Merge branch 'dev' into systemtray

This commit is contained in:
Grant Limberg 2016-11-18 14:00:25 -08:00
commit 2231e878d5
17 changed files with 555 additions and 186 deletions

View File

@ -0,0 +1,67 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "CertificateOfTrust.hpp"
#include "RuntimeEnvironment.hpp"
#include "Topology.hpp"
#include "Switch.hpp"
namespace ZeroTier {
bool CertificateOfTrust::create(uint64_t ts,uint64_t rls,const Identity &iss,const Identity &tgt,Level l)
{
if ((!iss)||(!iss.hasPrivate()))
return false;
_timestamp = ts;
_roles = rls;
_issuer = iss.address();
_target = tgt;
_level = l;
Buffer<sizeof(Identity) + 64> tmp;
tmp.append(_timestamp);
tmp.append(_roles);
_issuer.appendTo(tmp);
_target.serialize(tmp,false);
tmp.append((uint16_t)_level);
_signature = iss.sign(tmp.data(),tmp.size());
return true;
}
int CertificateOfTrust::verify(const RuntimeEnvironment *RR) const
{
const Identity id(RR->topology->getIdentity(_issuer));
if (!id) {
RR->sw->requestWhois(_issuer);
return 1;
}
Buffer<sizeof(Identity) + 64> tmp;
tmp.append(_timestamp);
tmp.append(_roles);
_issuer.appendTo(tmp);
_target.serialize(tmp,false);
tmp.append((uint16_t)_level);
return (id.verify(tmp.data(),tmp.size(),_signature) ? 0 : -1);
}
} // namespace ZeroTier

View File

@ -0,0 +1,155 @@
/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ZT_CERTIFICATEOFTRUST_HPP
#define ZT_CERTIFICATEOFTRUST_HPP
#include "Constants.hpp"
#include "Identity.hpp"
#include "C25519.hpp"
#include "Buffer.hpp"
namespace ZeroTier {
class RuntimeEnvironment;
/**
* Certificate of peer to peer trust
*/
class CertificateOfTrust
{
public:
/**
* Trust levels, with 0 indicating anti-trust
*/
enum Level
{
/**
* Negative trust is reserved for informing peers that another peer is misbehaving, etc. Not currently used.
*/
LEVEL_NEGATIVE = 0,
/**
* Default trust -- for most peers
*/
LEVEL_DEFAULT = 1,
/**
* Above normal trust, e.g. common network membership
*/
LEVEL_MEDIUM = 25,
/**
* High trust -- e.g. an upstream or a controller
*/
LEVEL_HIGH = 50,
/**
* Right now ultimate is only for roots
*/
LEVEL_ULTIMATE = 100
};
/**
* Role bit masks
*/
enum Role
{
/**
* Target is permitted to represent issuer on the network as a federated root / relay
*/
ROLE_UPSTREAM = 0x00000001
};
CertificateOfTrust() :
_timestamp(0),
_roles(0),
_issuer(),
_target(),
_level(LEVEL_DEFAULT),
_signature() {}
/**
* Create and sign this certificate of trust
*
* @param ts Cert timestamp
* @param rls Roles bitmap
* @param iss Issuer identity (must have secret key!)
* @param tgt Target identity
* @param l Trust level
* @return True on successful signature
*/
bool create(uint64_t ts,uint64_t rls,const Identity &iss,const Identity &tgt,Level l);
/**
* Verify this COT and its signature
*
* @param RR Runtime environment for looking up peers
* @return 0 == OK, 1 == waiting for WHOIS, -1 == BAD signature or credential
*/
int verify(const RuntimeEnvironment *RR) const;
inline bool roleUpstream() const { return ((_roles & (uint64_t)ROLE_UPSTREAM) != 0); }
inline uint64_t timestamp() const { return _timestamp; }
inline uint64_t roles() const { return _roles; }
inline const Address &issuer() const { return _issuer; }
inline const Identity &target() const { return _target; }
inline Level level() const { return _level; }
inline operator bool() const { return (_issuer); }
template<unsigned int C>
inline void serialize(Buffer<C> &b) const
{
b.append(_timestamp);
b.append(_roles);
_issuer.appendTo(b);
_target.serialize(b);
b.append((uint16_t)_level);
b.append((uint8_t)1); // 1 == ed25519 signature
b.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
b.append(_signature.data,ZT_C25519_SIGNATURE_LEN);
b.append((uint16_t)0); // length of additional fields
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
unsigned int p = startAt;
_timestamp = b.template at<uint64_t>(p); p += 8;
_roles = b.template at<uint64_t>(p); p += 8;
_issuer.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
p += _target.deserialize(b,p);
_level = b.template at<uint16_t>(p); p += 2;
p += b.template at<uint16_t>(p); p += 2;
return (p - startAt);
}
private:
uint64_t _timestamp;
uint64_t _roles;
Address _issuer;
Identity _target;
Level _level;
C25519::Signature _signature;
};
} // namespace ZeroTier
#endif

