ZeroTierOne/root/root.cpp

414 lines
13 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2019 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* You can be released from the requirements of the license by purchasing
* a commercial license. Buying such a license is mandatory as soon as you
* develop commercial closed-source software that incorporates or links
* directly against ZeroTier software without disclosing the source code
* of your own application.
*/
2019-08-28 18:49:45 +00:00
#include "../node/Constants.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/un.h>
#include <sys/ioctl.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
2019-08-28 18:49:45 +00:00
#include "../node/Packet.hpp"
#include "../node/Utils.hpp"
#include "../node/Address.hpp"
#include "../node/Identity.hpp"
#include "../node/InetAddress.hpp"
#include "../node/Mutex.hpp"
2019-08-28 20:04:58 +00:00
#include "../node/SharedPtr.hpp"
2019-08-28 20:38:52 +00:00
#include "../node/MulticastGroup.hpp"
2019-08-28 18:49:45 +00:00
#include "../osdep/OSUtils.hpp"
#include <string>
#include <thread>
#include <map>
2019-08-28 20:04:58 +00:00
#include <set>
#include <vector>
#include <iostream>
2019-08-28 18:49:45 +00:00
#include <unordered_map>
#include <vector>
2019-08-28 18:59:13 +00:00
#include <atomic>
2019-08-28 20:04:58 +00:00
#include <mutex>
2019-08-28 18:49:45 +00:00
using namespace ZeroTier;
2019-08-28 20:38:52 +00:00
struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity &id) const { return (std::size_t)id.hashCode(); } };
struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address &a) const { return (std::size_t)a.toInt(); } };
struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress &ip) const { return (std::size_t)ip.hashCode(); } };
struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup &mg) const { return (std::size_t)mg.hashCode(); } };
2019-08-28 18:49:45 +00:00
struct PeerInfo
{
2019-08-28 20:04:58 +00:00
Identity id;
uint8_t key[32];
InetAddress ip4,ip6;
2019-08-28 18:49:45 +00:00
int64_t lastReceive;
2019-08-28 20:38:52 +00:00
std::unordered_map< uint64_t,std::unordered_map< MulticastGroup,int64_t,MulticastGroupHasher > > multicastGroups;
Mutex multicastGroups_l;
2019-08-28 20:04:58 +00:00
AtomicCounter __refCount;
ZT_ALWAYS_INLINE ~PeerInfo() { Utils::burn(key,sizeof(key)); }
2019-08-28 18:49:45 +00:00
};
2019-08-28 20:04:58 +00:00
static Identity self;
2019-08-28 18:59:13 +00:00
static std::atomic_bool run;
2019-08-28 20:04:58 +00:00
static std::unordered_map< Identity,SharedPtr<PeerInfo>,IdentityHasher > peersByIdentity;
static std::unordered_map< Address,std::set< SharedPtr<PeerInfo> >,AddressHasher > peersByVirtAddr;
static std::unordered_map< InetAddress,std::set< SharedPtr<PeerInfo> >,InetAddressHasher > peersByPhysAddr;
static std::mutex peersByIdentity_l;
static std::mutex peersByVirtAddr_l;
static std::mutex peersByPhysAddr_l;
2019-08-28 18:49:45 +00:00
2019-08-28 20:38:52 +00:00
static void handlePacket(const int sock,const InetAddress *const ip,const Packet *const inpkt)
2019-08-28 18:49:45 +00:00
{
2019-08-28 20:04:58 +00:00
Packet pkt(*inpkt);
2019-08-28 20:38:52 +00:00
char ipstr[128],ipstr2[128],astr[32],tmpstr[256];
2019-08-28 20:04:58 +00:00
const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR;
// See if this is destined for us and isn't a fragment / fragmented. (No packets
// understood by the root are fragments/fragmented.)
if ((!fragment)&&(!pkt.fragmented())&&(pkt.destination() == self.address())) {
SharedPtr<PeerInfo> peer;
// If this is an un-encrypted HELLO, either learn a new peer or verify
// that this is a peer we already know.
if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)&&(pkt.verb() == Packet::VERB_HELLO)) {
Identity id;
if (id.deserialize(pkt,ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) {
{
std::lock_guard<std::mutex> pbi_l(peersByIdentity_l);
auto pById = peersByIdentity.find(id);
if (pById != peersByIdentity.end()) {
peer = pById->second;
2019-08-28 20:40:49 +00:00
//printf("%s has %s (known (1))" ZT_EOL_S,ip->toString(ipstr),pkt.source().toString(astr));
2019-08-28 20:04:58 +00:00
}
}
if (peer) {
if (!pkt.dearmor(peer->key)) {
printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
} else {
peer.set(new PeerInfo);
2019-08-28 20:10:36 +00:00
if (self.agree(id,peer->key)) {
2019-08-28 20:04:58 +00:00
if (pkt.dearmor(peer->key)) {
2019-08-28 20:44:15 +00:00
if (true) {
2019-08-28 20:04:58 +00:00
peer->id = id;
{
std::lock_guard<std::mutex> pbi_l(peersByIdentity_l);
peersByIdentity.emplace(id,peer);
}
2019-08-28 20:38:52 +00:00
{
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
peersByVirtAddr[id.address()].emplace(peer);
}
2019-08-28 20:40:49 +00:00
//printf("%s has %s (new)" ZT_EOL_S,ip->toString(ipstr),pkt.source().toString(astr));
2019-08-28 20:04:58 +00:00
} else {
printf("%s HELLO rejected: invalid identity (locallyValidate() failed)" ZT_EOL_S,ip->toString(ipstr));
return;
}
} else {
printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
} else {
printf("%s HELLO rejected: key agreement failed" ZT_EOL_S,ip->toString(ipstr));
return;
}
}
}
}
// If it wasn't a HELLO, check to see if any known identities for the sender's
// short ZT address successfully decrypt the packet.
