ZeroTierOne/node/Peer.hpp

493 lines
12 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef _ZT_PEER_HPP
#define _ZT_PEER_HPP
#include <algorithm>
#include <utility>
#include <stdexcept>
#include <stdint.h>
#include "Address.hpp"
#include "Utils.hpp"
#include "Identity.hpp"
#include "Constants.hpp"
#include "Logger.hpp"
#include "Demarc.hpp"
#include "RuntimeEnvironment.hpp"
#include "InetAddress.hpp"
#include "EllipticCurveKey.hpp"
#include "Packet.hpp"
#include "SharedPtr.hpp"
#include "AtomicCounter.hpp"
#include "NonCopyable.hpp"
#include "Mutex.hpp"
/**
* Max length of serialized peer record
*/
#define ZT_PEER_MAX_SERIALIZED_LENGTH ( \
64 + \
IDENTITY_MAX_BINARY_SERIALIZED_LENGTH + \
(( \
(sizeof(uint64_t) * 5) + \
sizeof(uint16_t) + \
1 + \
sizeof(uint16_t) + \
16 + \
1 \
) * 2) + \
64 \
)
namespace ZeroTier {
/**
* A peer on the network
*
* Threading note:
*
* This structure contains no locks at the moment, but also performs no
* memory allocation or pointer manipulation. As a result is is technically
* "safe" for threads, as in won't crash. Right now it's only changed from
* the core I/O thread so this isn't an issue. If multiple I/O threads are
* introduced it ought to have a lock of some kind.
*/
class Peer : NonCopyable
{
friend class SharedPtr<Peer>;
private:
~Peer() {}
public:
Peer();
/**
* Construct a new peer
*
* @param myIdentity Identity of THIS node (for key agreement)
* @param peerIdentity Identity of peer
* @throws std::runtime_error Key agreement with peer's identity failed
*/
Peer(const Identity &myIdentity,const Identity &peerIdentity)
throw(std::runtime_error);
/**
* @return This peer's ZT address (short for identity().address())
*/
inline const Address &address() const throw() { return _id.address(); }
/**
* @return This peer's identity
*/
inline const Identity &identity() const throw() { return _id; }
/**
* Must be called on authenticated packet receive from this peer
*
* @param _r Runtime environment
* @param localPort Local port on which packet was received
* @param fromAddr Internet address of sender
* @param hops ZeroTier (not IP) hops
* @param verb Packet verb
* @param now Current time
*/
2013-07-11 22:15:51 +00:00
void onReceive(const RuntimeEnvironment *_r,Demarc::Port localPort,const InetAddress &fromAddr,unsigned int hops,Packet::Verb verb,uint64_t now);
/**
* Send a UDP packet to this peer
*
* If the active link is timed out (no receives for ping timeout ms), then
* the active link number is incremented after send. This causes sends to
* cycle through links if there is no clear active link. This also happens
* if the send fails for some reason.
*
* @param _r Runtime environment
* @param data Data to send
* @param len Length of packet
* @param relay This is a relay on behalf of another peer (verb is ignored)
* @param verb Packet verb (if not relay)
* @param now Current time
* @return True if packet appears to have been sent, false on local failure
*/
bool send(const RuntimeEnvironment *_r,const void *data,unsigned int len,bool relay,Packet::Verb verb,uint64_t now);
/**
* Send firewall opener to active link
*
* @param _r Runtime environment
* @param now Current time
* @return True if send appears successful for at least one address type
*/
bool sendFirewallOpener(const RuntimeEnvironment *_r,uint64_t now);
/**
* Set an address to reach this peer
*
* @param addr Address to set
* @param fixed If true, address is fixed (won't be changed on packet receipt)
*/
void setPathAddress(const InetAddress &addr,bool fixed);
/**
