ZeroTierOne/node/Switch.cpp

1030 lines
43 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Global Peer to Peer Ethernet
* Copyright (C) 2012-2013 ZeroTier Networks LLC
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <utility>
#include <stdexcept>
#include "Switch.hpp"
#include "Node.hpp"
#include "EthernetTap.hpp"
#include "InetAddress.hpp"
#include "Topology.hpp"
#include "RuntimeEnvironment.hpp"
#include "Defaults.hpp"
#include "Peer.hpp"
#include "NodeConfig.hpp"
#include "Demarc.hpp"
#include "Filter.hpp"
#include "../version.h"
namespace ZeroTier {
Switch::Switch(const RuntimeEnvironment *renv) :
_r(renv)
{
memset(_multicastHistory,0,sizeof(_multicastHistory));
}
Switch::~Switch()
{
}
void Switch::onRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,const Buffer<4096> &data)
{
Packet packet;
try {
if (data.size() > ZT_PROTO_MIN_FRAGMENT_LENGTH) {
// Message is long enough to be a Packet or Packet::Fragment
if (data[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
// Looks like a Packet::Fragment
Packet::Fragment fragment(data);
Address destination(fragment.destination());
if (destination != _r->identity.address()) {
// Fragment is not for us, so try to relay it
if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
fragment.incrementHops();
SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
if ((!relayTo)||(!relayTo->send(_r,fragment.data(),fragment.size(),true,Packet::VERB_NOP,Utils::now()))) {
relayTo = _r->topology->getBestSupernode();
if (relayTo)
relayTo->send(_r,fragment.data(),fragment.size(),true,Packet::VERB_NOP,Utils::now());
}
} else {
TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
}
} else {
// Fragment looks like ours
uint64_t pid = fragment.packetId();
unsigned int fno = fragment.fragmentNumber();
unsigned int tf = fragment.totalFragments();
if ((tf <= ZT_MAX_PACKET_FRAGMENTS)&&(fno < ZT_MAX_PACKET_FRAGMENTS)&&(fno > 0)&&(tf > 1)) {
// Fragment appears basically sane. Its fragment number must be
// 1 or more, since a Packet with fragmented bit set is fragment 0.
// Total fragments must be more than 1, otherwise why are we
// seeing a Packet::Fragment?
Mutex::Lock _l(_defragQueue_m);
std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
if (dqe == _defragQueue.end()) {
// We received a Packet::Fragment without its head, so queue it and wait
DefragQueueEntry &dq = _defragQueue[pid];
dq.creationTime = Utils::now();
dq.frags[fno - 1] = fragment;
dq.totalFragments = tf; // total fragment count is known
dq.haveFragments = 1 << fno; // we have only this fragment
//TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
} else if (!(dqe->second.haveFragments & (1 << fno))) {
// We have other fragments and maybe the head, so add this one and check
dqe->second.frags[fno - 1] = fragment;
dqe->second.totalFragments = tf;
//TRACE("fragment (%u/%u) of %.16llx from %s",fno + 1,tf,pid,fromAddr.toString().c_str());
if (Utils::countBits(dqe->second.haveFragments |= (1 << fno)) == tf) {
// We have all fragments -- assemble and process full Packet
//TRACE("packet %.16llx is complete, assembling and processing...",pid);
packet = dqe->second.frag0;
for(unsigned int f=1;f<tf;++f)
packet.append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
_defragQueue.erase(dqe);
goto Switch_onRemotePacket_complete_packet_handler;
}
} // else this is a duplicate fragment, ignore
}
}
} else if (data.size() > ZT_PROTO_MIN_PACKET_LENGTH) {
// Looks like a Packet -- either unfragmented or a fragmented packet head
packet = data;
Address destination(packet.destination());
if (destination != _r->identity.address()) {
// Packet is not for us, so try to relay it
if (packet.hops() < ZT_RELAY_MAX_HOPS) {
packet.incrementHops();
SharedPtr<Peer> relayTo = _r->topology->getPeer(destination);
if ((relayTo)&&(relayTo->send(_r,packet.data(),packet.size(),true,Packet::VERB_NOP,Utils::now()))) {
// TODO: don't unite immediately, wait until the peers have exchanged a packet or two
unite(packet.source(),destination,false); // periodically try to get them to talk directly
} else {
relayTo = _r->topology->getBestSupernode();
if (relayTo)
relayTo->send(_r,packet.data(),packet.size(),true,Packet::VERB_NOP,Utils::now());
}
} else {
TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
}
} else if (packet.fragmented()) {
// Packet is the head of a fragmented packet series
uint64_t pid = packet.packetId();
Mutex::Lock _l(_defragQueue_m);
std::map< uint64_t,DefragQueueEntry >::iterator dqe(_defragQueue.find(pid));
if (dqe == _defragQueue.end()) {
// If we have no other fragments yet, create an entry and save the head
DefragQueueEntry &dq = _defragQueue[pid];
dq.creationTime = Utils::now();
dq.frag0 = packet;
dq.totalFragments = 0; // 0 == unknown, waiting for Packet::Fragment
dq.haveFragments = 1; // head is first bit (left to right)
//TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
} else if (!(dqe->second.haveFragments & 1)) {
// If we have other fragments but no head, see if we are complete with the head
if ((dqe->second.totalFragments)&&(Utils::countBits(dqe->second.haveFragments |= 1) == dqe->second.totalFragments)) {
// We have all fragments -- assemble and process full Packet
//TRACE("packet %.16llx is complete, assembling and processing...",pid);
// packet already contains head, so append fragments
for(unsigned int f=1;f<dqe->second.totalFragments;++f)
packet.append(dqe->second.frags[f - 1].payload(),dqe->second.frags[f - 1].payloadLength());
_defragQueue.erase(dqe);
goto Switch_onRemotePacket_complete_packet_handler;
} else {
// Still waiting on more fragments, so queue the head
dqe->second.frag0 = packet;
}
} // else this is a duplicate head, ignore
} else {
// Packet is unfragmented, so just process it
goto Switch_onRemotePacket_complete_packet_handler;
}
}
}
// If we made it here and didn't jump over, we either queued a fragment
// or dropped an invalid or duplicate one. (The goto looks easier to
// understand than having a million returns up there.)