if (!peer) {
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
auto peers = peersByVirtAddr.find(pkt.source());
if (peers != peersByVirtAddr.end()) {
for(auto p=peers->second.begin();p!=peers->second.end();++p) {
if (pkt.dearmor((*p)->key)) {
peer = (*p);
2019-08-28 20:40:49 +00:00
//printf("%s has %s (known (2))" ZT_EOL_S,ip->toString(ipstr),pkt.source().toString(astr));
2019-08-28 20:04:58 +00:00
break;
} else {
pkt = *inpkt; // dearmor() destroys contents of pkt
}
}
}
}
// If we found the peer, update IP and/or time.
if (peer) {
InetAddress *const peerIp = (ip->ss_family == AF_INET) ? &(peer->ip4) : &(peer->ip6);
if (*peerIp != ip) {
std::lock_guard<std::mutex> pbp_l(peersByPhysAddr_l);
if (*peerIp) {
auto prev = peersByPhysAddr.find(*peerIp);
if (prev != peersByPhysAddr.end()) {
prev->second.erase(peer);
if (prev->second.empty())
peersByPhysAddr.erase(prev);
}
}
*peerIp = ip;
peersByPhysAddr[ip].emplace(peer);
}
2019-08-28 20:38:52 +00:00
const int64_t now = OSUtils::now();
peer->lastReceive = now;
switch(pkt.verb()) {
case Packet::VERB_HELLO: {
const uint64_t origId = pkt.packetId();
const uint64_t ts = pkt.template at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
pkt.reset(pkt.source(),self.address(),Packet::VERB_OK);
pkt.append((uint8_t)Packet::VERB_HELLO);
pkt.append(origId);
pkt.append(ts);
pkt.append((uint8_t)ZT_PROTO_VERSION);
pkt.append((uint16_t)1);
pkt.append((uint16_t)9);
pkt.append((uint16_t)0);
ip->serialize(pkt);
pkt.armor(peer->key,true);
//sendto(sock,pkt.data(),pkt.size(),0,(const struct sockaddr *)ip,(socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
} break;
case Packet::VERB_MULTICAST_LIKE: {
Mutex::Lock l(peer->multicastGroups_l);
for(unsigned int ptr=ZT_PACKET_IDX_PAYLOAD;ptr<pkt.size();ptr+=18) {
const uint64_t nwid = pkt.template at<uint64_t>(ptr);
const MulticastGroup mg(MAC(pkt.field(ptr + 8,6),6),pkt.template at<uint32_t>(ptr + 14));
peer->multicastGroups[nwid][mg] = now;
printf("%s subscribes to %s/%.8lx on network %.16llx",ip->toString(ipstr),mg.mac().toString(tmpstr),(unsigned long)mg.adi(),(unsigned long long)nwid);
}
} break;
case Packet::VERB_MULTICAST_GATHER: {
} break;
default:
break;
}
2019-08-28 20:04:58 +00:00
return;
}
}
std::vector<InetAddress> toAddrs;
{
std::lock_guard<std::mutex> pbv_l(peersByVirtAddr_l);
auto peers = peersByVirtAddr.find(inpkt->destination());
if (peers != peersByVirtAddr.end()) {
for(auto p=peers->second.begin();p!=peers->second.end();++p) {
if ((*p)->ip6)
toAddrs.push_back((*p)->ip6);
else if ((*p)->ip4)
toAddrs.push_back((*p)->ip4);
}
}
}
if (toAddrs.empty()) {
printf("%s not forwarding to %s: no destinations found" ZT_EOL_S,ip->toString(ipstr),pkt.destination().toString(astr));
return;
}
if (fragment) {
if (reinterpret_cast<Packet::Fragment *>(&pkt)->incrementHops() >= ZT_PROTO_MAX_HOPS) {
printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),pkt.destination().toString(astr));
return;
}
} else {
if (pkt.incrementHops() >= ZT_PROTO_MAX_HOPS) {
printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),pkt.destination().toString(astr));
return;
}
}
for(auto i=toAddrs.begin();i!=toAddrs.end();++i) {
printf("%s -> %s for %s" ZT_EOL_S,ip->toString(ipstr),i->toString(ipstr2),pkt.destination().toString(astr));
2019-08-28 20:38:52 +00:00
//sendto(sock,pkt.data(),pkt.size(),0,(const struct sockaddr *)&(*i),(socklen_t)((i->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6)));
2019-08-28 20:04:58 +00:00
}
2019-08-28 18:49:45 +00:00
}
static int bindSocket(struct sockaddr *bindAddr)
{
int s = socket(bindAddr->sa_family,SOCK_DGRAM,0);
if (s < 0) {
close(s);
return -1;
}
int f = 131072;
setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char *)&f,sizeof(f));
f = 131072;
setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char *)&f,sizeof(f));
if (bindAddr->sa_family == AF_INET6) {
f = 1; setsockopt(s,IPPROTO_IPV6,IPV6_V6ONLY,(void *)&f,sizeof(f));
#ifdef IPV6_MTU_DISCOVER
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef IPV6_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IPV6,IPV6_DONTFRAG,&f,sizeof(f));
#endif
}
f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEADDR,(void *)&f,sizeof(f));
f = 1; setsockopt(s,SOL_SOCKET,SO_REUSEPORT,(void *)&f,sizeof(f));
f = 1; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(void *)&f,sizeof(f));
#ifdef IP_DONTFRAG
f = 0; setsockopt(s,IPPROTO_IP,IP_DONTFRAG,&f,sizeof(f));
#endif
#ifdef IP_MTU_DISCOVER
f = IP_PMTUDISC_DONT; setsockopt(s,IPPROTO_IP,IP_MTU_DISCOVER,&f,sizeof(f));
#endif
#ifdef SO_NO_CHECK
if (bindAddr->sa_family == AF_INET) {
f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f));
}
#endif
if (bind(s,bindAddr,(bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) {
close(s);
return -1;
}
return s;
}
int main(int argc,char **argv)
{
2019-08-28 20:10:36 +00:00
if (argc < 2) {
2019-08-28 20:09:14 +00:00
printf("Usage: zerotier-root <identity.secret> [<port>]" ZT_EOL_S);
return 1;
}
std::string myIdStr;
if (!OSUtils::readFile(argv[1],myIdStr)) {
printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S,argv[1]);
return 1;
}
if (!self.fromString(myIdStr.c_str())) {
printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S,argv[1]);
return 1;
}
if (!self.hasPrivate()) {
printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S,argv[1]);
return 1;
}
unsigned int ncores = std::thread::hardware_concurrency();
if (ncores == 0) ncores = 1;
2019-08-28 18:59:13 +00:00
run = true;
std::vector<int> sockets;
std::vector<std::thread> threads;
for(unsigned int tn=0;tn<ncores;++tn) {
struct sockaddr_in6 in6;
memset(&in6,0,sizeof(in6));
in6.sin6_family = AF_INET6;
in6.sin6_port = htons(ZT_DEFAULT_PORT);
const int s6 = bindSocket((struct sockaddr *)&in6);
if (s6 < 0) {
std::cout << "ERROR: unable to bind to port " << ZT_DEFAULT_PORT << ZT_EOL_S;
exit(1);
}
struct sockaddr_in in4;
memset(&in4,0,sizeof(in4));
in4.sin_family = AF_INET;
in4.sin_port = htons(ZT_DEFAULT_PORT);
const int s4 = bindSocket((struct sockaddr *)&in4);
if (s4 < 0) {
std::cout << "ERROR: unable to bind to port " << ZT_DEFAULT_PORT << ZT_EOL_S;
exit(1);
}
sockets.push_back(s6);
sockets.push_back(s4);
threads.push_back(std::thread([s6]() {
struct sockaddr_in6 in6;
2019-08-28 18:49:45 +00:00
Packet pkt;
memset(&in6,0,sizeof(in6));
for(;;) {
socklen_t sl = sizeof(in6);
2019-08-28 18:49:45 +00:00
const int pl = (int)recvfrom(s6,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in6,&sl);
if (pl > 0) {
2019-08-28 18:49:45 +00:00
try {
pkt.setSize((unsigned int)pl);
2019-08-28 20:38:52 +00:00
handlePacket(s6,reinterpret_cast<const InetAddress *>(&in6),&pkt);
2019-08-28 18:49:45 +00:00
} catch ( ... ) {
}
} else {
break;
}
}
}));
threads.push_back(std::thread([s4]() {
struct sockaddr_in in4;
2019-08-28 18:49:45 +00:00
Packet pkt;
memset(&in4,0,sizeof(in4));
for(;;) {
socklen_t sl = sizeof(in4);
2019-08-28 18:49:45 +00:00
const int pl = (int)recvfrom(s4,pkt.unsafeData(),pkt.capacity(),0,(struct sockaddr *)&in4,&sl);
if (pl > 0) {
2019-08-28 18:49:45 +00:00
try {
pkt.setSize((unsigned int)pl);
2019-08-28 20:38:52 +00:00
handlePacket(s4,reinterpret_cast<const InetAddress *>(&in4),&pkt);
2019-08-28 18:49:45 +00:00
} catch ( ... ) {
}
} else {
break;
}
}
}));
}
2019-08-28 18:59:13 +00:00
while (run) {
sleep(1);
}
return 0;
}