ZeroTierOne/node/Cluster.cpp

558 lines
19 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#ifdef ZT_ENABLE_CLUSTER
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <utility>
#include "../version.h"
#include "Cluster.hpp"
#include "RuntimeEnvironment.hpp"
#include "MulticastGroup.hpp"
#include "CertificateOfMembership.hpp"
#include "Salsa20.hpp"
#include "Poly1305.hpp"
#include "Packet.hpp"
#include "Identity.hpp"
#include "Peer.hpp"
#include "Switch.hpp"
#include "Node.hpp"
namespace ZeroTier {
static inline double _dist3d(int x1,int y1,int z1,int x2,int y2,int z2)
throw()
{
double dx = ((double)x2 - (double)x1);
double dy = ((double)y2 - (double)y1);
double dz = ((double)z2 - (double)z1);
return sqrt((dx * dx) + (dy * dy) + (dz * dz));
}
Cluster::Cluster(
const RuntimeEnvironment *renv,
uint16_t id,
const std::vector<InetAddress> &zeroTierPhysicalEndpoints,
int32_t x,
int32_t y,
int32_t z,
void (*sendFunction)(void *,unsigned int,const void *,unsigned int),
void *sendFunctionArg,
int (*addressToLocationFunction)(void *,const struct sockaddr_storage *,int *,int *,int *),
void *addressToLocationFunctionArg) :
RR(renv),
_sendFunction(sendFunction),
_sendFunctionArg(sendFunctionArg),
_addressToLocationFunction(addressToLocationFunction),
_addressToLocationFunctionArg(addressToLocationFunctionArg),
_x(x),
_y(y),
_z(z),
_id(id),
_zeroTierPhysicalEndpoints(zeroTierPhysicalEndpoints),
_members(new _Member[ZT_CLUSTER_MAX_MEMBERS])
{
uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
// Generate master secret by hashing the secret from our Identity key pair
RR->identity.sha512PrivateKey(_masterSecret);
// Generate our inbound message key, which is the master secret XORed with our ID and hashed twice
memcpy(stmp,_masterSecret,sizeof(stmp));
stmp[0] ^= Utils::hton(id);
SHA512::hash(stmp,stmp,sizeof(stmp));
SHA512::hash(stmp,stmp,sizeof(stmp));
memcpy(_key,stmp,sizeof(_key));
Utils::burn(stmp,sizeof(stmp));
}
Cluster::~Cluster()
{
Utils::burn(_masterSecret,sizeof(_masterSecret));
Utils::burn(_key,sizeof(_key));
delete [] _members;
}
void Cluster::handleIncomingStateMessage(const void *msg,unsigned int len)
{
Buffer<ZT_CLUSTER_MAX_MESSAGE_LENGTH> dmsg;
{
// FORMAT: <[16] iv><[8] MAC><... data>
if ((len < 24)||(len > ZT_CLUSTER_MAX_MESSAGE_LENGTH))
return;
// 16-byte IV: first 8 bytes XORed with key, last 8 bytes used as Salsa20 64-bit IV
char keytmp[32];
memcpy(keytmp,_key,32);
for(int i=0;i<8;++i)
keytmp[i] ^= reinterpret_cast<const char *>(msg)[i];
Salsa20 s20(keytmp,256,reinterpret_cast<const char *>(msg) + 8);
Utils::burn(keytmp,sizeof(keytmp));
// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
char polykey[ZT_POLY1305_KEY_LEN];
memset(polykey,0,sizeof(polykey));
s20.encrypt12(polykey,polykey,sizeof(polykey));
// Compute 16-byte MAC
char mac[ZT_POLY1305_MAC_LEN];
Poly1305::compute(mac,reinterpret_cast<const char *>(msg) + 24,len - 24,polykey);
// Check first 8 bytes of MAC against 64-bit MAC in stream
if (!Utils::secureEq(mac,reinterpret_cast<const char *>(msg) + 16,8))
return;
// Decrypt!