return;
Switch_onRemotePacket_complete_packet_handler:
// Packets that get here are ours and are fully assembled. Don't worry -- if
// they are corrupt HMAC authentication will reject them later.
{
//TRACE("%s : %s -> %s",fromAddr.toString().c_str(),packet.source().toString().c_str(),packet.destination().toString().c_str());
PacketServiceAttemptResult r = _tryHandleRemotePacket(localPort,fromAddr,packet);
if (r != PACKET_SERVICE_ATTEMPT_OK) {
Address source(packet.source());
{
Mutex::Lock _l(_rxQueue_m);
std::multimap< Address,RXQueueEntry >::iterator qe(_rxQueue.insert(std::pair< Address,RXQueueEntry >(source,RXQueueEntry())));
qe->second.creationTime = Utils::now();
qe->second.packet = packet;
qe->second.localPort = localPort;
qe->second.fromAddr = fromAddr;
}
if (r == PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN)
_requestWhois(source);
}
}
} catch (std::exception &ex) {
TRACE("dropped packet from %s: %s",fromAddr.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped packet from %s: unexpected exception",fromAddr.toString().c_str());
}
}
void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,const Buffer<4096> &data)
{
if (from != network->tap().mac()) {
LOG("ignored tap: %s -> %s %s (bridging is not supported)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
return;
}
if (to == network->tap().mac()) {
// Right thing to do? Will this ever happen?
TRACE("weird OS behavior: ethernet frame received from self, reflecting");
network->tap().put(from,to,etherType,data.data(),data.size());
return;
}
if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) {
LOG("ignored tap: %s -> %s %s (not a supported etherType)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
return;
}
if (to.isMulticast()) {
MulticastGroup mg(to,0);
if (to.isBroadcast()) {
// Cram IPv4 IP into ADI field to make IPv4 ARP broadcast channel specific and scalable
if ((etherType == ZT_ETHERTYPE_ARP)&&(data.size() == 28)&&(data[2] == 0x08)&&(data[3] == 0x00)&&(data[4] == 6)&&(data[5] == 4)&&(data[7] == 0x01))
mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(data.field(24,4),4,0));
}
// Remember this message's CRC, but don't drop if we've already seen it
// since it's our own.
_checkAndUpdateMulticastHistory(from,mg.mac(),data.data(),data.size(),network->id(),Utils::now());
// Start multicast propagation with empty bloom filter
unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE];
memset(bloom,0,sizeof(bloom));
_propagateMulticast(network,_r->identity.address(),bloom,mg,0,0,from,etherType,data.data(),data.size());
} else if (to.isZeroTier()) {
// Simple unicast frame from us to another node
Address toZT(to.data + 1);
if (network->isAllowed(toZT)) {
Packet outp(toZT,_r->identity.address(),Packet::VERB_FRAME);
outp.append(network->id());
outp.append((uint16_t)etherType);
outp.append(data);
outp.compress();
send(outp,true);
} else {
TRACE("UNICAST: %s -> %s %s (dropped, destination not a member of closed network %llu)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType),network->id());
}
} else {
TRACE("UNICAST: %s -> %s %s (dropped, destination MAC not ZeroTier)",from.toString().c_str(),to.toString().c_str(),Filter::etherTypeName(etherType));
}
}
void Switch::send(const Packet &packet,bool encrypt)
{
//TRACE("%.16llx %s -> %s (size: %u) (enc: %s)",packet.packetId(),Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(encrypt ? "yes" : "no"));
PacketServiceAttemptResult r = _trySend(packet,encrypt);
if (r != PACKET_SERVICE_ATTEMPT_OK) {
{
Mutex::Lock _l(_txQueue_m);
std::multimap< Address,TXQueueEntry >::iterator qe(_txQueue.insert(std::pair< Address,TXQueueEntry >(packet.destination(),TXQueueEntry())));
qe->second.creationTime = Utils::now();
qe->second.packet = packet;
qe->second.encrypt = encrypt;
}
if (r == PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN)
_requestWhois(packet.destination());
}
}
void Switch::sendHELLO(const Address &dest)
{
Packet outp(dest,_r->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(Utils::now());
_r->identity.serialize(outp,false);
send(outp,false);
}
bool Switch::sendHELLO(const SharedPtr<Peer> &dest,Demarc::Port localPort,const InetAddress &addr)
{
