ZeroTierOne/node/Dictionary.hpp

463 lines
10 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
2016-01-12 22:04:55 +00:00
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ZT_DICTIONARY_HPP
#define ZT_DICTIONARY_HPP
2016-04-26 15:53:49 +00:00
#include "Constants.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "Address.hpp"
2016-04-26 15:53:49 +00:00
#include <stdint.h>
namespace ZeroTier {
/**
* A small (in code and data) packed key=value store
*
* This stores data in the form of a compact blob that is sort of human
* readable (depending on whether you put binary data in it) and is backward
* compatible with older versions. Binary data is escaped such that the
* serialized form of a Dictionary is always a valid null-terminated C string.
*
* Keys are restricted: no binary data, no CR/LF, and no equals (=). If a key
* contains these characters it may not be retrievable. This is not checked.
*
* Lookup is via linear search and will be slow with a lot of keys. It's
* designed for small things.
*
* There is code to test and fuzz this in selftest.cpp. Fuzzing a blob of
* pointer tricks like this is important after any modifications.
*
* This is used for network configurations and for saving some things on disk
* in the ZeroTier One service code.
*
* @tparam C Dictionary max capacity in bytes
*/
template<unsigned int C>
class Dictionary
{
public:
Dictionary()
{
_d[0] = (char)0;
}
Dictionary(const char *s)
{
Utils::scopy(_d,sizeof(_d),s);
}
Dictionary(const char *s,unsigned int len)
{
2016-06-30 01:12:35 +00:00
if (len > (C-1))
len = C-1;
2016-06-29 18:11:16 +00:00
memcpy(_d,s,len);
2016-06-30 01:12:35 +00:00
_d[len] = (char)0;
}
Dictionary(const Dictionary &d)
{
Utils::scopy(_d,sizeof(_d),d._d);
}
inline Dictionary &operator=(const Dictionary &d)
{
Utils::scopy(_d,sizeof(_d),d._d);
return *this;
}
/**
* Load a dictionary from a C-string
*
* @param s Dictionary in string form
* @return False if 's' was longer than our capacity
*/
inline bool load(const char *s)
{
return Utils::scopy(_d,sizeof(_d),s);
}
/**
* Delete all entries
*/
inline void clear()
{
_d[0] = (char)0;
}
/**
* @return Size of dictionary in bytes not including terminating NULL
*/
inline unsigned int sizeBytes() const
{
for(unsigned int i=0;i<C;++i) {
if (!_d[i])
return i;
}
return C-1;
}
/**
* Get an entry
*
* Note that to get binary values, dest[] should be at least one more than
* the maximum size of the value being retrieved. That's because even if
* the data is binary a terminating 0 is still appended to dest[] after it.
*
* If the key is not found, dest[0] is set to 0 to make dest[] an empty
* C string in that case. The dest[] array will *never* be unterminated
* after this call.
*
* Security note: if 'key' is ever directly based on anything that is not
* a hard-code or internally-generated name, it must be checked to ensure
* that the buffer is NULL-terminated since key[] does not take a secondary
* size parameter. In NetworkConfig all keys are hard-coded strings so this
* isn't a problem in the core.
*
* @param key Key to look up
* @param dest Destination buffer
* @param destlen Size of destination buffer
* @return -1 if not found, or actual number of bytes stored in dest[] minus trailing 0
*/
inline int get(const char *key,char *dest,unsigned int destlen) const
{
const char *p = _d;
const char *const eof = p + C;
const char *k;
bool esc;
int j;
if (!destlen) // sanity check
return -1;
while (*p) {
k = key;
while ((*k)&&(*p)) {
if (*p != *k)
break;
++k;
if (++p == eof) {
dest[0] = (char)0;
return -1;
}
}
if ((!*k)&&(*p == '=')) {
j = 0;
esc = false;
++p;
2016-06-29 18:11:16 +00:00
while ((*p != 0)&&(*p != '\r')&&(*p != '\n')) {
if (esc) {
esc = false;
switch(*p) {
case 'r': dest[j++] = '\r'; break;
case 'n': dest[j++] = '\n'; break;
case '0': dest[j++] = (char)0; break;
case 'e': dest[j++] = '='; break;
default: dest[j++] = *p; break;
}
if (j == (int)destlen) {
dest[j-1] = (char)0;
return j-1;
}
} else if (*p == '\\') {
esc = true;
} else {
dest[j++] = *p;
if (j == (int)destlen) {
dest[j-1] = (char)0;
return j-1;
}
}
if (++p == eof) {
dest[0] = (char)0;
return -1;
}
}
dest[j] = (char)0;
return j;
} else {
while ((*p)&&(*p != '\r')&&(*p != '\n')) {
if (++p == eof) {
dest[0] = (char)0;
return -1;
}
}
if (*p) {
if (++p == eof) {
dest[0] = (char)0;
return -1;
}
}
else break;
}
}
dest[0] = (char)0;
return -1;
}
/**
* Get the contents of a key into a buffer
*
* @param key Key to get
* @param dest Destination buffer
* @return True if key was found (if false, dest will be empty)
* @tparam BC Buffer capacity (usually inferred)
*/
template<unsigned int BC>
inline bool get(const char *key,Buffer<BC> &dest) const
{
const int r = this->get(key,const_cast<char *>(reinterpret_cast<const char *>(dest.data())),BC);
if (r >= 0) {
dest.setSize((unsigned int)r);
return true;
} else {
dest.clear();
return false;
}
}
/**
* Get a boolean value
*
* @param key Key to look up
* @param dfl Default value if not found in dictionary
* @return Boolean value of key or 'dfl' if not found
*/
bool getB(const char *key,bool dfl = false) const
{
char tmp[4];
if (this->get(key,tmp,sizeof(tmp)) >= 0)
return ((*tmp == '1')||(*tmp == 't')||(*tmp == 'T'));
return dfl;
}
/**
* Get an unsigned int64 stored as hex in the dictionary
*
* @param key Key to look up
* @param dfl Default value or 0 if unspecified
* @return Decoded hex UInt value or 'dfl' if not found
*/
inline uint64_t getUI(const char *key,uint64_t dfl = 0) const
{
char tmp[128];
if (this->get(key,tmp,sizeof(tmp)) >= 1)
return Utils::hexStrToU64(tmp);
return dfl;
}
/**
* Add a new key=value pair
*
* If the key is already present this will append another, but the first
* will always be returned by get(). This is not checked. If you want to
* ensure a key is not present use erase() first.