* Clear the fixed flag for an address type
*
* @param t Type to clear, or TYPE_NULL to clear flag on all types
*/
void clearFixedFlag(InetAddress::AddressType t);
/**
* @return Last successfully sent firewall opener
*/
uint64_t lastFirewallOpener() const
throw()
{
return std::max(_ipv4p.lastFirewallOpener,_ipv6p.lastFirewallOpener);
}
/**
* @return Time of last direct packet receive
*/
uint64_t lastDirectReceive() const
throw()
{
return std::max(_ipv4p.lastReceive,_ipv6p.lastReceive);
}
/**
* @return Time of last direct packet send
*/
uint64_t lastDirectSend() const
throw()
{
return std::max(_ipv4p.lastSend,_ipv6p.lastSend);
}
/**
* @return Time of most recent unicast frame (actual data transferred)
*/
uint64_t lastUnicastFrame() const
throw()
{
return std::max(_ipv4p.lastUnicastFrame,_ipv6p.lastUnicastFrame);
}
/**
* @return Lowest of measured latencies of all paths or 0 if unknown
*/
unsigned int latency() const
throw()
{
if (_ipv4p.latency) {
if (_ipv6p.latency)
return std::min(_ipv4p.latency,_ipv6p.latency);
else return _ipv4p.latency;
} else if (_ipv6p.latency)
return _ipv6p.latency;
return 0;
}
2013-07-11 22:15:51 +00:00
/**
* @param latency measurment for IPv4 path
*/
void setV4Latency(unsigned int latency)
{
_ipv4p.latency = latency;
_dirty = true;
}
/**
* @param latency Latency measurment for IPv6 path
*/
void setV6Latency(unsigned int latency)
{
_ipv6p.latency = latency;
_dirty = true;
}
/**
* @return True if this peer has at least one direct IP address path
*/
inline bool hasDirectPath() const
throw()
{
return ((_ipv4p.addr)||(_ipv6p.addr));
}
/**
* @param now Current time
* @return True if hasDirectPath() is true and at least one path is active
*/
inline bool hasActiveDirectPath(uint64_t now) const
throw()
{
return ((_ipv4p.isActive(now))||(_ipv6p.isActive(now)));
}
/**
* @return IPv4 direct address or null InetAddress if none
*/
inline InetAddress ipv4Path() const
throw()
{
return _ipv4p.addr;
}
/**
* @return IPv6 direct address or null InetAddress if none
*/
inline InetAddress ipv6Path() const
throw()
{
return _ipv4p.addr;
}
/**
* @return IPv4 direct address or null InetAddress if none
*/
inline InetAddress ipv4ActivePath(uint64_t now) const
throw()
{
if (_ipv4p.isActive(now))
return _ipv4p.addr;
return InetAddress();
}
/**
* @return IPv6 direct address or null InetAddress if none
*/
inline InetAddress ipv6ActivePath(uint64_t now) const
throw()
{
if (_ipv6p.isActive(now))
return _ipv6p.addr;
return InetAddress();
}
/**
* @return 256-bit encryption key
*/
inline const unsigned char *cryptKey() const
throw()
{
return _keys; // crypt key is first 32-byte key
}
/**
* @return 256-bit MAC (message authentication code) key
*/
inline const unsigned char *macKey() const
throw()
{
return (_keys + 32); // mac key is second 32-byte key
}
/**
* Get and reset dirty flag
*
* @return Previous value of dirty flag before reset
*/
inline bool getAndResetDirty()
throw()
{
bool d = _dirty;
_dirty = false;
return d;
}
/**
* @return Current value of dirty flag
*/
inline bool dirty() const throw() { return _dirty; }
template<unsigned int C>
inline void serialize(Buffer<C> &b)
throw(std::out_of_range)
{
b.append((unsigned char)1); // version
b.append(_keys,sizeof(_keys));
_id.serialize(b,false);
_ipv4p.serialize(b);
_ipv6p.serialize(b);
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
throw(std::out_of_range,std::invalid_argument)
{
unsigned int p = startAt;
if (b[p++] != 1)
throw std::invalid_argument("Peer: deserialize(): version mismatch");
memcpy(_keys,b.field(p,sizeof(_keys)),sizeof(_keys)); p += sizeof(_keys);
