ZeroTierOne/attic/Filter.cpp

409 lines
15 KiB
C++
Raw Normal View History

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2015 ZeroTier, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* --
*
* ZeroTier may be used and distributed under the terms of the GPLv3, which
* are available at: http://www.gnu.org/licenses/gpl-3.0.html
*
* If you would like to embed ZeroTier into a commercial application or
* redistribute it in a modified binary form, please contact ZeroTier Networks
* LLC. Start here: http://www.zerotier.com/
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <algorithm>
#include "RuntimeEnvironment.hpp"
#include "Logger.hpp"
#include "Filter.hpp"
2013-07-08 00:21:43 -04:00
#include "Utils.hpp"
namespace ZeroTier {
const char *const Filter::UNKNOWN_NAME = "(unknown)";
2013-07-17 10:01:46 -04:00
const Range<unsigned int> Filter::ANY;
static inline Range<unsigned int> __parseRange(char *r)
throw(std::invalid_argument)
{
char *saveptr = (char *)0;
unsigned int a = 0;
unsigned int b = 0;
unsigned int fn = 0;
for(char *f=Utils::stok(r,"-",&saveptr);(f);f=Utils::stok((char *)0,"-",&saveptr)) {
if (*f) {
switch(fn++) {
case 0:
if (*f != '*')
a = b = (unsigned int)strtoul(f,(char **)0,10);
break;
case 1:
if (*f != '*')
b = (unsigned int)strtoul(f,(char **)0,10);
break;
default:
throw std::invalid_argument("rule range must be <int>, <int>-<int>, or *");
}
}
}
return Range<unsigned int>(a,b);
}
Filter::Rule::Rule(const char *s)
throw(std::invalid_argument)
{
char *saveptr = (char *)0;
char tmp[256];
if (!Utils::scopy(tmp,sizeof(tmp),s))
throw std::invalid_argument("rule string too long");
unsigned int fn = 0;
for(char *f=Utils::stok(tmp,";",&saveptr);(f);f=Utils::stok((char *)0,";",&saveptr)) {
if (*f) {
switch(fn++) {
case 0:
_etherType = __parseRange(f);
break;
case 1:
_protocol = __parseRange(f);
break;
case 2:
_port = __parseRange(f);
break;
default:
throw std::invalid_argument("rule string has unknown extra fields");
}
}
}
if (fn != 3)
throw std::invalid_argument("rule string must contain 3 fields");
}
bool Filter::Rule::operator()(unsigned int etype,const void *data,unsigned int len) const
throw(std::invalid_argument)
{
2013-07-08 00:21:43 -04:00
if ((!_etherType)||(_etherType(etype))) { // ethertype is ANY, or matches
// Ethertype determines meaning of protocol and port
switch(etype) {
case ZT_ETHERTYPE_IPV4:
if (len > 20) {
if ((!_protocol)||(_protocol(((const uint8_t *)data)[9]))) { // protocol is ANY or match
if (!_port) // port is ANY
return true;
2013-07-08 00:21:43 -04:00
// Don't match on fragments beyond fragment 0. If we've blocked
// fragment 0, further fragments will fall on deaf ears anyway.
if ((Utils::ntoh(((const uint16_t *)data)[3]) & 0x1fff))
return false;
2013-07-08 00:21:43 -04:00
// Internet header length determines where data begins, in multiples of 32 bits
unsigned int ihl = 4 * (((const uint8_t *)data)[0] & 0x0f);
2013-07-08 00:21:43 -04:00
switch(((const uint8_t *)data)[9]) { // port's meaning depends on IP protocol
case ZT_IPPROTO_ICMP:
// For ICMP, port is ICMP type
return _port(((const uint8_t *)data)[ihl]);
2013-07-08 00:21:43 -04:00
case ZT_IPPROTO_TCP:
case ZT_IPPROTO_UDP:
case ZT_IPPROTO_SCTP:
case ZT_IPPROTO_UDPLITE:
// For these, port is destination port. Protocol designers were
// nice enough to put the field in the same place.
