ZeroTierOne/node/Cluster.hpp

371 lines
11 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifndef ZT_CLUSTER_HPP
#define ZT_CLUSTER_HPP
#ifdef ZT_ENABLE_CLUSTER
#include <vector>
#include <algorithm>
#include "Constants.hpp"
#include "../include/ZeroTierOne.h"
#include "Address.hpp"
#include "InetAddress.hpp"
#include "SHA512.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "Mutex.hpp"
#include "SharedPtr.hpp"
2015-10-20 23:24:21 +00:00
#include "Hashtable.hpp"
/**
* Timeout for cluster members being considered "alive"
*
* A cluster member is considered dead and will no longer have peers
* redirected to it if we have not heard a heartbeat in this long.
*/
#define ZT_CLUSTER_TIMEOUT 10000
2015-10-20 23:24:21 +00:00
/**
* How often should we announce that we have a peer?
*/
#define ZT_CLUSTER_HAVE_PEER_ANNOUNCE_PERIOD (ZT_PEER_DIRECT_PING_DELAY / 2)
2015-10-20 23:24:21 +00:00
/**
* Desired period between doPeriodicTasks() in milliseconds
2015-10-16 19:10:57 +00:00
*/
#define ZT_CLUSTER_PERIODIC_TASK_PERIOD 250
2015-10-16 19:10:57 +00:00
/**
* How often to flush outgoing message queues (maximum interval)
*/
#define ZT_CLUSTER_FLUSH_PERIOD 500
namespace ZeroTier {
class RuntimeEnvironment;
class CertificateOfMembership;
class MulticastGroup;
class Peer;
class Identity;
/**
* Multi-homing cluster state replication and packet relaying
*
* Multi-homing means more than one node sharing the same ZeroTier identity.
* There is nothing in the protocol to prevent this, but to make it work well
* requires the devices sharing an identity to cooperate and share some
* information.
*
* There are three use cases we want to fulfill:
*
* (1) Multi-homing of root servers with handoff for efficient routing,
* HA, and load balancing across many commodity nodes.
* (2) Multi-homing of network controllers for the same reason.
* (3) Multi-homing of nodes on virtual networks, such as domain servers
* and other important endpoints.
*
* These use cases are in order of escalating difficulty. The initial
* version of Cluster is aimed at satisfying the first, though you are
* free to try #2 and #3.
*/
class Cluster
{
public:
/**
* State message types
*/
enum StateMessageType
{
STATE_MESSAGE_NOP = 0,
/**
* This cluster member is alive:
* <[2] version minor>
* <[2] version major>
* <[2] version revision>
* <[1] protocol version>
* <[4] X location (signed 32-bit)>
* <[4] Y location (signed 32-bit)>
* <[4] Z location (signed 32-bit)>
* <[8] local clock at this member>
* <[8] load average>
* <[8] flags (currently unused, must be zero)>
* <[1] number of preferred ZeroTier endpoints>
* <[...] InetAddress(es) of preferred ZeroTier endpoint(s)>
*/
STATE_MESSAGE_ALIVE = 1,
/**
* Cluster member has this peer:
* <[...] binary serialized peer identity>
* <[...] binary serialized peer remote physical address>
*
* Clusters send this message when they learn a path to a peer. The
* replicated physical address is the one learned.
*/
STATE_MESSAGE_HAVE_PEER = 2,
/**
* Peer subscription to multicast group:
* <[8] network ID>
* <[5] peer ZeroTier address>
* <[6] MAC address of multicast group>
* <[4] 32-bit multicast group ADI>
*/
STATE_MESSAGE_MULTICAST_LIKE = 3,
/**
* Certificate of network membership for a peer:
* <[...] serialized COM>
*/
STATE_MESSAGE_COM = 4,
/**
* Request that VERB_RENDEZVOUS be sent to a peer that we have:
* <[5] ZeroTier address of peer on recipient's side>
* <[5] ZeroTier address of peer on sender's side>
* <[1] 8-bit number of sender's peer's active path addresses>
* <[...] series of serialized InetAddresses of sender's peer's paths>
*
* This requests that we perform NAT-t introduction between a peer that
* we have and one on the sender's side. The sender furnishes contact
* info for its peer, and we send VERB_RENDEZVOUS to both sides: to ours
* directly and with PROXY_SEND to theirs.
*/
STATE_MESSAGE_PROXY_UNITE = 5,
/**
* Request that a cluster member send a packet to a locally-known peer:
* <[5] ZeroTier address of recipient>
* <[1] packet verb>
* <[2] length of packet payload>
* <[...] packet payload>
*
* This differs from RELAY in that it requests the receiving cluster
* member to actually compose a ZeroTier Packet from itself to the
* provided recipient. RELAY simply says "please forward this blob."
* RELAY is used to implement peer-to-peer relaying with RENDEZVOUS,
* while PROXY_SEND is used to implement proxy sending (which right
* now is only used to send RENDEZVOUS).
*/
STATE_MESSAGE_PROXY_SEND = 6,
/**
* Replicate a network config for a network we belong to:
* <[8] 64-bit network ID>
* <[2] 16-bit length of network config>
* <[...] serialized network config>
*
* This is used by clusters to avoid every member having to query
* for the same netconf for networks all members belong to.
