|
||||
@ -442,29 +430,15 @@ public:
|
||||
/**
|
||||
* Serialize a peer for storage in local cache
|
||||
*
|
||||
* This does not serialize everything, just identity and addresses where the peer
|
||||
* may be reached.
|
||||
* This does not serialize everything, just non-ephemeral information.
|
||||
*/
|
||||
template<unsigned int C>
|
||||
inline void serialize(Buffer<C> &b) const
|
||||
inline void serializeForCache(Buffer<C> &b) const
|
||||
{
|
||||
b.append((uint8_t)0);
|
||||
b.append((uint8_t)1);
|
||||
|
||||
_id.serialize(b);
|
||||
|
||||
b.append(_lastReceive);
|
||||
b.append(_lastNontrivialReceive);
|
||||
b.append(_lastTriedMemorizedPath);
|
||||
b.append(_lastDirectPathPushSent);
|
||||
b.append(_lastDirectPathPushReceive);
|
||||
b.append(_lastCredentialRequestSent);
|
||||
b.append(_lastWhoisRequestReceived);
|
||||
b.append(_lastEchoRequestReceived);
|
||||
b.append(_lastComRequestReceived);
|
||||
b.append(_lastComRequestSent);
|
||||
b.append(_lastCredentialsReceived);
|
||||
b.append(_lastTrustEstablishedPacketReceived);
|
||||
|
||||
b.append((uint16_t)_vProto);
|
||||
b.append((uint16_t)_vMajor);
|
||||
b.append((uint16_t)_vMinor);
|
||||
@ -472,15 +446,16 @@ public:
|
||||
|
||||
{
|
||||
Mutex::Lock _l(_paths_m);
|
||||
unsigned int pcount = 0;
|
||||
if (_v4Path.p) ++pcount;
|
||||
if (_v6Path.p) ++pcount;
|
||||
b.append((uint8_t)pcount);
|
||||
if (_v4Path.p) _v4Path.p->address().serialize(b);
|
||||
if (_v6Path.p) _v6Path.p->address().serialize(b);
|
||||
unsigned int pc = 0;
|
||||
for(unsigned int i=0;i<ZT_PEER_MAX_PATHS;++i) {
|
||||
if (_paths[i].p)
|
||||
++pc;
|
||||
else break;
|
||||
}
|
||||
b.append((uint16_t)pc);
|
||||
for(unsigned int i=0;i<pc;++i)
|
||||
_paths[i].p->address().serialize(b);
|
||||
}
|
||||
|
||||
b.append((uint16_t)0);
|
||||
}
|
||||
|
||||
template<unsigned int C>
|
||||
@ -488,7 +463,7 @@ public:
|
||||
{
|
||||
try {
|
||||
unsigned int ptr = 0;
|
||||
if (b[ptr++] != 0)
|
||||
if (b[ptr++] != 1)
|
||||
return SharedPtr<Peer>();
|
||||
|
||||
Identity id;
|
||||
@ -498,15 +473,16 @@ public:
|
||||
|
||||
SharedPtr<Peer> p(new Peer(renv,renv->identity,id));
|
||||
|
||||
ptr += 12 * 8; // skip deserializing ephemeral state in this case
|
||||
|
||||
p->_vProto = b.template at<uint16_t>(ptr); ptr += 2;
|
||||
p->_vMajor = b.template at<uint16_t>(ptr); ptr += 2;
|
||||
p->_vMinor = b.template at<uint16_t>(ptr); ptr += 2;
|
||||
p->_vRevision = b.template at<uint16_t>(ptr); ptr += 2;
|
||||
|
||||
const unsigned int pcount = (unsigned int)b[ptr++];
|
||||
for(unsigned int i=0;i<pcount;++i) {
|
||||
// When we deserialize from the cache we don't actually restore paths. We
|
||||
// just try them and then re-learn them if they happen to still be up.
|
||||
// Paths are fairly ephemeral in the real world in most cases.