2015-10-14 22:49:41 +00:00
dmsg.setSize(len - 24);
s20.decrypt12(reinterpret_cast<const char *>(msg) + 24,const_cast<void *>(dmsg.data()),dmsg.size());
}
if (dmsg.size() < 4)
return;
const uint16_t fromMemberId = dmsg.at<uint16_t>(0);
unsigned int ptr = 2;
if (fromMemberId == _id)
return;
const uint16_t toMemberId = dmsg.at<uint16_t>(ptr);
ptr += 2;
if (toMemberId != _id)
return;
_Member &m = _members[fromMemberId];
Mutex::Lock mlck(m.lock);
try {
while (ptr < dmsg.size()) {
const unsigned int mlen = dmsg.at<uint16_t>(ptr); ptr += 2;
const unsigned int nextPtr = ptr + mlen;
int mtype = -1;
try {
switch((StateMessageType)(mtype = (int)dmsg[ptr++])) {
default:
break;
case STATE_MESSAGE_ALIVE: {
ptr += 7; // skip version stuff, not used yet
m.x = dmsg.at<int32_t>(ptr); ptr += 4;
m.y = dmsg.at<int32_t>(ptr); ptr += 4;
m.z = dmsg.at<int32_t>(ptr); ptr += 4;
ptr += 8; // skip local clock, not used
m.load = dmsg.at<uint64_t>(ptr); ptr += 8;
ptr += 8; // skip flags, unused
unsigned int physicalAddressCount = dmsg[ptr++];
for(unsigned int i=0;i<physicalAddressCount;++i) {
m.zeroTierPhysicalEndpoints.push_back(InetAddress());
ptr += m.zeroTierPhysicalEndpoints.back().deserialize(dmsg,ptr);
if (!(m.zeroTierPhysicalEndpoints.back()))
m.zeroTierPhysicalEndpoints.pop_back();
}
m.lastReceivedAliveAnnouncement = RR->node->now();
} break;
case STATE_MESSAGE_HAVE_PEER: {
try {
Identity id;
ptr += id.deserialize(dmsg,ptr);
RR->topology->saveIdentity(id);
{ // Add or update peer affinity entry
_PeerAffinity pa(id.address(),fromMemberId,RR->node->now());
Mutex::Lock _l2(_peerAffinities_m);
std::vector<_PeerAffinity>::iterator i(std::lower_bound(_peerAffinities.begin(),_peerAffinities.end(),pa)); // O(log(n))
if ((i != _peerAffinities.end())&&(i->key == pa.key)) {
i->timestamp = pa.timestamp;
} else {
_peerAffinities.push_back(pa);
std::sort(_peerAffinities.begin(),_peerAffinities.end()); // probably a more efficient way to insert but okay for now
}
}
} catch ( ... ) {
// ignore invalid identities
}
} break;
case STATE_MESSAGE_MULTICAST_LIKE: {
const uint64_t nwid = dmsg.at<uint64_t>(ptr); ptr += 8;
const Address address(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH;
const MAC mac(dmsg.field(ptr,6),6); ptr += 6;
const uint32_t adi = dmsg.at<uint32_t>(ptr); ptr += 4;
RR->mc->add(RR->node->now(),nwid,MulticastGroup(mac,adi),address);
} break;
case STATE_MESSAGE_COM: {
// TODO: not used yet
} break;
case STATE_MESSAGE_RELAY: {
const unsigned int numRemotePeerPaths = dmsg[ptr++];
InetAddress remotePeerPaths[256]; // size is 8-bit, so 256 is max
for(unsigned int i=0;i<numRemotePeerPaths;++i)
ptr += remotePeerPaths[i].deserialize(dmsg,ptr);
const unsigned int packetLen = dmsg.at<uint16_t>(ptr); ptr += 2;
const void *packet = (const void *)dmsg.field(ptr,packetLen); ptr += packetLen;
if (packetLen >= ZT_PROTO_MIN_FRAGMENT_LENGTH) { // ignore anything too short to contain a dest address
const Address destinationAddress(reinterpret_cast<const char *>(packet) + 8,ZT_ADDRESS_LENGTH);
SharedPtr<Peer> destinationPeer(RR->topology->getPeer(destinationAddress));
if (destinationPeer) {
2015-10-14 21:17:55 +00:00
if (
(destinationPeer->send(RR,packet,packetLen,RR->node->now()))&&
(numRemotePeerPaths > 0)&&
(packetLen >= 18)&&
(reinterpret_cast<const unsigned char *>(packet)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR)
) {
// If remote peer paths were sent with this relayed packet, we do
// RENDEZVOUS. It's handled here for cluster-relayed packets since
// we don't have both Peer records so this is a different path.