Packet outp(dest->address(),_r->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(Utils::now());
_r->identity.serialize(outp,false);
outp.hmacSet(dest->macKey());
return _r->demarc->send(localPort,addr,outp.data(),outp.size(),-1);
}
bool Switch::unite(const Address &p1,const Address &p2,bool force)
{
SharedPtr<Peer> p1p = _r->topology->getPeer(p1);
if (!p1p)
return false;
SharedPtr<Peer> p2p = _r->topology->getPeer(p2);
if (!p2p)
return false;
uint64_t now = Utils::now();
std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now));
if (!(cg.first))
return false;
// Addresses are sorted in key for last unite attempt map for order
// invariant lookup: (p1,p2) == (p2,p1)
Array<Address,2> uniteKey;
if (p1 >= p2) {
uniteKey[0] = p2;
uniteKey[1] = p1;
} else {
uniteKey[0] = p1;
uniteKey[1] = p2;
}
{
Mutex::Lock _l(_lastUniteAttempt_m);
std::map< Array< Address,2 >,uint64_t >::const_iterator e(_lastUniteAttempt.find(uniteKey));
if ((!force)&&(e != _lastUniteAttempt.end())&&((now - e->second) < ZT_MIN_UNITE_INTERVAL))
return false;
else _lastUniteAttempt[uniteKey] = now;
}
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
{ // tell p1 where to find p2
Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append(p2.data(),ZT_ADDRESS_LENGTH);
outp.append((uint16_t)cg.first.port());
if (cg.first.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.first.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.first.rawIpData(),4);
}
outp.encrypt(p1p->cryptKey());
outp.hmacSet(p1p->macKey());
p1p->send(_r,outp.data(),outp.size(),false,Packet::VERB_RENDEZVOUS,now);
}
{ // tell p2 where to find p1
Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append(p1.data(),ZT_ADDRESS_LENGTH);
outp.append((uint16_t)cg.second.port());
if (cg.second.isV6()) {
outp.append((unsigned char)16);
outp.append(cg.second.rawIpData(),16);
} else {
outp.append((unsigned char)4);
outp.append(cg.second.rawIpData(),4);
}
outp.encrypt(p2p->cryptKey());
outp.hmacSet(p2p->macKey());
p2p->send(_r,outp.data(),outp.size(),false,Packet::VERB_RENDEZVOUS,now);
}
return true;
}
unsigned long Switch::doTimerTasks()
{
unsigned long nextDelay = ~((unsigned long)0); // big number, caller will cap return value
uint64_t now = Utils::now();
{
Mutex::Lock _l(_rendezvousQueue_m);
for(std::map< Address,RendezvousQueueEntry >::iterator i(_rendezvousQueue.begin());i!=_rendezvousQueue.end();) {
if (now >= i->second.fireAtTime) {
SharedPtr<Peer> withPeer = _r->topology->getPeer(i->first);
if (withPeer) {
TRACE("sending NAT-T HELLO to %s(%s)",i->first.toString().c_str(),i->second.inaddr.toString().c_str());
sendHELLO(withPeer,i->second.localPort,i->second.inaddr);
}
_rendezvousQueue.erase(i++);
} else {
nextDelay = std::min(nextDelay,(unsigned long)(i->second.fireAtTime - now));
++i;
}
}
}
{
Mutex::Lock _l(_outstandingWhoisRequests_m);
for(std::map< Address,WhoisRequest >::iterator i(_outstandingWhoisRequests.begin());i!=_outstandingWhoisRequests.end();) {
unsigned long since = (unsigned long)(now - i->second.lastSent);
if (since >= ZT_WHOIS_RETRY_DELAY) {
if (i->second.retries >= ZT_MAX_WHOIS_RETRIES) {
TRACE("WHOIS %s timed out",i->first.toString().c_str());
_outstandingWhoisRequests.erase(i++);
continue;
} else {
i->second.lastSent = now;
i->second.peersConsulted[i->second.retries] = _sendWhoisRequest(i->first,i->second.peersConsulted,i->second.retries);
++i->second.retries;
TRACE("WHOIS %s (retry %u)",i->first.toString().c_str(),i->second.retries);
nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
}
} else nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
++i;
}
}
{
Mutex::Lock _l(_txQueue_m);
for(std::multimap< Address,TXQueueEntry >::iterator i(_txQueue.begin());i!=_txQueue.end();) {
if (_trySend(i->second.packet,i->second.encrypt) == PACKET_SERVICE_ATTEMPT_OK)
_txQueue.erase(i++);
else if ((now - i->second.creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
TRACE("TX %s -> %s timed out",i->second.packet.source().toString().c_str(),i->second.packet.destination().toString().c_str());
_txQueue.erase(i++);
} else ++i;
}
}
{
Mutex::Lock _l(_rxQueue_m);
for(std::multimap< Address,RXQueueEntry >::iterator i(_rxQueue.begin());i!=_rxQueue.end();) {