return _port(((const uint16_t *)data)[(ihl / 2) + 1]);
default:
// port has no meaning for other IP types, so ignore it
return true;
2013-07-08 00:21:43 -04:00
}
return false; // no match on port
}
} else throw std::invalid_argument("undersized IPv4 packet");
2013-07-08 00:21:43 -04:00
break;
case ZT_ETHERTYPE_IPV6:
if (len > 40) {
int nextHeader = ((const uint8_t *)data)[6];
unsigned int pos = 40;
while ((pos < len)&&(nextHeader >= 0)&&(nextHeader != 59)) { // 59 == no next header
fprintf(stderr,"[rule] V6: start header parse, header %.2x pos %d\n",nextHeader,pos);
switch(nextHeader) {
case 0: // hop-by-hop options
case 60: // destination options
case 43: // routing
case 135: // mobility (mobile IPv6 options)
if (_protocol((unsigned int)nextHeader))
return true; // match if our goal was to match any of these
nextHeader = ((const uint8_t *)data)[pos];
pos += 8 + (8 * ((const uint8_t *)data)[pos + 1]);
break;
case 44: // fragment
if (_protocol(44))
return true; // match if our goal was to match fragments
nextHeader = ((const uint8_t *)data)[pos];
pos += 8;
break;
case ZT_IPPROTO_AH: // AH
return _protocol(ZT_IPPROTO_AH); // true if AH is matched protocol, otherwise false since packet will be IPsec
case ZT_IPPROTO_ESP: // ESP
return _protocol(ZT_IPPROTO_ESP); // true if ESP is matched protocol, otherwise false since packet will be IPsec
case ZT_IPPROTO_ICMPV6:
// Only match ICMPv6 if we've selected it specifically
if (_protocol(ZT_IPPROTO_ICMPV6)) {
// Port is interpreted as ICMPv6 type
if ((!_port)||(_port(((const uint8_t *)data)[pos])))
return true;
}
break;
case ZT_IPPROTO_TCP:
case ZT_IPPROTO_UDP:
case ZT_IPPROTO_SCTP:
case ZT_IPPROTO_UDPLITE:
// If we encounter any of these, match if protocol matches or is wildcard as
// we'll consider these the "real payload" if present.
if ((!_protocol)||(_protocol(nextHeader))) {
if ((!_port)||(_port(((const uint16_t *)data)[(pos / 2) + 1])))
return true; // protocol matches or is ANY, port is ANY or matches
}
break;
default: {
char foo[128];
Utils::snprintf(foo,sizeof(foo),"unrecognized IPv6 header type %d",(int)nextHeader);
throw std::invalid_argument(foo);
}
}
fprintf(stderr,"[rule] V6: end header parse, next header %.2x, new pos %d\n",nextHeader,pos);
}
} else throw std::invalid_argument("undersized IPv6 packet");
2013-07-08 00:21:43 -04:00
break;
default:
// For other ethertypes, protocol and port are ignored. What would they mean?
return true;
2013-07-08 00:21:43 -04:00
}
}
return false;
}
std::string Filter::Rule::toString() const
{
char buf[128];
std::string s;
switch(_etherType.magnitude()) {
case 0:
s.push_back('*');
break;
case 1:
Utils::snprintf(buf,sizeof(buf),"%u",_etherType.start);
s.append(buf);
break;
default:
Utils::snprintf(buf,sizeof(buf),"%u-%u",_etherType.start,_etherType.end);
s.append(buf);
break;
}
s.push_back(';');
switch(_protocol.magnitude()) {
case 0:
s.push_back('*');
break;
case 1:
Utils::snprintf(buf,sizeof(buf),"%u",_protocol.start);
s.append(buf);
break;
default:
Utils::snprintf(buf,sizeof(buf),"%u-%u",_protocol.start,_protocol.end);
s.append(buf);
break;
}
s.push_back(';');
switch(_port.magnitude()) {
case 0:
s.push_back('*');
break;
case 1:
Utils::snprintf(buf,sizeof(buf),"%u",_port.start);
s.append(buf);
break;
default:
Utils::snprintf(buf,sizeof(buf),"%u-%u",_port.start,_port.end);
s.append(buf);
break;
}
return s;
}
Filter::Filter(const char *s)
throw(std::invalid_argument)
{
char tmp[16384];
if (!Utils::scopy(tmp,sizeof(tmp),s))
throw std::invalid_argument("filter string too long");
char *saveptr = (char *)0;
unsigned int fn = 0;
2013-08-28 15:25:49 -04:00
for(char *f=Utils::stok(tmp,",",&saveptr);(f);f=Utils::stok((char *)0,",",&saveptr)) {
try {
_rules.push_back(Rule(f));
++fn;
} catch (std::invalid_argument &exc) {
char tmp[256];
Utils::snprintf(tmp,sizeof(tmp),"invalid rule at index %u: %s",fn,exc.what());
throw std::invalid_argument(tmp);
}
}
std::sort(_rules.begin(),_rules.end());
}
std::string Filter::toString() const
{
std::string s;
for(std::vector<Rule>::const_iterator r(_rules.begin());r!=_rules.end();++r) {
if (s.length() > 0)
s.push_back(',');
s.append(r->toString());
}
return s;
}
void Filter::add(const Rule &r)
{
for(std::vector<Rule>::iterator rr(_rules.begin());rr!=_rules.end();++rr) {
if (r == *rr)
return;
}
_rules.push_back(r);
std::sort(_rules.begin(),_rules.end());
}
const char *Filter::etherTypeName(const unsigned int etherType)
throw()
{
switch(etherType) {
case ZT_ETHERTYPE_IPV4: return "ETHERTYPE_IPV4";
case ZT_ETHERTYPE_ARP: return "ETHERTYPE_ARP";
case ZT_ETHERTYPE_RARP: return "ETHERTYPE_RARP";
case ZT_ETHERTYPE_ATALK: return "ETHERTYPE_ATALK";
case ZT_ETHERTYPE_AARP: return "ETHERTYPE_AARP";
case ZT_ETHERTYPE_IPX_A: return "ETHERTYPE_IPX_A";
case ZT_ETHERTYPE_IPX_B: return "ETHERTYPE_IPX_B";
case ZT_ETHERTYPE_IPV6: return "ETHERTYPE_IPV6";
}
return UNKNOWN_NAME;
}
const char *Filter::ipProtocolName(const unsigned int ipp)
throw()
{
switch(ipp) {
case ZT_IPPROTO_ICMP: return "IPPROTO_ICMP";
case ZT_IPPROTO_IGMP: return "IPPROTO_IGMP";
case ZT_IPPROTO_TCP: return "IPPROTO_TCP";
case ZT_IPPROTO_UDP: return "IPPROTO_UDP";
case ZT_IPPROTO_GRE: return "IPPROTO_GRE";
case ZT_IPPROTO_ESP: return "IPPROTO_ESP";
case ZT_IPPROTO_AH: return "IPPROTO_AH";
case ZT_IPPROTO_ICMPV6: return "IPPROTO_ICMPV6";
case ZT_IPPROTO_OSPF: return "IPPROTO_OSPF";
case ZT_IPPROTO_IPIP: return "IPPROTO_IPIP";
case ZT_IPPROTO_IPCOMP: return "IPPROTO_IPCOMP";
case ZT_IPPROTO_L2TP: return "IPPROTO_L2TP";
case ZT_IPPROTO_SCTP: return "IPPROTO_SCTP";
case ZT_IPPROTO_FC: return "IPPROTO_FC";
case ZT_IPPROTO_UDPLITE: return "IPPROTO_UDPLITE";
case ZT_IPPROTO_HIP: return "IPPROTO_HIP";
}
return UNKNOWN_NAME;
}
const char *Filter::icmpTypeName(const unsigned int icmpType)
throw()
{
switch(icmpType) {
case ZT_ICMP_ECHO_REPLY: return "ICMP_ECHO_REPLY";
case ZT_ICMP_DESTINATION_UNREACHABLE: return "ICMP_DESTINATION_UNREACHABLE";
case ZT_ICMP_SOURCE_QUENCH: return "ICMP_SOURCE_QUENCH";
case ZT_ICMP_REDIRECT: return "ICMP_REDIRECT";
case ZT_ICMP_ALTERNATE_HOST_ADDRESS: return "ICMP_ALTERNATE_HOST_ADDRESS";
case ZT_ICMP_ECHO_REQUEST: return "ICMP_ECHO_REQUEST";
case ZT_ICMP_ROUTER_ADVERTISEMENT: return "ICMP_ROUTER_ADVERTISEMENT";
case ZT_ICMP_ROUTER_SOLICITATION: return "ICMP_ROUTER_SOLICITATION";
case ZT_ICMP_TIME_EXCEEDED: return "ICMP_TIME_EXCEEDED";
case ZT_ICMP_BAD_IP_HEADER: return "ICMP_BAD_IP_HEADER";