|
||||
const unsigned int tryPathCount = b.template at<uint16_t>(ptr); ptr += 2;
|
||||
for(unsigned int i=0;i<tryPathCount;++i) {
|
||||
InetAddress inaddr;
|
||||
try {
|
||||
ptr += inaddr.deserialize(b,ptr);
|
||||
@ -526,10 +502,10 @@ public:
|
||||
private:
|
||||
struct _PeerPath
|
||||
{
|
||||
_PeerPath() : lr(0),sticky(0),p() {}
|
||||
_PeerPath() : lr(0),p(),priority(1) {}
|
||||
int64_t lr; // time of last valid ZeroTier packet
|
||||
int64_t sticky; // time last set as sticky
|
||||
SharedPtr<Path> p;
|
||||
int priority; // >= 1, higher is better
|
||||
};
|
||||
|
||||
uint8_t _key[ZT_PEER_SECRET_KEY_LENGTH];
|
||||
@ -548,19 +524,18 @@ private:
|
||||
int64_t _lastComRequestSent;
|
||||
int64_t _lastCredentialsReceived;
|
||||
int64_t _lastTrustEstablishedPacketReceived;
|
||||
int64_t _lastSentFullHello;
|
||||
|
||||
uint16_t _vProto;
|
||||
uint16_t _vMajor;
|
||||
uint16_t _vMinor;
|
||||
uint16_t _vRevision;
|
||||
|
||||
_PeerPath _v4Path; // IPv4 direct path
|
||||
_PeerPath _v6Path; // IPv6 direct path
|
||||
_PeerPath _paths[ZT_PEER_MAX_PATHS];
|
||||
Mutex _paths_m;
|
||||
|
||||
Identity _id;
|
||||
|
||||
unsigned int _latency;
|
||||
unsigned int _directPathPushCutoffCount;
|
||||
unsigned int _credentialsCutoffCount;
|
||||
|
||||
|
@ -169,68 +169,22 @@ void Switch::onRemotePacket(void *tPtr,const int64_t localSocket,const InetAddre
|
||||
|
||||
if (packet.hops() < ZT_RELAY_MAX_HOPS) {
|
||||
packet.incrementHops();
|
||||
|
||||
SharedPtr<Peer> relayTo = RR->topology->getPeer(tPtr,destination);
|
||||
if ((relayTo)&&(relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,false))) {
|
||||
if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) { // don't send RENDEZVOUS for cluster frontplane relays
|
||||
const InetAddress *hintToSource = (InetAddress *)0;
|
||||
const InetAddress *hintToDest = (InetAddress *)0;
|
||||
|
||||
InetAddress destV4,destV6;
|
||||
InetAddress sourceV4,sourceV6;
|
||||
relayTo->getRendezvousAddresses(now,destV4,destV6);
|
||||
|
||||
if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) {
|
||||
const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
|
||||
if (sourcePeer) {
|
||||
sourcePeer->getRendezvousAddresses(now,sourceV4,sourceV6);
|
||||
if ((destV6)&&(sourceV6)) {
|
||||
hintToSource = &destV6;
|
||||
hintToDest = &sourceV6;
|
||||
} else if ((destV4)&&(sourceV4)) {
|
||||
hintToSource = &destV4;
|
||||
hintToDest = &sourceV4;
|
||||
}
|
||||
|
||||
if ((hintToSource)&&(hintToDest)) {
|
||||
unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for obscure NAT-t reasons
|
||||
const unsigned int completed = alt + 2;
|
||||
while (alt != completed) {
|
||||
if ((alt & 1) == 0) {
|
||||
Packet outp(source,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
||||
outp.append((uint8_t)0);
|
||||
destination.appendTo(outp);
|
||||
outp.append((uint16_t)hintToSource->port());
|
||||
if (hintToSource->ss_family == AF_INET6) {
|
||||
outp.append((uint8_t)16);
|
||||
outp.append(hintToSource->rawIpData(),16);
|
||||
} else {
|
||||
outp.append((uint8_t)4);
|
||||
outp.append(hintToSource->rawIpData(),4);
|
||||
}
|
||||
send(tPtr,outp,true);
|
||||
} else {
|
||||
Packet outp(destination,RR->identity.address(),Packet::VERB_RENDEZVOUS);
|
||||
outp.append((uint8_t)0);
|
||||
source.appendTo(outp);
|
||||
outp.append((uint16_t)hintToDest->port());
|
||||
if (hintToDest->ss_family == AF_INET6) {
|
||||
outp.append((uint8_t)16);
|
||||
outp.append(hintToDest->rawIpData(),16);
|
||||
} else {
|
||||
outp.append((uint8_t)4);
|
||||
outp.append(hintToDest->rawIpData(),4);
|
||||
}
|
||||
send(tPtr,outp,true);
|
||||
}
|
||||
++alt;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sourcePeer)
|
||||
relayTo->introduce(tPtr,now,sourcePeer);
|
||||
}
|
||||
} else {
|
||||
relayTo = RR->topology->getUpstreamPeer();
|
||||
if ((relayTo)&&(relayTo->address() != source))
|
||||
relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true);
|
||||
if ((relayTo)&&(relayTo->address() != source)) {
|
||||
if (relayTo->sendDirect(tPtr,packet.data(),packet.size(),now,true)) {
|
||||
const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(tPtr,source));
|
||||
if (sourcePeer)
|
||||
relayTo->introduce(tPtr,now,sourcePeer);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
|
||||
@ -694,22 +648,7 @@ bool Switch::_trySend(void *tPtr,Packet &packet,bool encrypt)
|
||||
|
||||
const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr,destination));
|
||||
if (peer) {
|
||||
/* First get the best path, and if it's dead (and this is not a root)
|
||||
* we attempt to re-activate that path but this packet will flow
|
||||
* upstream. If the path comes back alive, it will be used in the future.