const Address remotePeerAddress(reinterpret_cast<const char *>(packet) + 13,ZT_ADDRESS_LENGTH);
InetAddress bestDestV4,bestDestV6;
destinationPeer->getBestActiveAddresses(RR->node->now(),bestDestV4,bestDestV6);
InetAddress bestRemoteV4,bestRemoteV6;
for(unsigned int i=0;i<numRemotePeerPaths;++i) {
if ((bestRemoteV4)&&(bestRemoteV6))
break;
switch(remotePeerPaths[i].ss_family) {
case AF_INET:
if (!bestRemoteV4)
bestRemoteV4 = remotePeerPaths[i];
break;
case AF_INET6:
if (!bestRemoteV6)
bestRemoteV6 = remotePeerPaths[i];
break;
}
}
Packet rendezvousForDest(destinationAddress,RR->identity.address(),Packet::VERB_RENDEZVOUS);
rendezvousForDest.append((uint8_t)0);
remotePeerAddress.appendTo(rendezvousForDest);
Buffer<2048> rendezvousForOtherEnd;
rendezvousForOtherEnd.addSize(2); // leave room for payload size
rendezvousForOtherEnd.append((uint8_t)STATE_MESSAGE_PROXY_SEND);
remotePeerAddress.appendTo(rendezvousForOtherEnd);
rendezvousForOtherEnd.append((uint8_t)Packet::VERB_RENDEZVOUS);
const unsigned int rendezvousForOtherEndPayloadSizePtr = rendezvousForOtherEnd.size();
rendezvousForOtherEnd.addSize(2); // space for actual packet payload length
rendezvousForOtherEnd.append((uint8_t)0); // flags == 0
destinationAddress.appendTo(rendezvousForOtherEnd);
bool haveMatch = false;
if ((bestDestV6)&&(bestRemoteV6)) {
haveMatch = true;
rendezvousForDest.append((uint16_t)bestRemoteV6.port());
rendezvousForDest.append((uint8_t)16);
rendezvousForDest.append(bestRemoteV6.rawIpData(),16);
rendezvousForOtherEnd.append((uint16_t)bestDestV6.port());
rendezvousForOtherEnd.append((uint8_t)16);
rendezvousForOtherEnd.append(bestDestV6.rawIpData(),16);
rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 16));
} else if ((bestDestV4)&&(bestRemoteV4)) {
haveMatch = true;
rendezvousForDest.append((uint16_t)bestRemoteV4.port());
rendezvousForDest.append((uint8_t)4);
rendezvousForDest.append(bestRemoteV4.rawIpData(),4);
rendezvousForOtherEnd.append((uint16_t)bestDestV4.port());
rendezvousForOtherEnd.append((uint8_t)4);
rendezvousForOtherEnd.append(bestDestV4.rawIpData(),4);
rendezvousForOtherEnd.setAt<uint16_t>(rendezvousForOtherEndPayloadSizePtr,(uint16_t)(9 + 4));
}
if (haveMatch) {
RR->sw->send(rendezvousForDest,true,0);
rendezvousForOtherEnd.setAt<uint16_t>(0,(uint16_t)(rendezvousForOtherEnd.size() - 2));
_send(fromMemberId,rendezvousForOtherEnd.data(),rendezvousForOtherEnd.size());
}
}
}
}
} break;
case STATE_MESSAGE_PROXY_SEND: {
const Address rcpt(dmsg.field(ptr,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
const Packet::Verb verb = (Packet::Verb)dmsg[ptr++];
const unsigned int len = dmsg.at<uint16_t>(ptr); ptr += 2;
Packet outp(rcpt,RR->identity.address(),verb);
outp.append(dmsg.field(ptr,len),len);
RR->sw->send(outp,true,0);
} break;
}
} catch ( ... ) {
TRACE("invalid message of size %u type %d (inner decode), discarding",mlen,mtype);
// drop invalids
}
ptr = nextPtr;
}
} catch ( ... ) {
TRACE("invalid message (outer loop), discarding");
// drop invalids
}
}
void Cluster::replicateHavePeer(const Identity &peerId)
{
}
void Cluster::replicateMulticastLike(uint64_t nwid,const Address &peerAddress,const MulticastGroup &group)
{
}
void Cluster::replicateCertificateOfNetworkMembership(const CertificateOfMembership &com)
{
}
void Cluster::doPeriodicTasks()
{
const uint64_t now = RR->node->now();
{
Mutex::Lock _l(_memberIds_m);