View File

@ -1776,11 +1776,13 @@ void EmbeddedNetworkController::_pushMemberUpdate(uint64_t now,uint64_t nwid,con
std::map<std::pair<uint64_t,uint64_t>,uint64_t>::iterator lrt(_lastRequestTime.find(std::pair<uint64_t,uint64_t>(id.address().toInt(),nwid)));
online = ( (lrt != _lastRequestTime.end()) && ((now - lrt->second) < ZT_NETWORK_AUTOCONF_DELAY) );
}
Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> *metaData = new Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY>(mdstr.c_str());
try {
this->request(nwid,InetAddress(),0,id,*metaData);
} catch ( ... ) {}
delete metaData;
if (online) {
Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> *metaData = new Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY>(mdstr.c_str());
try {
this->request(nwid,InetAddress(),0,id,*metaData);
} catch ( ... ) {}
delete metaData;
}
}
} catch ( ... ) {}
}

View File

@ -1784,6 +1784,17 @@ int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage
*/
void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node);
/**
* Set peer role
*
* Right now this can only be used to set a peer to either LEAF or
* UPSTREAM, since roots are fixed and defined by the World.
*
* @param ztAddress ZeroTier address (least significant 40 bits)
* @param role New peer role (LEAF or UPSTREAM)
*/
void ZT_Node_setRole(ZT_Node *node,uint64_t ztAddress,ZT_PeerRole role);
/**
* Set a network configuration master instance for this node
*

View File

@ -375,6 +375,26 @@
*/
#define ZT_PEER_GENERAL_RATE_LIMIT 1000
/**
* Don't do expensive identity validation more often than this
*
* IPv4 and IPv6 address prefixes are hashed down to 14-bit (0-16383) integers
* using the first 24 bits for IPv4 or the first 48 bits for IPv6. These are
* then rate limited to one identity validation per this often milliseconds.
*/
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64) || defined(_M_AMD64))
// AMD64 machines can do anywhere from one every 50ms to one every 10ms. This provides plenty of margin.
#define ZT_IDENTITY_VALIDATION_SOURCE_RATE_LIMIT 2000
#else
#if (defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || defined(_M_IX86) || defined(_X86_) || defined(__I86__))
// 32-bit Intel machines usually average about one every 100ms
#define ZT_IDENTITY_VALIDATION_SOURCE_RATE_LIMIT 5000
#else
// This provides a safe margin for ARM, MIPS, etc. that usually average one every 250-400ms
#define ZT_IDENTITY_VALIDATION_SOURCE_RATE_LIMIT 10000
#endif
#endif
/**
* How long is a path or peer considered to have a trust relationship with us (for e.g. relay policy) since last trusted established packet?
*/