if ((now - i->second.creationTime) > ZT_RECEIVE_QUEUE_TIMEOUT) {
TRACE("RX from %s timed out waiting for WHOIS",i->second.packet.source().toString().c_str());
_rxQueue.erase(i++);
} else ++i;
}
}
{
Mutex::Lock _l(_defragQueue_m);
for(std::map< uint64_t,DefragQueueEntry >::iterator i(_defragQueue.begin());i!=_defragQueue.end();) {
if ((now - i->second.creationTime) > ZT_FRAGMENTED_PACKET_RECEIVE_TIMEOUT) {
TRACE("incomplete fragmented packet %.16llx timed out, fragments discarded",i->first);
_defragQueue.erase(i++);
} else ++i;
}
}
return std::max(nextDelay,(unsigned long)50); // minimum delay
}
void Switch::announceMulticastGroups(const std::map< SharedPtr<Network>,std::set<MulticastGroup> > &allMemberships)
{
std::vector< SharedPtr<Peer> > directPeers;
_r->topology->eachPeer(Topology::CollectPeersWithActiveDirectPath(directPeers));
#ifdef ZT_TRACE
unsigned int totalMulticastGroups = 0;
for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator i(allMemberships.begin());i!=allMemberships.end();++i)
totalMulticastGroups += (unsigned int)i->second.size();
TRACE("announcing %u multicast groups for %u networks to %u peers",totalMulticastGroups,(unsigned int)allMemberships.size(),(unsigned int)directPeers.size());
#endif
for(std::vector< SharedPtr<Peer> >::iterator p(directPeers.begin());p!=directPeers.end();++p) {
Packet outp((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
for(std::map< SharedPtr<Network>,std::set<MulticastGroup> >::const_iterator nwmgs(allMemberships.begin());nwmgs!=allMemberships.end();++nwmgs) {
if ((nwmgs->first->open())||(_r->topology->isSupernode((*p)->address()))||(nwmgs->first->isMember((*p)->address()))) {
for(std::set<MulticastGroup>::iterator mg(nwmgs->second.begin());mg!=nwmgs->second.end();++mg) {
if ((outp.size() + 18) > ZT_UDP_DEFAULT_PAYLOAD_MTU) {
send(outp,true);
outp.reset((*p)->address(),_r->identity.address(),Packet::VERB_MULTICAST_LIKE);
}
outp.append((uint64_t)nwmgs->first->id());
outp.append(mg->mac().data,6);
outp.append((uint32_t)mg->adi());
}
}
}
if (outp.size() > ZT_PROTO_MIN_PACKET_LENGTH)
send(outp,true);
}
}
void Switch::_CBaddPeerFromHello(void *arg,const SharedPtr<Peer> &p,Topology::PeerVerifyResult result)
{
_CBaddPeerFromHello_Data *req = (_CBaddPeerFromHello_Data *)arg;
const RuntimeEnvironment *_r = req->parent->_r;
switch(result) {
case Topology::PEER_VERIFY_ACCEPTED_NEW:
case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE:
case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS: {
Packet outp(req->source,_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(req->helloPacketId);
outp.append(req->helloTimestamp);
outp.encrypt(p->cryptKey());
outp.hmacSet(p->macKey());
req->parent->_r->demarc->send(req->localPort,req->fromAddr,outp.data(),outp.size(),-1);
} break;
case Topology::PEER_VERIFY_REJECTED_INVALID_IDENTITY: {
Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(req->helloPacketId);
outp.append((unsigned char)Packet::ERROR_IDENTITY_INVALID);
outp.encrypt(p->cryptKey());
outp.hmacSet(p->macKey());
req->parent->_r->demarc->send(req->localPort,req->fromAddr,outp.data(),outp.size(),-1);
} break;
case Topology::PEER_VERIFY_REJECTED_DUPLICATE:
case Topology::PEER_VERIFY_REJECTED_DUPLICATE_TRIAGED: {
Packet outp(req->source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(req->helloPacketId);
outp.append((unsigned char)Packet::ERROR_IDENTITY_COLLISION);
outp.encrypt(p->cryptKey());
outp.hmacSet(p->macKey());
req->parent->_r->demarc->send(req->localPort,req->fromAddr,outp.data(),outp.size(),-1);
} break;
}
delete req;
}
void Switch::_CBaddPeerFromWhois(void *arg,const SharedPtr<Peer> &p,Topology::PeerVerifyResult result)
{
Switch *d = (Switch *)arg;
switch(result) {
case Topology::PEER_VERIFY_ACCEPTED_NEW:
case Topology::PEER_VERIFY_ACCEPTED_ALREADY_HAVE:
case Topology::PEER_VERIFY_ACCEPTED_DISPLACED_INVALID_ADDRESS:
d->_outstandingWhoisRequests_m.lock();
d->_outstandingWhoisRequests.erase(p->identity().address());
d->_outstandingWhoisRequests_m.unlock();
d->_retryPendingFor(p->identity().address());
break;
default:
break;
}
}
void Switch::_propagateMulticast(const SharedPtr<Network> &network,const Address &upstream,unsigned char *bloom,const MulticastGroup &mg,unsigned int mcHops,unsigned int mcLoadFactor,const MAC &from,unsigned int etherType,const void *data,unsigned int len)