p += _id.deserialize(b,p);
p += _ipv4p.deserialize(b,p);
p += _ipv6p.deserialize(b,p);
_dirty = false;
return (p - startAt);
}
/**
* @return True if this Peer is initialized with something
*/
inline operator bool() const throw() { return (_id); }
/**
* Find a common set of addresses by which two peers can link, if any
*
* @param a Peer A
* @param b Peer B
* @param now Current time
* @return Pair: B's address to send to A, A's address to send to B
*/
static inline std::pair<InetAddress,InetAddress> findCommonGround(const Peer &a,const Peer &b,uint64_t now)
throw()
{
if ((a._ipv6p.isActive(now))&&(b._ipv6p.isActive(now)))
return std::pair<InetAddress,InetAddress>(b._ipv6p.addr,a._ipv6p.addr);
else if ((a._ipv4p.isActive(now))&&(b._ipv4p.isActive(now)))
return std::pair<InetAddress,InetAddress>(b._ipv4p.addr,a._ipv4p.addr);
else if ((a._ipv6p.addr)&&(b._ipv6p.addr))
return std::pair<InetAddress,InetAddress>(b._ipv6p.addr,a._ipv6p.addr);
else if ((a._ipv4p.addr)&&(b._ipv4p.addr))
return std::pair<InetAddress,InetAddress>(b._ipv4p.addr,a._ipv4p.addr);
return std::pair<InetAddress,InetAddress>();
}
private:
class WanPath
{
public:
WanPath() :
lastSend(0),
lastReceive(0),
lastUnicastFrame(0),
lastFirewallOpener(0),
localPort(Demarc::ANY_PORT),
latency(0),
addr(),
fixed(false)
{
}
inline bool isActive(const uint64_t now) const
throw()
{
return ((addr)&&((now - lastReceive) < ZT_PEER_LINK_ACTIVITY_TIMEOUT));
}
template<unsigned int C>
inline void serialize(Buffer<C> &b)
throw(std::out_of_range)
{
b.append(lastSend);
b.append(lastReceive);
b.append(lastUnicastFrame);
b.append(lastFirewallOpener);
b.append(Demarc::portToInt(localPort));
b.append((uint16_t)latency);
b.append((unsigned char)addr.type());
switch(addr.type()) {
case InetAddress::TYPE_NULL:
break;
case InetAddress::TYPE_IPV4:
b.append(addr.rawIpData(),4);
b.append((uint16_t)addr.port());
break;
case InetAddress::TYPE_IPV6:
b.append(addr.rawIpData(),16);
b.append((uint16_t)addr.port());
break;
}
b.append(fixed ? (unsigned char)1 : (unsigned char)0);
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
throw(std::out_of_range,std::invalid_argument)
{
unsigned int p = startAt;
lastSend = b.template at<uint64_t>(p); p += sizeof(uint64_t);
lastReceive = b.template at<uint64_t>(p); p += sizeof(uint64_t);
lastUnicastFrame = b.template at<uint64_t>(p); p += sizeof(uint64_t);
lastFirewallOpener = b.template at<uint64_t>(p); p += sizeof(uint64_t);
localPort = Demarc::intToPort(b.template at<uint64_t>(p)); p += sizeof(uint64_t);
latency = b.template at<uint16_t>(p); p += sizeof(uint16_t);
switch ((InetAddress::AddressType)b[p++]) {
case InetAddress::TYPE_NULL:
addr.zero();
break;
case InetAddress::TYPE_IPV4:
addr.set(b.field(p,4),4,b.template at<uint16_t>(p + 4));
p += 4 + sizeof(uint16_t);
break;
case InetAddress::TYPE_IPV6:
addr.set(b.field(p,16),16,b.template at<uint16_t>(p + 16));
p += 16 + sizeof(uint16_t);
break;
}
fixed = (b[p++] != 0);
return (p - startAt);
}
uint64_t lastSend;
uint64_t lastReceive;
uint64_t lastUnicastFrame;
uint64_t lastFirewallOpener;
Demarc::Port localPort; // ANY_PORT if not defined
unsigned int latency; // 0 if never determined
InetAddress addr; // null InetAddress if path is undefined
bool fixed; // do not learn address from received packets
};
unsigned char _keys[32 * 2]; // crypt key[32], mac key[32]
Identity _id;
WanPath _ipv4p;
WanPath _ipv6p;
// Fields below this line are not persisted with serialize()
bool _dirty;
AtomicCounter __refCount;
};
} // namespace ZeroTier
#endif