View File

@ -160,7 +160,7 @@ bool IncomingPacket::_doERROR(const RuntimeEnvironment *RR,const SharedPtr<Peer>
case Packet::ERROR_IDENTITY_COLLISION:
// FIXME: for federation this will need a payload with a signature or something.
if (RR->topology->isRoot(peer->identity()))
if (RR->topology->isUpstream(peer->identity()))
RR->node->postEvent(ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION);
break;
@ -247,6 +247,10 @@ bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,const bool alreadyAut
if (peer->identity() != id) {
// Identity is different from the one we already have -- address collision
// Check rate limits
if (!RR->node->rateGateIdentityVerification(now,_path->address()))
return true;
uint8_t key[ZT_PEER_SECRET_KEY_LENGTH];
if (RR->identity.agree(id,key,ZT_PEER_SECRET_KEY_LENGTH)) {
if (dearmor(key)) { // ensure packet is authentic, otherwise drop
@ -275,7 +279,7 @@ bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,const bool alreadyAut
// Continue at // VALID
}
} // else continue at // VALID
} // else if alreadyAuthenticated then continue at // VALID
} else {
// We don't already have an identity with this address -- validate and learn it
@ -285,18 +289,23 @@ bool IncomingPacket::_doHELLO(const RuntimeEnvironment *RR,const bool alreadyAut
return true;
}
// Check rate limits
if (!RR->node->rateGateIdentityVerification(now,_path->address()))
return true;
// Check packet integrity and MAC (this is faster than locallyValidate() so do it first to filter out total crap)
SharedPtr<Peer> newPeer(new Peer(RR,RR->identity,id));
if (!dearmor(newPeer->key())) {
TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_path->address().toString().c_str());
return true;
}
// Check that identity's address is valid as per the derivation function
if (!id.locallyValidate()) {
TRACE("dropped HELLO from %s(%s): identity invalid",id.address().toString().c_str(),_path->address().toString().c_str());
return true;
}
// Check packet integrity and authentication
SharedPtr<Peer> newPeer(new Peer(RR,RR->identity,id));
if (!dearmor(newPeer->key())) {
TRACE("rejected HELLO from %s(%s): packet failed authentication",id.address().toString().c_str(),_path->address().toString().c_str());
return true;
}
peer = RR->topology->addPeer(newPeer);
// Continue at // VALID
@ -508,11 +517,7 @@ bool IncomingPacket::_doWHOIS(const RuntimeEnvironment *RR,const SharedPtr<Peer>
id.serialize(outp,false);
++count;
} else {
// If I am not the root and don't know this identity, ask upstream. Downstream
// peer may re-request in the future and if so we will be able to provide it.
if (!RR->topology->amRoot())
RR->sw->requestWhois(addr);
RR->sw->requestWhois(addr);
#ifdef ZT_ENABLE_CLUSTER
// Distribute WHOIS queries across a cluster if we do not know the ID.
// This may result in duplicate OKs to the querying peer, which is fine.
@ -666,7 +671,7 @@ bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment *RR,const SharedPtr<P
}
}
if ((flags & 0x10) != 0) {
if ((flags & 0x10) != 0) { // ACK requested
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_EXT_FRAME);
outp.append((uint64_t)packetId());

View File

@ -427,7 +427,7 @@ struct InetAddress : public sockaddr_storage
} else {
unsigned long tmp = reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_port;
const uint8_t *a = reinterpret_cast<const uint8_t *>(this);
for(long i=0;i<sizeof(InetAddress);++i)
for(long i=0;i<(long)sizeof(InetAddress);++i)
reinterpret_cast<uint8_t *>(&tmp)[i % sizeof(tmp)] ^= a[i];
return tmp;
}
@ -449,6 +449,30 @@ struct InetAddress : public sockaddr_storage
bool isNetwork() const
throw();
/**
* @return 14-bit (0-16383) hash of this IP's first 24 or 48 bits (for V4 or V6) for rate limiting code, or 0 if non-IP
*/
inline unsigned long rateGateHash() const
{
unsigned long h = 0;
switch(ss_family) {
case AF_INET:
h = (Utils::ntoh((uint32_t)reinterpret_cast<const struct sockaddr_in *>(this)->sin_addr.s_addr) & 0xffffff00) >> 8;
h ^= (h >> 14);
break;
case AF_INET6: {
const uint8_t *ip = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(this)->sin6_addr.s6_addr);
h = ((unsigned long)ip[0]); h <<= 1;
h += ((unsigned long)ip[1]); h <<= 1;
h += ((unsigned long)ip[2]); h <<= 1;
h += ((unsigned long)ip[3]); h <<= 1;
h += ((unsigned long)ip[4]); h <<= 1;
h += ((unsigned long)ip[5]);
} break;
}
return (h & 0x3fff);
}
/**
* @return True if address family is non-zero
*/

View File

@ -229,7 +229,7 @@ void Multicaster::send(
Address explicitGatherPeers[16];
unsigned int numExplicitGatherPeers = 0;
SharedPtr<Peer> bestRoot(RR->topology->getBestRoot());
SharedPtr<Peer> bestRoot(RR->topology->getUpstreamPeer());
if (bestRoot)
explicitGatherPeers[numExplicitGatherPeers++] = bestRoot->address();
explicitGatherPeers[numExplicitGatherPeers++] = Network::controllerFor(nwid);