|
||||
* For roots we don't do the alive check since roots are not required
|
||||
* to send heartbeats "down" and because we have to at least try to
|
||||
* go somewhere. */
|
||||
|
||||
viaPath = peer->getBestPath(now,false);
|
||||
if ( (viaPath) && (!viaPath->alive(now)) && (!RR->topology->isUpstream(peer->identity())) ) {
|
||||
if ((now - viaPath->lastOut()) > std::max((now - viaPath->lastIn()) * 4,(int64_t)ZT_PATH_MIN_REACTIVATE_INTERVAL)) {
|
||||
peer->attemptToContactAt(tPtr,viaPath->localSocket(),viaPath->address(),now,false,viaPath->nextOutgoingCounter());
|
||||
viaPath->sent(now);
|
||||
}
|
||||
viaPath.zero();
|
||||
}
|
||||
|
||||
if (!viaPath) {
|
||||
peer->tryMemorizedPath(tPtr,now); // periodically attempt memorized or statically defined paths, if any are known
|
||||
const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
|
||||
|
@ -431,7 +431,7 @@ void Topology::_savePeer(void *tPtr,const SharedPtr<Peer> &peer)
|
||||
{
|
||||
try {
|
||||
Buffer<ZT_PEER_MAX_SERIALIZED_STATE_SIZE> buf;
|
||||
peer->serialize(buf);
|
||||
peer->serializeForCache(buf);
|
||||
uint64_t tmpid[2]; tmpid[0] = peer->address().toInt(); tmpid[1] = 0;
|
||||
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,tmpid,buf.data(),buf.size());
|
||||
} catch ( ... ) {} // sanity check, discard invalid entries
|
||||
|
@ -300,7 +300,7 @@ public:
|
||||
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
|
||||
while (i.next(a,p)) {
|
||||
const SharedPtr<Path> pp((*p)->getBestPath(now,false));
|
||||
if ((pp)&&(pp->alive(now)))
|
||||
if (pp)
|
||||
++cnt;
|
||||
}
|
||||
return cnt;
|
||||
|
@ -92,16 +92,13 @@ void Trace::peerLearnedNewPath(void *const tPtr,const uint64_t networkId,Peer &p
|
||||
_send(tPtr,d,networkId);
|
||||
}
|
||||
|
||||
void Trace::peerRedirected(void *const tPtr,const uint64_t networkId,Peer &peer,const SharedPtr<Path> &oldPath,const SharedPtr<Path> &newPath)
|
||||
void Trace::peerRedirected(void *const tPtr,const uint64_t networkId,Peer &peer,const SharedPtr<Path> &newPath)
|
||||
{
|
||||
char tmp[128];
|
||||
Dictionary<ZT_MAX_REMOTE_TRACE_SIZE> d;
|
||||
d.add(ZT_REMOTE_TRACE_FIELD__EVENT,ZT_REMOTE_TRACE_EVENT__PEER_REDIRECTED_S);
|
||||
d.add(ZT_REMOTE_TRACE_FIELD__NETWORK_ID,networkId);
|
||||
d.add(ZT_REMOTE_TRACE_FIELD__REMOTE_ZTADDR,peer.address());
|
||||
if (oldPath) {
|
||||
d.add(ZT_REMOTE_TRACE_FIELD__OLD_REMOTE_PHYADDR,oldPath->address().toString(tmp));
|
||||
}
|
||||
if (newPath) {
|
||||
d.add(ZT_REMOTE_TRACE_FIELD__REMOTE_PHYADDR,newPath->address().toString(tmp));
|
||||
d.add(ZT_REMOTE_TRACE_FIELD__LOCAL_SOCKET,newPath->localSocket());
|
||||
|
@ -105,7 +105,7 @@ public:
|
||||
|
||||
void peerConfirmingUnknownPath(void *const tPtr,const uint64_t networkId,Peer &peer,const SharedPtr<Path> &path,const uint64_t packetId,const Packet::Verb verb);
|
||||
void peerLearnedNewPath(void *const tPtr,const uint64_t networkId,Peer &peer,const SharedPtr<Path> &oldPath,const SharedPtr<Path> &newPath,const uint64_t packetId);
|
||||
void peerRedirected(void *const tPtr,const uint64_t networkId,Peer &peer,const SharedPtr<Path> &oldPath,const SharedPtr<Path> &newPath);
|
||||
void peerRedirected(void *const tPtr,const uint64_t networkId,Peer &peer,const SharedPtr<Path> &newPath);
|
||||
|
||||
void incomingPacketMessageAuthenticationFailure(void *const tPtr,const SharedPtr<Path> &path,const uint64_t packetId,const Address &source,const unsigned int hops,const char *reason);
|
||||
void incomingPacketInvalid(void *const tPtr,const SharedPtr<Path> &path,const uint64_t packetId,const Address &source,const unsigned int hops,const Packet::Verb verb,const char *reason);
|
||||
|
Loading…
Reference in New Issue
Block a user