case ZT_ICMP_TIMESTAMP: return "ICMP_TIMESTAMP";
case ZT_ICMP_TIMESTAMP_REPLY: return "ICMP_TIMESTAMP_REPLY";
case ZT_ICMP_INFORMATION_REQUEST: return "ICMP_INFORMATION_REQUEST";
case ZT_ICMP_INFORMATION_REPLY: return "ICMP_INFORMATION_REPLY";
case ZT_ICMP_ADDRESS_MASK_REQUEST: return "ICMP_ADDRESS_MASK_REQUEST";
case ZT_ICMP_ADDRESS_MASK_REPLY: return "ICMP_ADDRESS_MASK_REPLY";
case ZT_ICMP_TRACEROUTE: return "ICMP_TRACEROUTE";
case ZT_ICMP_MOBILE_HOST_REDIRECT: return "ICMP_MOBILE_HOST_REDIRECT";
case ZT_ICMP_MOBILE_REGISTRATION_REQUEST: return "ICMP_MOBILE_REGISTRATION_REQUEST";
case ZT_ICMP_MOBILE_REGISTRATION_REPLY: return "ICMP_MOBILE_REGISTRATION_REPLY";
}
return UNKNOWN_NAME;
}
const char *Filter::icmp6TypeName(const unsigned int icmp6Type)
throw()
{
switch(icmp6Type) {
case ZT_ICMP6_DESTINATION_UNREACHABLE: return "ICMP6_DESTINATION_UNREACHABLE";
case ZT_ICMP6_PACKET_TOO_BIG: return "ICMP6_PACKET_TOO_BIG";
case ZT_ICMP6_TIME_EXCEEDED: return "ICMP6_TIME_EXCEEDED";
case ZT_ICMP6_PARAMETER_PROBLEM: return "ICMP6_PARAMETER_PROBLEM";
case ZT_ICMP6_ECHO_REQUEST: return "ICMP6_ECHO_REQUEST";
case ZT_ICMP6_ECHO_REPLY: return "ICMP6_ECHO_REPLY";
case ZT_ICMP6_MULTICAST_LISTENER_QUERY: return "ICMP6_MULTICAST_LISTENER_QUERY";
case ZT_ICMP6_MULTICAST_LISTENER_REPORT: return "ICMP6_MULTICAST_LISTENER_REPORT";
case ZT_ICMP6_MULTICAST_LISTENER_DONE: return "ICMP6_MULTICAST_LISTENER_DONE";
case ZT_ICMP6_ROUTER_SOLICITATION: return "ICMP6_ROUTER_SOLICITATION";
case ZT_ICMP6_ROUTER_ADVERTISEMENT: return "ICMP6_ROUTER_ADVERTISEMENT";
case ZT_ICMP6_NEIGHBOR_SOLICITATION: return "ICMP6_NEIGHBOR_SOLICITATION";
case ZT_ICMP6_NEIGHBOR_ADVERTISEMENT: return "ICMP6_NEIGHBOR_ADVERTISEMENT";
case ZT_ICMP6_REDIRECT_MESSAGE: return "ICMP6_REDIRECT_MESSAGE";
case ZT_ICMP6_ROUTER_RENUMBERING: return "ICMP6_ROUTER_RENUMBERING";
case ZT_ICMP6_NODE_INFORMATION_QUERY: return "ICMP6_NODE_INFORMATION_QUERY";
case ZT_ICMP6_NODE_INFORMATION_RESPONSE: return "ICMP6_NODE_INFORMATION_RESPONSE";
case ZT_ICMP6_INV_NEIGHBOR_SOLICITATION: return "ICMP6_INV_NEIGHBOR_SOLICITATION";
case ZT_ICMP6_INV_NEIGHBOR_ADVERTISEMENT: return "ICMP6_INV_NEIGHBOR_ADVERTISEMENT";
case ZT_ICMP6_MLDV2: return "ICMP6_MLDV2";
case ZT_ICMP6_HOME_AGENT_ADDRESS_DISCOVERY_REQUEST: return "ICMP6_HOME_AGENT_ADDRESS_DISCOVERY_REQUEST";
case ZT_ICMP6_HOME_AGENT_ADDRESS_DISCOVERY_REPLY: return "ICMP6_HOME_AGENT_ADDRESS_DISCOVERY_REPLY";
case ZT_ICMP6_MOBILE_PREFIX_SOLICITATION: return "ICMP6_MOBILE_PREFIX_SOLICITATION";
case ZT_ICMP6_MOBILE_PREFIX_ADVERTISEMENT: return "ICMP6_MOBILE_PREFIX_ADVERTISEMENT";
case ZT_ICMP6_CERTIFICATION_PATH_SOLICITATION: return "ICMP6_CERTIFICATION_PATH_SOLICITATION";
case ZT_ICMP6_CERTIFICATION_PATH_ADVERTISEMENT: return "ICMP6_CERTIFICATION_PATH_ADVERTISEMENT";
case ZT_ICMP6_MULTICAST_ROUTER_ADVERTISEMENT: return "ICMP6_MULTICAST_ROUTER_ADVERTISEMENT";
case ZT_ICMP6_MULTICAST_ROUTER_SOLICITATION: return "ICMP6_MULTICAST_ROUTER_SOLICITATION";
case ZT_ICMP6_MULTICAST_ROUTER_TERMINATION: return "ICMP6_MULTICAST_ROUTER_TERMINATION";
case ZT_ICMP6_RPL_CONTROL_MESSAGE: return "ICMP6_RPL_CONTROL_MESSAGE";
}
return UNKNOWN_NAME;
}
} // namespace ZeroTier