View File

@ -78,6 +78,7 @@ Node::Node(
memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification));
// Use Salsa20 alone as a high-quality non-crypto PRNG
{
@ -211,8 +212,7 @@ public:
}
if (upstream) {
// "Upstream" devices are roots and relays and get special treatment -- they stay alive
// forever and we try to keep (if available) both IPv4 and IPv6 channels open to them.
// We keep connections to upstream peers alive forever.
bool needToContactIndirect = true;
if (p->doPingAndKeepalive(_now,AF_INET)) {
needToContactIndirect = false;
@ -231,11 +231,8 @@ public:
}
}
// If we don't have a direct path or a static endpoint, send something indirectly to find one.
if (needToContactIndirect) {
// If this is an upstream and we have no stable endpoint for either IPv4 or IPv6,
// send a NOP indirectly if possible to see if we can get to this peer in any
// way whatsoever. This will e.g. find network preferred relays that lack
// stable endpoints by using root servers.
Packet outp(p->address(),RR->identity.address(),Packet::VERB_NOP);
RR->sw->send(outp,true);
}
@ -415,7 +412,7 @@ ZT_PeerList *Node::peers() const
p->versionRev = -1;
}
p->latency = pi->second->latency();
p->role = RR->topology->isRoot(pi->second->identity()) ? ZT_PEER_ROLE_ROOT : ZT_PEER_ROLE_LEAF;
p->role = RR->topology->isRoot(pi->second->identity()) ? ZT_PEER_ROLE_ROOT : (RR->topology->isUpstream(pi->second->identity()) ? ZT_PEER_ROLE_UPSTREAM : ZT_PEER_ROLE_LEAF);
std::vector< std::pair< SharedPtr<Path>,bool > > paths(pi->second->paths(_now));
SharedPtr<Path> bestp(pi->second->getBestPath(_now,false));
@ -487,6 +484,11 @@ void Node::clearLocalInterfaceAddresses()
_directPaths.clear();
}
void Node::setRole(uint64_t ztAddress,ZT_PeerRole role)
{
RR->topology->setUpstream(Address(ztAddress),(role == ZT_PEER_ROLE_UPSTREAM));
}
void Node::setNetconfMaster(void *networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
@ -1010,6 +1012,13 @@ void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node)
} catch ( ... ) {}
}
void ZT_Node_setRole(ZT_Node *node,uint64_t ztAddress,ZT_PeerRole role)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setRole(ztAddress,role);
} catch ( ... ) {}
}
void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance)
{
try {

View File

@ -105,6 +105,7 @@ public:
void freeQueryResult(void *qr);
int addLocalInterfaceAddress(const struct sockaddr_storage *addr);
void clearLocalInterfaceAddresses();
void setRole(uint64_t ztAddress,ZT_PeerRole role);
void setNetconfMaster(void *networkControllerInstance);
ZT_ResultCode circuitTestBegin(ZT_CircuitTest *test,void (*reportCallback)(ZT_Node *,ZT_CircuitTest *,const ZT_CircuitTestReport *));
void circuitTestEnd(ZT_CircuitTest *test);
@ -283,6 +284,23 @@ public:
return false;
}
/**
* Check whether we should do potentially expensive identity verification (rate limit)
*
* @param now Current time
* @param from Source address of packet
* @return True if within rate limits
*/
inline bool rateGateIdentityVerification(const uint64_t now,const InetAddress &from)
{
unsigned long iph = from.rateGateHash();
if ((now - _lastIdentityVerification[iph]) >= ZT_IDENTITY_VALIDATION_SOURCE_RATE_LIMIT) {
_lastIdentityVerification[iph] = now;
return true;
}
return false;
}
virtual void ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig);
virtual void ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode);
@ -302,9 +320,13 @@ private:
void *_uPtr; // _uptr (lower case) is reserved in Visual Studio :P
// For tracking packet IDs to filter out OK/ERROR replies to packets we did not send
uint8_t _expectingRepliesToBucketPtr[ZT_EXPECTING_REPLIES_BUCKET_MASK1 + 1];
uint64_t _expectingRepliesTo[ZT_EXPECTING_REPLIES_BUCKET_MASK1 + 1][ZT_EXPECTING_REPLIES_BUCKET_MASK2 + 1];
// Time of last identity verification indexed by InetAddress.rateGateHash()
uint64_t _lastIdentityVerification[16384];
ZT_DataStoreGetFunction _dataStoreGetFunction;
ZT_DataStorePutFunction _dataStorePutFunction;
ZT_WirePacketSendFunction _wirePacketSendFunction;

View File

@ -617,10 +617,8 @@ public:
* <[1] protocol address length (4 for IPv4, 16 for IPv6)>
* <[...] protocol address (network byte order)>
*
* This is sent by a relaying node to initiate NAT traversal between two
* peers that are communicating by way of indirect relay. The relay will
* send this to both peers at the same time on a periodic basis, telling
* each where it might find the other on the network.
* An upstream node can send this to inform both sides of a relay of
* information they might use to establish a direct connection.
*
* Upon receipt a peer sends HELLO to establish a direct link.
*

