ZeroTierOne/node/Peer.cpp

394 lines
12 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include "../version.h"
#include "Constants.hpp"
#include "Peer.hpp"
#include "Node.hpp"
#include "Switch.hpp"
#include "Network.hpp"
#include "AntiRecursion.hpp"
#include "SelfAwareness.hpp"
2013-12-24 10:39:29 -08:00
#include <algorithm>
namespace ZeroTier {
// Used to send varying values for NAT keepalive
static uint32_t _natKeepaliveBuf = 0;
Peer::Peer(const Identity &myIdentity,const Identity &peerIdentity)
throw(std::runtime_error) :
_lastUsed(0),
_lastReceive(0),
_lastUnicastFrame(0),
_lastMulticastFrame(0),
_lastAnnouncedTo(0),
_lastPathConfirmationSent(0),
_lastDirectPathPush(0),
_vMajor(0),
_vMinor(0),
_vRevision(0),
_id(peerIdentity),
_numPaths(0),
_latency(0)
{
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
throw std::runtime_error("new peer identity key agreement failed");
}
void Peer::received(
const RuntimeEnvironment *RR,
int localInterfaceId,
2013-12-24 10:39:29 -08:00
const InetAddress &remoteAddr,
unsigned int hops,
uint64_t packetId,
Packet::Verb verb,
uint64_t inRePacketId,
Packet::Verb inReVerb)
{
const uint64_t now = RR->node->now();
_lastReceive = now;
if (!hops) {
bool pathIsConfirmed = false;
/* Learn new paths from direct (hops == 0) packets */
2014-03-21 14:31:10 -07:00
{
unsigned int np = _numPaths;
for(unsigned int p=0;p<np;++p) {
if ((_paths[p].address() == remoteAddr)&&(_paths[p].localInterfaceId() == localInterfaceId)) {
_paths[p].received(now);
pathIsConfirmed = true;
2014-03-21 14:31:10 -07:00
break;
}
}
if (!pathIsConfirmed) {
if ((verb == Packet::VERB_OK)&&(inReVerb == Packet::VERB_HELLO)) {
// Learn paths if they've been confirmed via a HELLO
RemotePath *slot = (RemotePath *)0;
if (np < ZT1_MAX_PEER_NETWORK_PATHS) {
// Add new path
slot = &(_paths[np++]);
} else {
// Replace oldest non-fixed path
uint64_t slotLRmin = 0xffffffffffffffffULL;
for(unsigned int p=0;p<ZT1_MAX_PEER_NETWORK_PATHS;++p) {
if ((!_paths[p].fixed())&&(_paths[p].lastReceived() <= slotLRmin)) {
slotLRmin = _paths[p].lastReceived();
slot = &(_paths[p]);
}
}
}
if (slot) {
*slot = RemotePath(localInterfaceId,remoteAddr,false);
slot->received(now);
_numPaths = np;
pathIsConfirmed = true;
}
} else {
/* If this path is not known, send a HELLO. We don't learn
* paths without confirming that a bidirectional link is in
* fact present, but any packet that decodes and authenticates
* correctly is considered valid. */
if ((now - _lastPathConfirmationSent) >= ZT_MIN_PATH_CONFIRMATION_INTERVAL) {
_lastPathConfirmationSent = now;
TRACE("got %s via unknown path %s(%s), confirming...",Packet::verbString(verb),_id.address().toString().c_str(),remoteAddr.toString().c_str());
attemptToContactAt(RR,localInterfaceId,remoteAddr,now);
}
}
2014-03-21 14:31:10 -07:00
}
}
/* Announce multicast groups of interest to direct peers if they are
* considered authorized members of a given network. Also announce to
* root servers and network controllers. */
if ((pathIsConfirmed)&&((now - _lastAnnouncedTo) >= ((ZT_MULTICAST_LIKE_EXPIRE / 2) - 1000))) {
_lastAnnouncedTo = now;
const bool isRoot = RR->topology->isRoot(_id);
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_MULTICAST_LIKE);
const std::vector< SharedPtr<Network> > networks(RR->node->allNetworks());
for(std::vector< SharedPtr<Network> >::const_iterator n(networks.begin());n!=networks.end();++n) {