{
SharedPtr<Peer> propPeers[ZT_MULTICAST_PROPAGATION_BREADTH];
unsigned int np = _r->topology->pickMulticastPropagationPeers(network->id(),upstream,bloom,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE * 8,ZT_MULTICAST_PROPAGATION_BREADTH,mg,propPeers);
for(unsigned int i=0;i<np;++i)
Utils::bloomAdd(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE,propPeers[i]->address().sum());
for(unsigned int i=0;i<np;++i) {
Packet outp(propPeers[i]->address(),_r->identity.address(),Packet::VERB_MULTICAST_FRAME);
outp.append(network->id());
outp.append(mg.mac().data,6);
outp.append((uint32_t)mg.adi());
outp.append(bloom,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE);
outp.append((uint8_t)mcHops);
outp.append((uint16_t)mcLoadFactor);
outp.append(from.data,6);
outp.append((uint16_t)etherType);
outp.append(data,len);
outp.compress();
send(outp,true);
}
}
Switch::PacketServiceAttemptResult Switch::_tryHandleRemotePacket(Demarc::Port localPort,const InetAddress &fromAddr,Packet &packet)
{
// NOTE: We assume any packet that's made it here is for us. If it's not it
// will fail HMAC validation and be discarded anyway, amounting to a second
// layer of sanity checking.
Address source(packet.source());
if ((!packet.encrypted())&&(packet.verb() == Packet::VERB_HELLO)) {
// Unencrypted HELLOs are handled here since they are used to
// populate our identity cache in the first place. Thus we might get
// a HELLO for someone for whom we don't have a Peer record.
TRACE("HELLO from %s(%s)",source.toString().c_str(),fromAddr.toString().c_str());
_doHELLO(localPort,fromAddr,packet);
return PACKET_SERVICE_ATTEMPT_OK;
}
SharedPtr<Peer> peer = _r->topology->getPeer(source);
if (peer) {
uint64_t now = Utils::now();
unsigned int latency = 0;
if (!packet.hmacVerify(peer->macKey())) {
TRACE("dropped packet from %s(%s), HMAC authentication failed (size: %u)",source.toString().c_str(),fromAddr.toString().c_str(),packet.size());
return PACKET_SERVICE_ATTEMPT_OK;
}
if (packet.encrypted()) {
packet.decrypt(peer->cryptKey());
} else if (packet.verb() != Packet::VERB_NOP) {
TRACE("ODD: %s from %s wasn't encrypted",Packet::verbString(packet.verb()),source.toString().c_str());
}
if (!packet.uncompress()) {
TRACE("dropped packet from %s(%s), compressed data invalid",source.toString().c_str(),fromAddr.toString().c_str());
return PACKET_SERVICE_ATTEMPT_OK;
}
switch(packet.verb()) {
case Packet::VERB_NOP: // these are sent for NAT-t
TRACE("NOP from %s(%s) (probably NAT-t)",source.toString().c_str(),fromAddr.toString().c_str());
break;
case Packet::VERB_HELLO: // usually they're handled up top, but technically an encrypted HELLO is legal
_doHELLO(localPort,fromAddr,packet);
break;
case Packet::VERB_ERROR:
try {
#ifdef ZT_TRACE
Packet::Verb inReVerb = (Packet::Verb)packet[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
Packet::ErrorCode errorCode = (Packet::ErrorCode)packet[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
TRACE("ERROR %s from %s in-re %s",Packet::errorString(errorCode),source.toString().c_str(),Packet::verbString(inReVerb));
#endif
// TODO: handle key errors, such as duplicate identity
} catch (std::exception &ex) {
TRACE("dropped ERROR from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped ERROR from %s: unexpected exception: (unknown)",source.toString().c_str());
}
break;
case Packet::VERB_OK:
try {
Packet::Verb inReVerb = (Packet::Verb)packet[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
switch(inReVerb) {
case Packet::VERB_HELLO:
latency = std::min((unsigned int)(now - packet.at<uint64_t>(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP)),(unsigned int)0xffff);
TRACE("OK(HELLO), latency to %s: %u",source.toString().c_str(),latency);
break;
case Packet::VERB_WHOIS:
// Right now we only query supernodes for WHOIS and only accept
// OK back from them. If we query other nodes, we'll have to
// do something to prevent WHOIS cache poisoning such as
// using the packet ID field in the OK packet to match with the
// original query. Technically we should be doing this anyway.