View File

@ -403,26 +403,6 @@ public:
return false;
}
/**
* Find a common set of addresses by which two peers can link, if any
*
* @param a Peer A
* @param b Peer B
* @param now Current time
* @return Pair: B's address (to send to A), A's address (to send to B)
*/
static inline std::pair<InetAddress,InetAddress> findCommonGround(const Peer &a,const Peer &b,uint64_t now)
{
std::pair<InetAddress,InetAddress> v4,v6;
b.getBestActiveAddresses(now,v4.first,v6.first);
a.getBestActiveAddresses(now,v4.second,v6.second);
if ((v6.first)&&(v6.second)) // prefer IPv6 if both have it since NAT-t is (almost) unnecessary
return v6;
else if ((v4.first)&&(v4.second))
return v4;
else return std::pair<InetAddress,InetAddress>();
}
private:
inline uint64_t _pathScore(const unsigned int p,const uint64_t now) const
{

View File

@ -131,8 +131,8 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
}
#endif
// Don't know peer or no direct path -- so relay via root server
relayTo = RR->topology->getBestRoot();
// Don't know peer or no direct path -- so relay via someone upstream
relayTo = RR->topology->getUpstreamPeer();
if (relayTo)
relayTo->sendDirect(fragment.data(),fragment.size(),now,true);
}
@ -237,7 +237,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)];
if ((now - luts) >= ZT_MIN_UNITE_INTERVAL) {
luts = now;
unite(source,destination);
_unite(source,destination);
}
} else {
#ifdef ZT_ENABLE_CLUSTER
@ -254,7 +254,7 @@ void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &from
return;
}
#endif
relayTo = RR->topology->getBestRoot(&source,1,true);
relayTo = RR->topology->getUpstreamPeer(&source,1,true);
if (relayTo)
relayTo->sendDirect(packet.data(),packet.size(),now,true);
}
@ -590,75 +590,6 @@ void Switch::send(const Packet &packet,bool encrypt)
}
}
bool Switch::unite(const Address &p1,const Address &p2)
{
if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
return false;
SharedPtr<Peer> p1p = RR->topology->getPeer(p1);
if (!p1p)
return false;
SharedPtr<Peer> p2p = RR->topology->getPeer(p2);
if (!p2p)
return false;
const uint64_t now = RR->node->now();
std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
if ((!(cg.first))||(cg.first.ipScope() != cg.second.ipScope()))
return false;
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
/* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
* P2 in randomized order in terms of which gets sent first. This is done
* since in a few cases NAT-t can be sensitive to slight timing differences
* in terms of when the two peers initiate. Normally this is accounted for
* by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
* given that relay are hosted on cloud providers this can in some
* cases have a few ms of latency between packet departures. By randomizing
* the order we make each attempted NAT-t favor one or the other going
* first, meaning if it doesn't succeed the first time it might the second
* and so forth. */
unsigned int alt = (unsigned int)RR->node->prng() & 1;
unsigned int completed = alt + 2;
while (alt != completed) {
if ((alt & 1) == 0) {
// Tell p1 where to find p2.
Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p2.appendTo(outp);
outp.append((uint16_t)cg.first.port());
if (cg.first.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.first.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.first.rawIpData(),4);
}
outp.armor(p1p->key(),true);
p1p->sendDirect(outp.data(),outp.size(),now,true);
} else {
// Tell p2 where to find p1.
Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p1.appendTo(outp);
outp.append((uint16_t)cg.second.port());
