cleanup and docs

This commit is contained in:
Adam Ierymenko 2019-09-05 15:09:20 -07:00
parent 171d661b84
commit 274b2682d6
No known key found for this signature in database
GPG Key ID: C8877CF2D7A5D7F3
2 changed files with 59 additions and 60 deletions

View File

@ -153,11 +153,19 @@ public:
/**
* Perform AES-GMAC-SIV encryption
*
* This is an AES mode built from GMAC and AES-CTR that is similar to the
* various SIV (synthetic IV) modes for AES and is resistant to nonce
* re-use. It's specifically tweaked for ZeroTier's packet structure with
* a 64-bit IV (extended to 96 bits by including packet size and other info)
* and a 64-bit auth tag.
* This is basically AES-CMAC-SIV but with GMAC in place of CMAC after
* GMAC is run through AES as a keyed hash to make it behave like a
* proper PRF.
*
* See: https://github.com/miscreant/meta/wiki/AES-SIV
*
* The advantage is that this can be described in terms of FIPS and NSA
* ceritifable primitives that are present in FIPS-compliant crypto
* modules.
*
* The extra AES-ECB (keyed hash) encryption of the AES-CTR IV prior
* to use makes the IV itself a secret. This is not strictly necessary
* but comes at little cost.
*
* @param k1 GMAC key
* @param k2 GMAC auth tag keyed hash key
@ -180,7 +188,7 @@ public:
uint8_t ctrIv[16];
#endif
// Extend packet IV to 96-bit message IV using direction byte and message length
// GMAC IV is 64-bit packet IV followed by other packet attributes to extend to 96 bits
#ifndef __GNUC__
for(unsigned int i=0;i<8;++i) miv[i] = iv[i];
#else
@ -191,18 +199,16 @@ public:
miv[10] = (uint8_t)(len >> 8);
miv[11] = (uint8_t)len;
// Compute AES[k2](GMAC[k1](miv,plaintext))
// Compute auth TAG: AES-ECB[k2](GMAC[k1](miv,plaintext))[0:8]
k1.gmac(miv,in,len,ctrIv);
k2.encrypt(ctrIv,ctrIv); // ECB mode encrypt step is because GMAC is not a PRF
// Auth tag for packet is first 64 bits of AES(GMAC) (rest is discarded)
#ifdef ZT_NO_TYPE_PUNNING
for(unsigned int i=0;i<8;++i) tag[i] = ctrIv[i];
#else
*((uint64_t *)tag) = *((uint64_t *)ctrIv);
#endif
// Create synthetic CTR IV from keyed hash of tag and message IV
// Create synthetic CTR IV: AES-ECB[k3](TAG | MIV[0:4] | (MIV[4:8] XOR MIV[8:12]))
#ifndef __GNUC__
for(unsigned int i=0;i<4;++i) ctrIv[i+8] = miv[i];
for(unsigned int i=4;i<8;++i) ctrIv[i+8] = miv[i] ^ miv[i+4];

View File

@ -146,69 +146,62 @@ void Utils::getSecureRandom(void *buf,unsigned int bytes)
static uint64_t randomState[4];
static uint8_t randomBuf[16384];
static unsigned long randomPtr = sizeof(randomBuf);
#ifdef __WINDOWS__
static HCRYPTPROV cryptProvider = NULL;
#endif
Mutex::Lock _l(globalLock);
/* Just for posterity we Salsa20 encrypt the result of whatever system
* CSPRNG we use. There have been several bugs at the OS or OS distribution
* level in the past that resulted in systematically weak or predictable
* keys due to random seeding problems. This mitigates that by grabbing
* a bit of extra entropy and further randomizing the result,and comes
* at almost no cost and with no real downside if the random source is
* good. */
if (unlikely(!initialized)) {
#ifdef __WINDOWS__
if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomState),(BYTE *)randomState)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomBuf),(BYTE *)randomBuf)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
#else
int devURandomFd = ::open("/dev/urandom",O_RDONLY);
if (devURandomFd < 0) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n");
exit(1);
}
if ((int)::read(devURandomFd,randomState,sizeof(randomState)) != (int)sizeof(randomState)) {
::close(devURandomFd);
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
if ((int)::read(devURandomFd,randomBuf,sizeof(randomBuf)) != (int)sizeof(randomBuf)) {
::close(devURandomFd);
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
close(devURandomFd);
#endif
initialized = true;
}
Mutex::Lock gl(globalLock);
for(unsigned int i=0;i<bytes;++i) {
if (randomPtr >= sizeof(randomBuf)) {
randomPtr = 0;
for(unsigned int k=0;k<4;++k) {
if (++randomState[k])
break;
if (unlikely(!initialized)) {
initialized = true;
#ifdef __WINDOWS__
HCRYPTPROV cryptProvider = NULL;
if (!CryptAcquireContextA(&cryptProvider,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT|CRYPT_SILENT)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to obtain WinCrypt context!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomState),(BYTE *)randomState)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
if (!CryptGenRandom(cryptProvider,(DWORD)sizeof(randomBuf),(BYTE *)randomBuf)) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() CryptGenRandom failed!\r\n");
exit(1);
}
CryptReleaseContext(cryptProvider,0);
#else
int devURandomFd = ::open("/dev/urandom",O_RDONLY);
if (devURandomFd < 0) {
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to open /dev/urandom\n");
exit(1);
}
if ((int)::read(devURandomFd,randomState,sizeof(randomState)) != (int)sizeof(randomState)) {
::close(devURandomFd);
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
if ((int)::read(devURandomFd,randomBuf,sizeof(randomBuf)) != (int)sizeof(randomBuf)) {
::close(devURandomFd);
fprintf(stderr,"FATAL ERROR: Utils::getSecureRandom() unable to read from /dev/urandom\n");
exit(1);
}
close(devURandomFd);
#endif
randomState[0] ^= (uint64_t)time(nullptr);
randomState[1] ^= (uint64_t)((uintptr_t)buf); // XOR in some other entropy just in case the system random source is wonky
}
uint8_t h[48];
for(unsigned int k=0;k<4;++k) {
if (++randomState[k] != 0)
break;
}
HMACSHA384((const uint8_t *)randomState,randomBuf,sizeof(randomBuf),h);
AES c(h);
c.ctr(h + 32,randomBuf,sizeof(randomBuf),randomBuf);
}
((uint8_t *)buf)[i] = randomBuf[randomPtr++];
}
}