if ( (isRoot) || ((*n)->isAllowed(_id.address())) || (_id.address() == (*n)->controller()) ) {
const std::vector<MulticastGroup> mgs((*n)->allMulticastGroups());
for(std::vector<MulticastGroup>::const_iterator mg(mgs.begin());mg!=mgs.end();++mg) {
if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
outp.armor(_key,true);
RR->node->putPacket(localInterfaceId,remoteAddr,outp.data(),outp.size());
outp.reset(_id.address(),RR->identity.address(),Packet::VERB_MULTICAST_LIKE);
}
// network ID, MAC, ADI
outp.append((uint64_t)(*n)->id());
mg->mac().appendTo(outp);
outp.append((uint32_t)mg->adi());
}
}
}
if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH) {
outp.armor(_key,true);
RR->node->putPacket(localInterfaceId,remoteAddr,outp.data(),outp.size());
}
}
}
if ((verb == Packet::VERB_FRAME)||(verb == Packet::VERB_EXT_FRAME))
_lastUnicastFrame = now;
else if (verb == Packet::VERB_MULTICAST_FRAME)
_lastMulticastFrame = now;
}
RemotePath *Peer::getBestPath(uint64_t now)
{
RemotePath *bestPath = (RemotePath *)0;
uint64_t lrMax = 0;
int rank = 0;
for(unsigned int p=0,np=_numPaths;p<np;++p) {
if ( (_paths[p].active(now)) && ((_paths[p].lastReceived() >= lrMax)||(_paths[p].preferenceRank() >= rank)) ) {
lrMax = _paths[p].lastReceived();
rank = _paths[p].preferenceRank();
bestPath = &(_paths[p]);
}
}
return bestPath;
}
void Peer::attemptToContactAt(const RuntimeEnvironment *RR,int localInterfaceId,const InetAddress &atAddress,uint64_t now)
{
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(now);
RR->identity.serialize(outp,false);
switch(atAddress.ss_family) {
case AF_INET:
outp.append((unsigned char)ZT_PROTO_DEST_ADDRESS_TYPE_IPV4);
outp.append(atAddress.rawIpData(),4);
outp.append((uint16_t)atAddress.port());
break;
case AF_INET6:
outp.append((unsigned char)ZT_PROTO_DEST_ADDRESS_TYPE_IPV6);
outp.append(atAddress.rawIpData(),16);
outp.append((uint16_t)atAddress.port());
break;
default:
outp.append((unsigned char)ZT_PROTO_DEST_ADDRESS_TYPE_NONE);
break;
}
outp.armor(_key,false); // HELLO is sent in the clear
RR->node->putPacket(localInterfaceId,atAddress,outp.data(),outp.size());
}
void Peer::doPingAndKeepalive(const RuntimeEnvironment *RR,uint64_t now)
{
RemotePath *const bestPath = getBestPath(now);
if (bestPath) {
if ((now - bestPath->lastReceived()) >= ZT_PEER_DIRECT_PING_DELAY) {
TRACE("PING %s(%s)",_id.address().toString().c_str(),bestPath->address().toString().c_str());
attemptToContactAt(RR,bestPath->localInterfaceId(),bestPath->address(),now);
bestPath->sent(now);
} else if (((now - bestPath->lastSend()) >= ZT_NAT_KEEPALIVE_DELAY)&&(!bestPath->reliable())) {
2015-09-23 10:27:53 -07:00
_natKeepaliveBuf += (uint32_t)((now * 0x9e3779b1) >> 1); // tumble this around to send constantly varying (meaningless) payloads
TRACE("NAT keepalive %s(%s)",_id.address().toString().c_str(),bestPath->address().toString().c_str());
RR->node->putPacket(bestPath->localInterfaceId(),bestPath->address(),&_natKeepaliveBuf,sizeof(_natKeepaliveBuf));
bestPath->sent(now);
}
}
}
void Peer::pushDirectPaths(const RuntimeEnvironment *RR,RemotePath *path,uint64_t now,bool force)
2015-07-06 14:39:28 -07:00
{
if (((now - _lastDirectPathPush) >= ZT_DIRECT_PATH_PUSH_INTERVAL)||(force)) {
2015-07-06 14:39:28 -07:00
_lastDirectPathPush = now;
std::vector<Path> dps(RR->node->directPaths());
#ifdef ZT_TRACE
{
std::string ps;
for(std::vector<Path>::const_iterator p(dps.begin());p!=dps.end();++p) {