if (cg.second.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.second.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.second.rawIpData(),4);
}
outp.armor(p2p->key(),true);
p2p->sendDirect(outp.data(),outp.size(),now,true);
}
++alt; // counts up and also flips LSB
}
return true;
}
void Switch::requestWhois(const Address &addr)
{
bool inserted = false;
@ -763,7 +694,7 @@ unsigned long Switch::doTimerTasks(uint64_t now)
Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
{
SharedPtr<Peer> upstream(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
if (upstream) {
Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
addr.appendTo(outp);
@ -793,7 +724,7 @@ bool Switch::_trySend(const Packet &packet,bool encrypt)
viaPath.zero();
}
if (!viaPath) {
SharedPtr<Peer> relay(RR->topology->getBestRoot());
SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) {
if (!(viaPath = peer->getBestPath(now,true)))
return false;
@ -839,4 +770,96 @@ bool Switch::_trySend(const Packet &packet,bool encrypt)
return false;
}
bool Switch::_unite(const Address &p1,const Address &p2)
{
if ((p1 == RR->identity.address())||(p2 == RR->identity.address()))
return false;
const uint64_t now = RR->node->now();
InetAddress *p1a = (InetAddress *)0;
InetAddress *p2a = (InetAddress *)0;
InetAddress p1v4,p1v6,p2v4,p2v6,uv4,uv6;
{
const SharedPtr<Peer> p1p(RR->topology->getPeer(p1));
const SharedPtr<Peer> p2p(RR->topology->getPeer(p2));
if ((!p1p)&&(!p2p)) return false;
if (p1p) p1p->getBestActiveAddresses(now,p1v4,p1v6);
if (p2p) p2p->getBestActiveAddresses(now,p2v4,p2v6);
}
if ((p1v6)&&(p2v6)) {
p1a = &p1v6;
p2a = &p2v6;
} else if ((p1v4)&&(p2v4)) {
p1a = &p1v4;
p2a = &p2v4;
} else {
SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer());
if (!upstream)
return false;
upstream->getBestActiveAddresses(now,uv4,uv6);
if ((p1v6)&&(uv6)) {
p1a = &p1v6;
p2a = &uv6;
} else if ((p1v4)&&(uv4)) {
p1a = &p1v4;
p2a = &uv4;
} else if ((p2v6)&&(uv6)) {
p1a = &p2v6;
p2a = &uv6;
} else if ((p2v4)&&(uv4)) {
p1a = &p2v4;
p2a = &uv4;
} else return false;
}
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),p1a->toString().c_str(),p2.toString().c_str(),p2a->toString().c_str());
/* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
* P2 in randomized order in terms of which gets sent first. This is done
* since in a few cases NAT-t can be sensitive to slight timing differences
* in terms of when the two peers initiate. Normally this is accounted for
* by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but
* given that relay are hosted on cloud providers this can in some
* cases have a few ms of latency between packet departures. By randomizing
* the order we make each attempted NAT-t favor one or the other going
* first, meaning if it doesn't succeed the first time it might the second
* and so forth. */
unsigned int alt = (unsigned int)RR->node->prng() & 1;
const unsigned int completed = alt + 2;
while (alt != completed) {
if ((alt & 1) == 0) {
// Tell p1 where to find p2.
Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p2.appendTo(outp);
outp.append((uint16_t)p2a->port());
if (p2a->isV6()) {
outp.append((unsigned char)16);
outp.append(p2a->rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(p2a->rawIpData(),4);
}
send(outp,true);
} else {
// Tell p2 where to find p1.
Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((unsigned char)0);
p1.appendTo(outp);
outp.append((uint16_t)p1a->port());
if (p1a->isV6()) {
outp.append((unsigned char)16);
outp.append(p1a->rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(p1a->rawIpData(),4);
}
send(outp,true);
}
++alt; // counts up and also flips LSB
}
return true;
}
} // namespace ZeroTier