*
* TODO: not implemented yet!
*/
STATE_MESSAGE_NETWORK_CONFIG = 7
};
/**
* Construct a new cluster
*/
Cluster(
const RuntimeEnvironment *renv,
uint16_t id,
const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
int32_t x,
int32_t y,
int32_t z,
void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
void *sendFunctionArg,
int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
void *addressToLocationFunctionArg);
~Cluster();
/**
* @return This cluster member's ID
*/
inline uint16_t id() const throw() { return _id; }
/**
* Handle an incoming intra-cluster message
*
* @param data Message data
* @param len Message length (max: ZT_CLUSTER_MAX_MESSAGE_LENGTH)
*/
void handleIncomingStateMessage(const void *msg,unsigned int len);
2015-10-21 00:22:53 +00:00
/**
* Send this packet via another node in this cluster if another node has this peer
*
* @param fromPeerAddress Source peer address (if known, should be NULL for fragments)
* @param toPeerAddress Destination peer address
* @param data Packet or packet fragment data
* @param len Length of packet or fragment
* @param unite If true, also request proxy unite across cluster
2015-10-21 00:22:53 +00:00
* @return True if this data was sent via another cluster member, false if none have this peer
*/
bool sendViaCluster(const Address &fromPeerAddress,const Address &toPeerAddress,const void *data,unsigned int len,bool unite);
2015-10-21 00:22:53 +00:00
/**
* Advertise to the cluster that we have this peer
*
* @param peerId Identity of peer that we have
* @param physicalAddress Physical address of peer (from our POV)
*/
void replicateHavePeer(const Identity &peerId,const InetAddress &physicalAddress);
/**
* Advertise a multicast LIKE to the cluster
*
* @param nwid Network ID
* @param peerAddress Peer address that sent LIKE
* @param group Multicast group
*/
void replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group);
/**
* Advertise a network COM to the cluster
*
* @param com Certificate of network membership (contains peer and network ID)
*/
void replicateCertificateOfNetworkMembership(const CertificateOfMembership &com);
/**
* Call every ~ZT_CLUSTER_PERIODIC_TASK_PERIOD milliseconds.
*/
void doPeriodicTasks();
/**
* Add a member ID to this cluster
*
* @param memberId Member ID
*/
void addMember(uint16_t memberId);
/**
* Remove a member ID from this cluster
*
* @param memberId Member ID to remove
*/
void removeMember(uint16_t memberId);
/**
* Find a better cluster endpoint for this peer (if any)
*
* @param redirectTo InetAddress to be set to a better endpoint (if there is one)
* @param peerAddress Address of peer to (possibly) redirect
* @param peerPhysicalAddress Physical address of peer's current best path (where packet was most recently received or getBestPath()->address())
* @param offload Always redirect if possible -- can be used to offload peers during shutdown
* @return True if redirectTo was set to a new address, false if redirectTo was not modified
*/
bool findBetterEndpoint(InetAddress &redirectTo,const Address &peerAddress,const InetAddress &peerPhysicalAddress,bool offload);
2015-10-26 19:41:08 +00:00
/**
* Fill out ZT_ClusterStatus structure (from core API)
*
* @param status Reference to structure to hold result (anything there is replaced)
*/
void status(ZT_ClusterStatus &status) const;
private:
2015-10-20 23:24:21 +00:00
void _send(uint16_t memberId,StateMessageType type,const void *msg,unsigned int len);
void _flush(uint16_t memberId);
// These are initialized in the constructor and remain immutable
uint16_t _masterSecret[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
unsigned char _key[ZT_PEER_SECRET_KEY_LENGTH];
const RuntimeEnvironment *RR;
void (*_sendFunction)(void *,unsigned int,const void *,unsigned int);
void *_sendFunctionArg;
int (*_addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *);
void *_addressToLocationFunctionArg;
const int32_t _x;
const int32_t _y;
const int32_t _z;
const uint16_t _id;
const std::vector<InetAddress> _zeroTierPhysicalEndpoints;
// end immutable fields
struct _Member
{
unsigned char key[ZT_PEER_SECRET_KEY_LENGTH];
uint64_t lastReceivedAliveAnnouncement;
uint64_t lastAnnouncedAliveTo;
uint64_t load;
int32_t x,y,z;
std::vector<InetAddress> zeroTierPhysicalEndpoints;
Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> q;
Mutex lock;
inline void clear()
{
lastReceivedAliveAnnouncement = 0;
lastAnnouncedAliveTo = 0;
load = 0;
x = 0;
y = 0;
z = 0;
zeroTierPhysicalEndpoints.clear();
q.clear();
}
_Member() { this->clear(); }
~_Member() { Utils::burn(key,sizeof(key)); }
};
_Member *const _members;
std::vector<uint16_t> _memberIds;
Mutex _memberIds_m;
struct _PA
{
_PA() : ts(0),mid(0xffff) {}
uint64_t ts;
uint16_t mid;
};
Hashtable< Address,_PA > _peerAffinities;
Mutex _peerAffinities_m;
uint64_t _lastCleanedPeerAffinities;
uint64_t _lastCheckedPeersForAnnounce;
uint64_t _lastFlushed;
};
} // namespace ZeroTier
#endif // ZT_ENABLE_CLUSTER
#endif