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
Mutex::Lock _l2(_members[*mid].lock);
if ((now - _members[*mid].lastAnnouncedAliveTo) >= ((ZT_CLUSTER_TIMEOUT / 2) - 1000)) {
Buffer<2048> alive;
alive.append((uint16_t)ZEROTIER_ONE_VERSION_MAJOR);
alive.append((uint16_t)ZEROTIER_ONE_VERSION_MINOR);
alive.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
alive.append((uint8_t)ZT_PROTO_VERSION);
if (_addressToLocationFunction) {
alive.append((int32_t)_x);
alive.append((int32_t)_y);
alive.append((int32_t)_z);
} else {
alive.append((int32_t)0);
alive.append((int32_t)0);
alive.append((int32_t)0);
}
alive.append((uint64_t)now);
alive.append((uint64_t)0); // TODO: compute and send load average
alive.append((uint64_t)0); // unused/reserved flags
alive.append((uint8_t)_zeroTierPhysicalEndpoints.size());
for(std::vector<InetAddress>::const_iterator pe(_zeroTierPhysicalEndpoints.begin());pe!=_zeroTierPhysicalEndpoints.end();++pe)
pe->serialize(alive);
_send(*mid,alive.data(),alive.size());
_members[*mid].lastAnnouncedAliveTo = now;
}
_flush(*mid); // does nothing if nothing to flush
}
}
}
void Cluster::addMember(uint16_t memberId)
{
if (memberId >= ZT_CLUSTER_MAX_MEMBERS)
return;
Mutex::Lock _l2(_members[memberId].lock);
{
Mutex::Lock _l(_memberIds_m);
if (std::find(_memberIds.begin(),_memberIds.end(),memberId) != _memberIds.end())
return;
_memberIds.push_back(memberId);
std::sort(_memberIds.begin(),_memberIds.end());
}
_members[memberId].clear();
// Generate this member's message key from the master and its ID
uint16_t stmp[ZT_SHA512_DIGEST_LEN / sizeof(uint16_t)];
memcpy(stmp,_masterSecret,sizeof(stmp));
stmp[0] ^= Utils::hton(memberId);
SHA512::hash(stmp,stmp,sizeof(stmp));
SHA512::hash(stmp,stmp,sizeof(stmp));
memcpy(_members[memberId].key,stmp,sizeof(_members[memberId].key));
Utils::burn(stmp,sizeof(stmp));
// Prepare q
_members[memberId].q.clear();
char iv[16];
Utils::getSecureRandom(iv,16);
_members[memberId].q.append(iv,16);
_members[memberId].q.addSize(8); // room for MAC
2015-10-14 22:49:41 +00:00
_members[memberId].q.append((uint16_t)_id);
_members[memberId].q.append((uint16_t)memberId);
}
void Cluster::removeMember(uint16_t memberId)
{
Mutex::Lock _l(_memberIds_m);
std::vector<uint16_t> newMemberIds;
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
if (*mid != memberId)
newMemberIds.push_back(*mid);
}
_memberIds = newMemberIds;
}
bool Cluster::redirectPeer(const SharedPtr<Peer> &peer,const InetAddress &peerPhysicalAddress,bool offload)
{
if (!peerPhysicalAddress) // sanity check
return false;
if (_addressToLocationFunction) {
// Pick based on location if it can be determined
int px = 0,py = 0,pz = 0;
if (_addressToLocationFunction(_addressToLocationFunctionArg,reinterpret_cast<const struct sockaddr_storage *>(&peerPhysicalAddress),&px,&py,&pz) == 0) {
// No geo-info so no change
return false;
}
// Find member closest to this peer
const uint64_t now = RR->node->now();
std::vector<InetAddress> best; // initial "best" is for peer to stay put
const double currentDistance = _dist3d(_x,_y,_z,px,py,pz);
double bestDistance = (offload ? 2147483648.0 : currentDistance);
unsigned int bestMember = _id;
{
Mutex::Lock _l(_memberIds_m);
for(std::vector<uint16_t>::const_iterator mid(_memberIds.begin());mid!=_memberIds.end();++mid) {
_Member &m = _members[*mid];
Mutex::Lock _ml(m.lock);