View File

@ -97,17 +97,6 @@ public:
*/
void send(const Packet &packet,bool encrypt);
/**
* Send RENDEZVOUS to two peers to permit them to directly connect
*
* This only works if both peers are known, with known working direct
* links to this peer. The best link for each peer is sent to the other.
*
* @param p1 One of two peers (order doesn't matter)
* @param p2 Second of pair
*/
bool unite(const Address &p1,const Address &p2);
/**
* Request WHOIS on a given address
*
@ -138,6 +127,7 @@ public:
private:
Address _sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted);
bool _trySend(const Packet &packet,bool encrypt);
bool _unite(const Address &p1,const Address &p2);
const RuntimeEnvironment *const RR;
uint64_t _lastBeaconResponse;

View File

@ -23,6 +23,7 @@
#include "Network.hpp"
#include "NetworkConfig.hpp"
#include "Buffer.hpp"
#include "Switch.hpp"
namespace ZeroTier {
@ -111,9 +112,8 @@ SharedPtr<Peer> Topology::getPeer(const Address &zta)
{
Mutex::Lock _l(_lock);
const SharedPtr<Peer> *const ap = _peers.get(zta);
if (ap) {
if (ap)
return *ap;
}
}
try {
@ -158,7 +158,7 @@ void Topology::saveIdentity(const Identity &id)
}
}
SharedPtr<Peer> Topology::getBestRoot(const Address *avoid,unsigned int avoidCount,bool strictAvoid)
SharedPtr<Peer> Topology::getUpstreamPeer(const Address *avoid,unsigned int avoidCount,bool strictAvoid)
{
const uint64_t now = RR->node->now();
Mutex::Lock _l(_lock);
@ -181,30 +181,42 @@ SharedPtr<Peer> Topology::getBestRoot(const Address *avoid,unsigned int avoidCou
}
} else {
/* If I am not a root server, the best root server is the active one with
* the lowest quality score. (lower == better) */
/* Otherwise pick the best upstream from among roots and any other
* designated upstreams that we trust. */
unsigned int bestQualityOverall = ~((unsigned int)0);
unsigned int bestQualityNotAvoid = ~((unsigned int)0);
const SharedPtr<Peer> *bestOverall = (const SharedPtr<Peer> *)0;
const SharedPtr<Peer> *bestNotAvoid = (const SharedPtr<Peer> *)0;
for(std::vector< SharedPtr<Peer> >::const_iterator r(_rootPeers.begin());r!=_rootPeers.end();++r) {
for(std::vector<Address>::const_iterator a(_upstreamAddresses.begin());a!=_upstreamAddresses.end();++a) {
const SharedPtr<Peer> *p = _peers.get(*a);
if (!p) {
const Identity id(_getIdentity(*a));
if (id) {
p = &(_peers.set(*a,SharedPtr<Peer>(new Peer(RR,RR->identity,id))));
} else {
RR->sw->requestWhois(*a);
}
continue; // always skip since even if we loaded it, it's not going to be ready
}
bool avoiding = false;
for(unsigned int i=0;i<avoidCount;++i) {
if (avoid[i] == (*r)->address()) {
if (avoid[i] == (*p)->address()) {
avoiding = true;
break;
}
}
const unsigned int q = (*r)->relayQuality(now);
const unsigned int q = (*p)->relayQuality(now);
if (q <= bestQualityOverall) {
bestQualityOverall = q;
bestOverall = &(*r);
bestOverall = &(*p);
}
if ((!avoiding)&&(q <= bestQualityNotAvoid)) {
bestQualityNotAvoid = q;
bestNotAvoid = &(*r);
bestNotAvoid = &(*p);
}
}
@ -219,9 +231,45 @@ SharedPtr<Peer> Topology::getBestRoot(const Address *avoid,unsigned int avoidCou
return SharedPtr<Peer>();
}
bool Topology::isRoot(const Identity &id) const
{
Mutex::Lock _l(_lock);
return (std::find(_rootAddresses.begin(),_rootAddresses.end(),id.address()) != _rootAddresses.end());
}
bool Topology::isUpstream(const Identity &id) const
{
return isRoot(id);
Mutex::Lock _l(_lock);
return (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),id.address()) != _upstreamAddresses.end());
}
void Topology::setUpstream(const Address &a,bool upstream)
{
Mutex::Lock _l(_lock);
if (std::find(_rootAddresses.begin(),_rootAddresses.end(),a) == _rootAddresses.end()) {
if (upstream) {
if (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),a) == _upstreamAddresses.end()) {
_upstreamAddresses.push_back(a);
const SharedPtr<Peer> *p = _peers.get(a);
if (!p) {
const Identity id(_getIdentity(a));
if (id) {
_peers.set(a,SharedPtr<Peer>(new Peer(RR,RR->identity,id)));
} else {
RR->sw->requestWhois(a);
}
}
}
} else {
std::vector<Address> ua;
for(std::vector<Address>::iterator i(_upstreamAddresses.begin());i!=_upstreamAddresses.end();++i) {
if (a != *i)
ua.push_back(*i);
}
_upstreamAddresses.swap(ua);
}
}
}
bool Topology::worldUpdateIfValid(const World &newWorld)
@ -249,7 +297,7 @@ void Topology::clean(uint64_t now)
Address *a = (Address *)0;
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
while (i.next(a,p)) {
if ( (!(*p)->isAlive(now)) && (std::find(_rootAddresses.begin(),_rootAddresses.end(),*a) == _rootAddresses.end()) )
if ( (!(*p)->isAlive(now)) && (std::find(_upstreamAddresses.begin(),_upstreamAddresses.end(),*a) == _upstreamAddresses.end()) )
_peers.erase(*a);
}
}
@ -280,25 +328,31 @@ Identity Topology::_getIdentity(const Address &zta)
void Topology::_setWorld(const World &newWorld)
{
// assumed _lock is locked (or in constructor)
std::vector<Address> ua;
for(std::vector<Address>::iterator a(_upstreamAddresses.begin());a!=_upstreamAddresses.end();++a) {
if (std::find(_rootAddresses.begin(),_rootAddresses.end(),*a) == _rootAddresses.end())
ua.push_back(*a);
}
_world = newWorld;
_amRoot = false;
_rootAddresses.clear();
_rootPeers.clear();
_amRoot = false;
for(std::vector<World::Root>::const_iterator r(_world.roots().begin());r!=_world.roots().end();++r) {
_rootAddresses.push_back(r->identity.address());
if (std::find(ua.begin(),ua.end(),r->identity.address()) == ua.end())
ua.push_back(r->identity.address());
if (r->identity.address() == RR->identity.address()) {
_amRoot = true;
} else {
SharedPtr<Peer> *rp = _peers.get(r->identity.address());
if (rp) {
_rootPeers.push_back(*rp);
} else {
SharedPtr<Peer> newrp(new Peer(RR,RR->identity,r->identity));
_peers.set(r->identity.address(),newrp);
_rootPeers.push_back(newrp);
}
if (!rp)
_peers.set(r->identity.address(),SharedPtr<Peer>(new Peer(RR,RR->identity,r->identity)));
}
}
_upstreamAddresses.swap(ua);
}
} // namespace ZeroTier