*
* Use the vlen parameter to add binary values. Nulls will be escaped.
*
* @param key Key -- nulls, CR/LF, and equals (=) are illegal characters
* @param value Value to set
* @param vlen Length of value in bytes or -1 to treat value[] as a C-string and look for terminating 0
* @return True if there was enough room to add this key=value pair
*/
inline bool add(const char *key,const char *value,int vlen = -1)
{
for(unsigned int i=0;i<C;++i) {
if (!_d[i]) {
unsigned int j = i;
2016-06-16 21:45:36 +00:00
if (j > 0) {
_d[j++] = '\n';
if (j == C) {
2016-06-16 21:45:36 +00:00
_d[i] = (char)0;
return false;
}
}
const char *p = key;
while (*p) {
_d[j++] = *(p++);
if (j == C) {
_d[i] = (char)0;
return false;
}
}
2016-06-16 21:45:36 +00:00
_d[j++] = '=';
if (j == C) {
2016-06-16 21:45:36 +00:00
_d[i] = (char)0;
return false;
}
p = value;
int k = 0;
2016-06-29 18:11:16 +00:00
while ( ((vlen < 0)&&(*p)) || (k < vlen) ) {
switch(*p) {
case 0:
case '\r':
case '\n':
case '\\':
case '=':
_d[j++] = '\\';
if (j == C) {
_d[i] = (char)0;
return false;
}
switch(*p) {
case 0: _d[j++] = '0'; break;
case '\r': _d[j++] = 'r'; break;
case '\n': _d[j++] = 'n'; break;
case '\\': _d[j++] = '\\'; break;
case '=': _d[j++] = 'e'; break;
}
if (j == C) {
_d[i] = (char)0;
return false;
}
break;
default:
_d[j++] = *p;
if (j == C) {
_d[i] = (char)0;
return false;
}
break;
}
++p;
++k;
}
2016-06-16 21:45:36 +00:00
_d[j] = (char)0;
return true;
}
}
return false;
}
/**
* Add a boolean as a '1' or a '0'
*/
inline bool add(const char *key,bool value)
{
return this->add(key,(value) ? "1" : "0",1);
}
/**
* Add a 64-bit integer (unsigned) as a hex value
*/
inline bool add(const char *key,uint64_t value)
{
char tmp[32];
Utils::snprintf(tmp,sizeof(tmp),"%llx",(unsigned long long)value);
return this->add(key,tmp,-1);
}
/**
* Add a 64-bit integer (unsigned) as a hex value
*/
inline bool add(const char *key,const Address &a)
{
char tmp[32];
Utils::snprintf(tmp,sizeof(tmp),"%.10llx",(unsigned long long)a.toInt());
return this->add(key,tmp,-1);
}
/**
* Add a binary buffer's contents as a value
*
* @tparam BC Buffer capacity (usually inferred)
*/
template<unsigned int BC>
inline bool add(const char *key,const Buffer<BC> &value)
{
return this->add(key,(const char *)value.data(),(int)value.size());
}
/**
* @param key Key to check
* @return True if key is present
*/
inline bool contains(const char *key) const
{
char tmp[2];
return (this->get(key,tmp,2) >= 0);
}
/**
* Erase a key from this dictionary
*
* Use this before add() to ensure that a key is replaced if it might
* already be present.
*
* @param key Key to erase
* @return True if key was found and erased
*/
inline bool erase(const char *key)
{
char d2[C];
char *saveptr = (char *)0;
unsigned int d2ptr = 0;
bool found = false;
for(char *f=Utils::stok(_d,"\r\n",&saveptr);(f);f=Utils::stok((char *)0,"\r\n",&saveptr)) {
if (*f) {
const char *p = f;
const char *k = key;
while ((*k)&&(*p)) {
if (*k != *p)
break;
++k;
++p;
}
if (*k) {
p = f;
while (*p)
d2[d2ptr++] = *(p++);
d2[d2ptr++] = '\n';
} else {
found = true;
}
}
}
d2[d2ptr++] = (char)0;
memcpy(_d,d2,d2ptr);
return found;
}
/**
* @return Dictionary data as a 0-terminated C-string
*/
inline const char *data() const { return _d; }
/**
* @return Value of C template parameter
*/
inline unsigned int capacity() const { return C; }
private:
char _d[C];
};
} // namespace ZeroTier
#endif