if (_r->topology->isSupernode(source))
_r->topology->addPeer(SharedPtr<Peer>(new Peer(_r->identity,Identity(packet,ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY))),&Switch::_CBaddPeerFromWhois,this);
break;
default:
break;
}
} catch (std::exception &ex) {
TRACE("dropped OK from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped OK from %s: unexpected exception: (unknown)",source.toString().c_str());
}
break;
case Packet::VERB_WHOIS: {
if (packet.payloadLength() == ZT_ADDRESS_LENGTH) {
SharedPtr<Peer> p(_r->topology->getPeer(Address(packet.payload())));
if (p) {
Packet outp(source,_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packet.packetId());
p->identity().serialize(outp,false);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
TRACE("sent WHOIS response to %s for %s",source.toString().c_str(),Address(packet.payload()).toString().c_str());
} else {
Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packet.packetId());
outp.append((unsigned char)Packet::ERROR_NOT_FOUND);
outp.append(packet.payload(),ZT_ADDRESS_LENGTH);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
TRACE("sent WHOIS ERROR to %s for %s (not found)",source.toString().c_str(),Address(packet.payload()).toString().c_str());
}
} else {
TRACE("dropped WHOIS from %s: missing or invalid address",source.toString().c_str());
}
} break;
case Packet::VERB_RENDEZVOUS:
try {
Address with(packet.field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS,ZT_ADDRESS_LENGTH));
RendezvousQueueEntry qe;
if (_r->topology->getPeer(with)) {
unsigned int port = packet.at<uint16_t>(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
unsigned int addrlen = packet[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
if ((port > 0)&&((addrlen == 4)||(addrlen == 16))) {
qe.inaddr.set(packet.field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS,addrlen),addrlen,port);
qe.fireAtTime = now + ZT_RENDEZVOUS_NAT_T_DELAY; // then send real packet in a few ms
qe.localPort = _r->demarc->pick(qe.inaddr);
TRACE("RENDEZVOUS from %s says %s might be at %s, starting NAT-t",source.toString().c_str(),with.toString().c_str(),qe.inaddr.toString().c_str());
_r->demarc->send(qe.localPort,qe.inaddr,"\0",1,ZT_FIREWALL_OPENER_HOPS); // start with firewall opener
{
Mutex::Lock _l(_rendezvousQueue_m);
_rendezvousQueue[with] = qe;
}
} else {
TRACE("dropped corrupt RENDEZVOUS from %s (bad address or port)",source.toString().c_str());
}
} else {
TRACE("ignored RENDEZVOUS from %s for unknown peer %s",source.toString().c_str(),with.toString().c_str());
}
} catch (std::exception &ex) {
TRACE("dropped RENDEZVOUS from %s: %s",source.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped RENDEZVOUS from %s: unexpected exception",source.toString().c_str());
}
break;
case Packet::VERB_FRAME:
try {
SharedPtr<Network> network(_r->nc->network(packet.at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID)));
if (network) {
if (network->isAllowed(source)) {
unsigned int etherType = packet.at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
if ((etherType != ZT_ETHERTYPE_ARP)&&(etherType != ZT_ETHERTYPE_IPV4)&&(etherType != ZT_ETHERTYPE_IPV6)) {
TRACE("dropped FRAME from %s: unsupported ethertype",source.toString().c_str());
} else if (packet.size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
network->tap().put(source.toMAC(),network->tap().mac(),etherType,packet.data() + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD);
}
} else {
TRACE("dropped FRAME from %s: not a member of closed network %llu",source.toString().c_str(),network->id());
}
} else {
TRACE("dropped FRAME from %s: network %llu unknown",source.toString().c_str(),packet.at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID));
}
} catch (std::exception &ex) {
TRACE("dropped FRAME from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped FRAME from %s: unexpected exception: (unknown)",source.toString().c_str());
}
break;
case Packet::VERB_MULTICAST_FRAME:
try {
SharedPtr<Network> network(_r->nc->network(packet.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID)));
if (network) {
if (network->isAllowed(source)) {
if (packet.size() > ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD) {
MulticastGroup mg(MAC(packet.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_MULTICAST_MAC,6)),packet.at<uint32_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ADI));
unsigned char bloom[ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE];
memcpy(bloom,packet.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_BLOOM,ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE),ZT_PROTO_VERB_MULTICAST_FRAME_BLOOM_FILTER_SIZE);
unsigned int hops = packet[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_HOPS];
unsigned int loadFactor = packet.at<uint16_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_LOAD_FACTOR);
MAC fromMac(packet.field(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FROM_MAC,6));
unsigned int etherType = packet.at<uint16_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE);
if ((fromMac.isZeroTier())&&(network->isAllowed(Address(fromMac)))) {
if (_checkAndUpdateMulticastHistory(fromMac,mg.mac(),packet.data() + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,network->id(),now)) {