View File

@ -125,35 +125,27 @@ public:
void saveIdentity(const Identity &id);
/**
* Get the current favorite root server
* Get the current best upstream peer
*
* @return Root server with lowest latency or NULL if none
*/
inline SharedPtr<Peer> getBestRoot() { return getBestRoot((const Address *)0,0,false); }
inline SharedPtr<Peer> getUpstreamPeer() { return getUpstreamPeer((const Address *)0,0,false); }
/**
* Get the best root server, avoiding root servers listed in an array
*
* This will get the best root server (lowest latency, etc.) but will
* try to avoid the listed root servers, only using them if no others
* are available.
* Get the current best upstream peer, avoiding those in the supplied avoid list
*
* @param avoid Nodes to avoid
* @param avoidCount Number of nodes to avoid
* @param strictAvoid If false, consider avoided root servers anyway if no non-avoid root servers are available
* @return Root server or NULL if none available
*/
SharedPtr<Peer> getBestRoot(const Address *avoid,unsigned int avoidCount,bool strictAvoid);
SharedPtr<Peer> getUpstreamPeer(const Address *avoid,unsigned int avoidCount,bool strictAvoid);
/**
* @param id Identity to check
* @return True if this is a designated root server in this world
*/
inline bool isRoot(const Identity &id) const
{
Mutex::Lock _l(_lock);
return (std::find(_rootAddresses.begin(),_rootAddresses.end(),id.address()) != _rootAddresses.end());
}
bool isRoot(const Identity &id) const;
/**
* @param id Identity to check
@ -162,20 +154,22 @@ public:
bool isUpstream(const Identity &id) const;
/**
* @return Vector of root server addresses
* Set whether or not an address is upstream
*
* If the address is a root this does nothing, since roots are fixed.
*
* @param a Target address
* @param upstream New upstream status
*/
inline std::vector<Address> rootAddresses() const
{
Mutex::Lock _l(_lock);
return _rootAddresses;
}
void setUpstream(const Address &a,bool upstream);
/**
* @return Vector of active upstream addresses (including roots)
*/
inline std::vector<Address> upstreamAddresses() const
{
return rootAddresses();
Mutex::Lock _l(_lock);
return _upstreamAddresses;
}
/**
@ -342,9 +336,9 @@ private:
Hashtable< Address,SharedPtr<Peer> > _peers;
Hashtable< Path::HashKey,SharedPtr<Path> > _paths;
std::vector< Address > _rootAddresses;
std::vector< SharedPtr<Peer> > _rootPeers;
bool _amRoot;
std::vector< Address > _upstreamAddresses; // includes roots
std::vector< Address > _rootAddresses; // only roots
bool _amRoot; // am I a root?
Mutex _lock;
};

View File

@ -327,6 +327,17 @@ static int testCrypto()
}
std::cout << "PASS" << std::endl;
std::cout << "[crypto] Benchmarking C25519 ECC key agreement... "; std::cout.flush();
C25519::Pair bp[8];
for(int k=0;k<8;++k)
bp[k] = C25519::generate();
const uint64_t st = OSUtils::now();
for(unsigned int k=0;k<50;++k) {
C25519::agree(bp[~k & 7],bp[k & 7].pub,buf1,64);
}
const uint64_t et = OSUtils::now();
std::cout << ((double)(et - st) / 50.0) << "ms per agreement." << std::endl;
std::cout << "[crypto] Testing Ed25519 ECC signatures... "; std::cout.flush();
C25519::Pair didntSign = C25519::generate();
for(unsigned int i=0;i<10;++i) {
@ -376,11 +387,15 @@ static int testIdentity()
std::cout << "FAIL (1)" << std::endl;
return -1;
}
if (!id.locallyValidate()) {
std::cout << "FAIL (2)" << std::endl;
return -1;
const uint64_t vst = OSUtils::now();
for(int k=0;k<10;++k) {
if (!id.locallyValidate()) {
std::cout << "FAIL (2)" << std::endl;
return -1;
}
}
std::cout << "PASS" << std::endl;
const uint64_t vet = OSUtils::now();
std::cout << "PASS (" << ((double)(vet - vst) / 10.0) << "ms per validation)" << std::endl;
std::cout << "[identity] Validate known-bad identity... "; std::cout.flush();
if (!id.fromString(KNOWN_BAD_IDENTITY)) {