if (ps.length() > 0)
ps.push_back(',');
ps.append(p->address().toString());
}
TRACE("pushing %u direct paths to %s: %s",(unsigned int)dps.size(),_id.address().toString().c_str(),ps.c_str());
}
#endif
2015-07-06 14:39:28 -07:00
std::vector<Path>::const_iterator p(dps.begin());
while (p != dps.end()) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.addSize(2); // leave room for count
unsigned int count = 0;
while ((p != dps.end())&&((outp.size() + 24) < ZT_PROTO_MAX_PACKET_LENGTH)) {
uint8_t addressType = 4;
switch(p->address().ss_family) {
case AF_INET:
break;
case AF_INET6:
addressType = 6;
break;
default: // we currently only push IP addresses
2015-07-06 14:39:28 -07:00
++p;
continue;
}
uint8_t flags = 0;
switch(p->trust()) {
default:
break;
case Path::TRUST_PRIVACY:
flags |= 0x04; // no encryption
break;
case Path::TRUST_ULTIMATE:
flags |= (0x04 | 0x08); // no encryption, no authentication (redundant but go ahead and set both)
break;
2015-07-06 14:39:28 -07:00
}
outp.append(flags);
2015-07-13 09:29:51 -07:00
outp.append((uint16_t)0); // no extensions
2015-07-06 14:39:28 -07:00
outp.append(addressType);
2015-07-06 17:20:41 -07:00
outp.append((uint8_t)((addressType == 4) ? 6 : 18));
2015-07-06 14:39:28 -07:00
outp.append(p->address().rawIpData(),((addressType == 4) ? 4 : 16));
outp.append((uint16_t)p->address().port());
++count;
++p;
}
if (count) {
outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
outp.armor(_key,true);
path->send(RR,outp.data(),outp.size(),now);
2015-07-06 14:39:28 -07:00
}
}
}
}
void Peer::addPath(const RemotePath &newp)
{
unsigned int np = _numPaths;
for(unsigned int p=0;p<np;++p) {
if (_paths[p].address() == newp.address()) {
_paths[p].setFixed(newp.fixed());
return;
}
}
RemotePath *slot = (RemotePath *)0;
if (np < ZT1_MAX_PEER_NETWORK_PATHS) {
// Add new path
slot = &(_paths[np++]);
} else {
// Replace oldest non-fixed path
uint64_t slotLRmin = 0xffffffffffffffffULL;
for(unsigned int p=0;p<ZT1_MAX_PEER_NETWORK_PATHS;++p) {
if ((!_paths[p].fixed())&&(_paths[p].lastReceived() <= slotLRmin)) {
slotLRmin = _paths[p].lastReceived();
slot = &(_paths[p]);
}
}
}
if (slot) {
*slot = newp;
_numPaths = np;
}
}
void Peer::clearPaths(bool fixedToo)
{
if (fixedToo) {
_numPaths = 0;
} else {
unsigned int np = _numPaths;
unsigned int x = 0;
unsigned int y = 0;
while (x < np) {
if (_paths[x].fixed())
_paths[y++] = _paths[x];
++x;
}
_numPaths = y;
}
}
bool Peer::resetWithinScope(const RuntimeEnvironment *RR,InetAddress::IpScope scope,uint64_t now)
{
unsigned int np = _numPaths;
unsigned int x = 0;
unsigned int y = 0;
while (x < np) {
if (_paths[x].address().ipScope() == scope) {
if (_paths[x].fixed()) {
attemptToContactAt(RR,_paths[x].localInterfaceId(),_paths[x].address(),now);
_paths[y++] = _paths[x]; // keep fixed paths
}
} else {
_paths[y++] = _paths[x]; // keep paths not in this scope
}
++x;
}
_numPaths = y;
return (y < np);
}
void Peer::getBestActiveAddresses(uint64_t now,InetAddress &v4,InetAddress &v6) const
{
uint64_t bestV4 = 0,bestV6 = 0;
for(unsigned int p=0,np=_numPaths;p<np;++p) {
if (_paths[p].active(now)) {
uint64_t lr = _paths[p].lastReceived();
if (lr) {
if (_paths[p].address().isV4()) {
if (lr >= bestV4) {
bestV4 = lr;
v4 = _paths[p].address();
}
} else if (_paths[p].address().isV6()) {
if (lr >= bestV6) {
bestV6 = lr;
v6 = _paths[p].address();
}
}
}
}
}
}
} // namespace ZeroTier