TRACE("dropped duplicate MULTICAST_FRAME: %s -> %s (adi: %.8lx), %u bytes, net: %llu",fromMac.toString().c_str(),mg.mac().toString().c_str(),(unsigned long)mg.adi(),packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,network->id());
} else {
//TRACE("MULTICAST_FRAME: %s -> %s (adi: %.8lx), %u bytes, net: %llu",fromMac.toString().c_str(),mg.mac().toString().c_str(),(unsigned long)mg.adi(),packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,network->id());
network->tap().put(fromMac,mg.mac(),etherType,packet.data() + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD);
_propagateMulticast(network,source,bloom,mg,hops+1,loadFactor,fromMac,etherType,packet.data() + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD,packet.size() - ZT_PROTO_VERB_MULTICAST_FRAME_IDX_PAYLOAD);
}
} else {
TRACE("dropped MULTICAST_FRAME from %s: ultimate sender %s not a member of closed network %llu",source.toString().c_str(),fromMac.toString().c_str(),network->id());
}
}
} else {
TRACE("dropped MULTICAST_FRAME from %s: not a member of closed network %llu",source.toString().c_str(),network->id());
}
} else {
TRACE("dropped MULTICAST_FRAME from %s: network %llu unknown",source.toString().c_str(),packet.at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID));
}
} catch (std::exception &ex) {
TRACE("dropped MULTICAST_FRAME from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped MULTICAST_FRAME from %s: unexpected exception: (unknown)",source.toString().c_str());
}
break;
case Packet::VERB_MULTICAST_LIKE:
try {
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
unsigned int numAccepted = 0;
while ((ptr + 18) <= packet.size()) {
uint64_t nwid = packet.at<uint64_t>(ptr); ptr += 8;
SharedPtr<Network> network(_r->nc->network(nwid));
if (network) {
if (network->isAllowed(source)) {
MAC mac(packet.field(ptr,6)); ptr += 6;
uint32_t adi = packet.at<uint32_t>(ptr); ptr += 4;
TRACE("peer %s likes multicast group %s:%.8lx on network %llu",source.toString().c_str(),mac.toString().c_str(),(unsigned long)adi,nwid);
_r->topology->likesMulticastGroup(nwid,MulticastGroup(mac,adi),source,now);
++numAccepted;
} else {
TRACE("ignored MULTICAST_LIKE from %s: not a member of closed network %llu",source.toString().c_str(),nwid);
}
} else {
TRACE("ignored MULTICAST_LIKE from %s: network %llu unknown",source.toString().c_str(),nwid);
}
}
Packet outp(source,_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_LIKE);
outp.append(packet.packetId());
outp.append((uint16_t)numAccepted);
outp.encrypt(peer->cryptKey());
outp.hmacSet(peer->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
} catch (std::exception &ex) {
TRACE("dropped MULTICAST_LIKE from %s: unexpected exception: %s",source.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped MULTICAST_LIKE from %s: unexpected exception: (unknown)",source.toString().c_str());
}
break;
default:
TRACE("ignored unrecognized verb %.2x from %s",(unsigned int)packet.verb(),source.toString().c_str());
break;
}
// Update peer timestamps and learn new links
peer->onReceive(_r,localPort,fromAddr,latency,packet.hops(),packet.verb(),now);
} else return PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN;
return PACKET_SERVICE_ATTEMPT_OK;
}
void Switch::_doHELLO(Demarc::Port localPort,const InetAddress &fromAddr,Packet &packet)
{
Address source(packet.source());
try {
unsigned int protoVersion = packet[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
unsigned int vMajor = packet[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
unsigned int vMinor = packet[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
unsigned int vRevision = packet.at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
uint64_t timestamp = packet.at<uint64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
Identity id(packet,ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
SharedPtr<Peer> candidate(new Peer(_r->identity,id));
candidate->setPathAddress(fromAddr,false);
// Initial sniff test
if (protoVersion != ZT_PROTO_VERSION) {
TRACE("rejected HELLO from %s(%s): invalid protocol version",source.toString().c_str(),fromAddr.toString().c_str());
Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(packet.packetId());
outp.append((unsigned char)Packet::ERROR_BAD_PROTOCOL_VERSION);
outp.encrypt(candidate->cryptKey());
outp.hmacSet(candidate->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
return;
}
if (id.address().isReserved()) {
TRACE("rejected HELLO from %s(%s): identity has reserved address",source.toString().c_str(),fromAddr.toString().c_str());
Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(packet.packetId());
outp.append((unsigned char)Packet::ERROR_IDENTITY_INVALID);
outp.encrypt(candidate->cryptKey());
outp.hmacSet(candidate->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
return;
}
if (id.address() != source) {
TRACE("rejected HELLO from %s(%s): identity is not for sender of packet (HELLO is a self-announcement)",source.toString().c_str(),fromAddr.toString().c_str());
Packet outp(source,_r->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(packet.packetId());
outp.append((unsigned char)Packet::ERROR_INVALID_REQUEST);
outp.encrypt(candidate->cryptKey());
outp.hmacSet(candidate->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
return;
}
// Is this a HELLO for a peer we already know? If so just update its
// packet receive stats and send an OK.