// Consider member if it's alive and has sent us a location and one or more physical endpoints to send peers to
if ( ((now - m.lastReceivedAliveAnnouncement) < ZT_CLUSTER_TIMEOUT) && ((m.x != 0)||(m.y != 0)||(m.z != 0)) && (m.zeroTierPhysicalEndpoints.size() > 0) ) {
double mdist = _dist3d(m.x,m.y,m.z,px,py,pz);
if (mdist < bestDistance) {
bestMember = *mid;
best = m.zeroTierPhysicalEndpoints;
}
}
}
}
if (best.size() > 0) {
TRACE("peer %s is at [%d,%d,%d], distance to us is %f, sending to %u instead for better distance %f",peer->address().toString().c_str(),px,py,pz,currentDistance,bestMember,bestDistance);
/* if (peer->remoteVersionProtocol() >= 5) {
// If it's a newer peer send VERB_PUSH_DIRECT_PATHS which is more idiomatic
} else { */
// Otherwise send VERB_RENDEZVOUS for ourselves, which will trick peers into trying other endpoints for us even if they're too old for PUSH_DIRECT_PATHS
for(std::vector<InetAddress>::const_iterator a(best.begin());a!=best.end();++a) {
if ((a->ss_family == AF_INET)||(a->ss_family == AF_INET6)) {
Packet outp(peer->address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0); // no flags
RR->identity.address().appendTo(outp); // HACK: rendezvous with ourselves! with really old peers this will only work if I'm a root server!
outp.append((uint16_t)a->port());
if (a->ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append(a->rawIpData(),4);
} else {
outp.append((uint8_t)16);
outp.append(a->rawIpData(),16);
}
RR->sw->send(outp,true,0);
}
}
//}
return true;
} else {
TRACE("peer %s is at [%d,%d,%d], distance to us is %f and this seems to be the best",peer->address().toString().c_str(),px,py,pz,currentDistance);
return false;
}
} else {
// TODO: pick based on load if no location info?
return false;
}
}
void Cluster::_send(uint16_t memberId,const void *msg,unsigned int len)
{
_Member &m = _members[memberId];
// assumes m.lock is locked!
for(;;) {
if ((m.q.size() + len) > ZT_CLUSTER_MAX_MESSAGE_LENGTH)
_flush(memberId);
else {
m.q.append(msg,len);
break;
}
}
}
void Cluster::_flush(uint16_t memberId)
{
_Member &m = _members[memberId];
// assumes m.lock is locked!
if (m.q.size() > (24 + 2 + 2)) { // 16-byte IV + 8-byte MAC + 2 byte from-member-ID + 2 byte to-member-ID
// Create key from member's key and IV
char keytmp[32];
memcpy(keytmp,m.key,32);
for(int i=0;i<8;++i)
keytmp[i] ^= m.q[i];
Salsa20 s20(keytmp,256,m.q.field(8,8));
Utils::burn(keytmp,sizeof(keytmp));
// One-time-use Poly1305 key from first 32 bytes of Salsa20 keystream (as per DJB/NaCl "standard")
char polykey[ZT_POLY1305_KEY_LEN];
memset(polykey,0,sizeof(polykey));
s20.encrypt12(polykey,polykey,sizeof(polykey));
// Encrypt m.q in place
s20.encrypt12(reinterpret_cast<const char *>(m.q.data()) + 24,const_cast<char *>(reinterpret_cast<const char *>(m.q.data())) + 24,m.q.size() - 24);
// Add MAC for authentication (encrypt-then-MAC)
char mac[ZT_POLY1305_MAC_LEN];
Poly1305::compute(mac,reinterpret_cast<const char *>(m.q.data()) + 24,m.q.size() - 24,polykey);
memcpy(m.q.field(16,8),mac,8);
// Send!
_sendFunction(_sendFunctionArg,memberId,m.q.data(),m.q.size());
// Prepare for more
m.q.clear();
char iv[16];
Utils::getSecureRandom(iv,16);
m.q.append(iv,16);
m.q.addSize(8); // room for MAC
m.q.append((uint16_t)_id); // from member ID
m.q.append((uint16_t)memberId); // to member ID
}
}
} // namespace ZeroTier
#endif // ZT_ENABLE_CLUSTER