SharedPtr<Peer> existingPeer(_r->topology->getPeer(id.address()));
if ((existingPeer)&&(existingPeer->identity() == id)) {
existingPeer->onReceive(_r,localPort,fromAddr,0,packet.hops(),Packet::VERB_HELLO,Utils::now());
Packet outp(source,_r->identity.address(),Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append(packet.packetId());
outp.append(timestamp);
outp.encrypt(existingPeer->cryptKey());
outp.hmacSet(existingPeer->macKey());
_r->demarc->send(localPort,fromAddr,outp.data(),outp.size(),-1);
return;
}
// Otherwise we call addPeer() and set up a callback to handle the verdict
_CBaddPeerFromHello_Data *arg = new _CBaddPeerFromHello_Data;
arg->parent = this;
arg->source = source;
arg->fromAddr = fromAddr;
arg->localPort = localPort;
arg->vMajor = vMajor;
arg->vMinor = vMinor;
arg->vRevision = vRevision;
arg->helloPacketId = packet.packetId();
arg->helloTimestamp = timestamp;
_r->topology->addPeer(candidate,&Switch::_CBaddPeerFromHello,arg);
} catch (std::exception &ex) {
TRACE("dropped HELLO from %s(%s): %s",source.toString().c_str(),fromAddr.toString().c_str(),ex.what());
} catch ( ... ) {
TRACE("dropped HELLO from %s(%s): unexpected exception",source.toString().c_str(),fromAddr.toString().c_str());
}
}
void Switch::_requestWhois(const Address &addr)
{
TRACE("requesting WHOIS for %s",addr.toString().c_str());
_sendWhoisRequest(addr,(const Address *)0,0);
Mutex::Lock _l(_outstandingWhoisRequests_m);
std::pair< std::map< Address,WhoisRequest >::iterator,bool > entry(_outstandingWhoisRequests.insert(std::pair<Address,WhoisRequest>(addr,WhoisRequest())));
entry.first->second.lastSent = Utils::now();
entry.first->second.retries = 0; // reset retry count if entry already existed
}
Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
{
SharedPtr<Peer> supernode(_r->topology->getBestSupernode(peersAlreadyConsulted,numPeersAlreadyConsulted));
if (supernode) {
Packet outp(supernode->address(),_r->identity.address(),Packet::VERB_WHOIS);
outp.append(addr.data(),ZT_ADDRESS_LENGTH);
outp.encrypt(supernode->cryptKey());
outp.hmacSet(supernode->macKey());
supernode->send(_r,outp.data(),outp.size(),false,Packet::VERB_WHOIS,Utils::now());
return supernode->address();
}
return Address();
}
Switch::PacketServiceAttemptResult Switch::_trySend(const Packet &packet,bool encrypt)
{
SharedPtr<Peer> peer(_r->topology->getPeer(packet.destination()));
if (peer) {
uint64_t now = Utils::now();
bool isRelay;
SharedPtr<Peer> via;
if ((_r->topology->isSupernode(peer->address()))||(peer->hasActiveDirectPath(now))) {
isRelay = false;
via = peer;
} else {
isRelay = true;
via = _r->topology->getBestSupernode();
if (!via)
return PACKET_SERVICE_ATTEMPT_SEND_FAILED;
}
Packet tmp(packet);
unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
tmp.setFragmented(chunkSize < tmp.size());
if (encrypt)
tmp.encrypt(peer->cryptKey());
tmp.hmacSet(peer->macKey());
Packet::Verb verb = packet.verb();
if (via->send(_r,tmp.data(),chunkSize,isRelay,verb,now)) {
if (chunkSize < tmp.size()) {
// Too big for one bite, fragment the rest
unsigned int fragStart = chunkSize;
unsigned int remaining = tmp.size() - chunkSize;
unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
++fragsRemaining;
unsigned int totalFragments = fragsRemaining + 1;
for(unsigned int f=0;f<fragsRemaining;++f) {
chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
Packet::Fragment frag(tmp,fragStart,chunkSize,f + 1,totalFragments);
if (!via->send(_r,frag.data(),frag.size(),isRelay,verb,now)) {
TRACE("WARNING: packet send to %s failed on later fragment #%u (check IP layer buffer sizes?)",via->address().toString().c_str(),f + 1);
return PACKET_SERVICE_ATTEMPT_SEND_FAILED;
}
fragStart += chunkSize;
remaining -= chunkSize;
}
}
return PACKET_SERVICE_ATTEMPT_OK;
}
return PACKET_SERVICE_ATTEMPT_SEND_FAILED;
}
return PACKET_SERVICE_ATTEMPT_PEER_UNKNOWN;
}
void Switch::_retryPendingFor(const Address &addr)
{
{
Mutex::Lock _l(_txQueue_m);
std::pair< std::multimap< Address,TXQueueEntry >::iterator,std::multimap< Address,TXQueueEntry >::iterator > eqrange = _txQueue.equal_range(addr);
for(std::multimap< Address,TXQueueEntry >::iterator i(eqrange.first);i!=eqrange.second;) {
if (_trySend(i->second.packet,i->second.encrypt) == PACKET_SERVICE_ATTEMPT_OK)
_txQueue.erase(i++);
else ++i;
}
}
{
Mutex::Lock _l(_rxQueue_m);
std::pair< std::multimap< Address,RXQueueEntry >::iterator,std::multimap< Address,RXQueueEntry >::iterator > eqrange = _rxQueue.equal_range(addr);
for(std::multimap< Address,RXQueueEntry >::iterator i(eqrange.first);i!=eqrange.second;) {
if (_tryHandleRemotePacket(i->second.localPort,i->second.fromAddr,i->second.packet) == PACKET_SERVICE_ATTEMPT_OK)
_rxQueue.erase(i++);
else ++i;
}
}
}
} // namespace ZeroTier