ZeroTierOne/node/Hashtable.hpp

441 lines
10 KiB
C++
Raw Permalink Normal View History

/*
2019-08-23 16:23:39 +00:00
* Copyright (c)2019 ZeroTier, Inc.
*
2019-08-23 16:23:39 +00:00
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
2019-08-23 16:23:39 +00:00
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
2019-08-23 16:23:39 +00:00
/****/
#ifndef ZT_HASHTABLE_HPP
#define ZT_HASHTABLE_HPP
#include "Constants.hpp"
2024-09-26 12:52:29 +00:00
#include <algorithm>
#include <stdexcept>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <utility>
2024-09-26 12:52:29 +00:00
#include <vector>
namespace ZeroTier {
/**
* A minimal hash table implementation for the ZeroTier core
*/
2024-09-26 12:52:29 +00:00
template <typename K, typename V> class Hashtable {
private:
struct _Bucket {
_Bucket(const K& k, const V& v) : k(k), v(v)
{
}
_Bucket(const K& k) : k(k), v()
{
}
_Bucket(const _Bucket& b) : k(b.k), v(b.v)
{
}
inline _Bucket& operator=(const _Bucket& b)
{
k = b.k;
v = b.v;
return *this;
}
K k;
V v;
_Bucket* next; // must be set manually for each _Bucket
};
public:
/**
* A simple forward iterator (different from STL)
*
* It's safe to erase the last key, but not others. Don't use set() since that
* may rehash and invalidate the iterator. Note the erasing the key will destroy
* the targets of the pointers returned by next().
*/
class Iterator {
public:
/**
* @param ht Hash table to iterate over
*/
Iterator(Hashtable& ht) : _idx(0), _ht(&ht), _b(ht._t[0])
{
}
/**
* @param kptr Pointer to set to point to next key
* @param vptr Pointer to set to point to next value
* @return True if kptr and vptr are set, false if no more entries
*/
inline bool next(K*& kptr, V*& vptr)
{
for (;;) {
if (_b) {
kptr = &(_b->k);
vptr = &(_b->v);
_b = _b->next;
return true;
}
++_idx;
if (_idx >= _ht->_bc) {
return false;
}
_b = _ht->_t[_idx];
}
}
private:
unsigned long _idx;
Hashtable* _ht;
_Bucket* _b;
};
// friend class Hashtable<K,V>::Iterator;
/**
* @param bc Initial capacity in buckets (default: 64, must be nonzero)
*/
Hashtable(unsigned long bc = 64) : _t(reinterpret_cast<_Bucket**>(::malloc(sizeof(_Bucket*) * bc))), _bc(bc), _s(0)
{
if (! _t) {
throw ZT_EXCEPTION_OUT_OF_MEMORY;
}
for (unsigned long i = 0; i < bc; ++i) {
_t[i] = (_Bucket*)0;
}
}
Hashtable(const Hashtable<K, V>& ht) : _t(reinterpret_cast<_Bucket**>(::malloc(sizeof(_Bucket*) * ht._bc))), _bc(ht._bc), _s(ht._s)
{
if (! _t) {
throw ZT_EXCEPTION_OUT_OF_MEMORY;
}
for (unsigned long i = 0; i < _bc; ++i) {
_t[i] = (_Bucket*)0;
}
for (unsigned long i = 0; i < _bc; ++i) {
const _Bucket* b = ht._t[i];
while (b) {
_Bucket* nb = new _Bucket(*b);
nb->next = _t[i];
_t[i] = nb;
b = b->next;
}
}
}
~Hashtable()
{
this->clear();
::free(_t);
}
inline Hashtable& operator=(const Hashtable<K, V>& ht)
{
this->clear();
if (ht._s) {
for (unsigned long i = 0; i < ht._bc; ++i) {
const _Bucket* b = ht._t[i];
while (b) {
this->set(b->k, b->v);
b = b->next;
}
}
}
return *this;
}
/**
* Erase all entries
*/
inline void clear()
{
if (_s) {
for (unsigned long i = 0; i < _bc; ++i) {
_Bucket* b = _t[i];
while (b) {
_Bucket* const nb = b->next;
delete b;
b = nb;
}
_t[i] = (_Bucket*)0;
}
_s = 0;
}
}
/**
* @return Vector of all keys
*/
inline typename std::vector<K> keys() const
{
typename std::vector<K> k;
if (_s) {
k.reserve(_s);
for (unsigned long i = 0; i < _bc; ++i) {
_Bucket* b = _t[i];
while (b) {
k.push_back(b->k);
b = b->next;
}
}
}
return k;
}
/**
* Append all keys (in unspecified order) to the supplied vector or list
*
* @param v Vector, list, or other compliant container
* @tparam Type of V (generally inferred)
*/
template <typename C> inline void appendKeys(C& v) const
{
if (_s) {
for (unsigned long i = 0; i < _bc; ++i) {
_Bucket* b = _t[i];
while (b) {
v.push_back(b->k);
b = b->next;
}
}
}
}
/**
* @return Vector of all entries (pairs of K,V)
*/
inline typename std::vector<std::pair<K, V> > entries() const
{
typename std::vector<std::pair<K, V> > k;
if (_s) {
k.reserve(_s);
for (unsigned long i = 0; i < _bc; ++i) {
_Bucket* b = _t[i];
while (b) {
k.push_back(std::pair<K, V>(b->k, b->v));
b = b->next;
}
}
}
return k;
}
/**
* @param k Key
* @return Pointer to value or NULL if not found
*/
inline V* get(const K& k)
{
_Bucket* b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k) {
return &(b->v);
}
b = b->next;
}
return (V*)0;
}
inline const V* get(const K& k) const
{
return const_cast<Hashtable*>(this)->get(k);
}
/**
* @param k Key
* @param v Value to fill with result
* @return True if value was found and set (if false, v is not modified)
*/
inline bool get(const K& k, V& v) const
{
_Bucket* b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k) {
v = b->v;
return true;
}
b = b->next;
}
return false;
}
/**
* @param k Key to check
* @return True if key is present
*/
inline bool contains(const K& k) const
{
_Bucket* b = _t[_hc(k) % _bc];
while (b) {
if (b->k == k) {
return true;
}
b = b->next;
}
return false;
}
/**
* @param k Key
* @return True if value was present
*/
inline bool erase(const K& k)
{
const unsigned long bidx = _hc(k) % _bc;
_Bucket* lastb = (_Bucket*)0;
_Bucket* b = _t[bidx];
while (b) {
if (b->k == k) {
if (lastb) {
lastb->next = b->next;
}
else {
_t[bidx] = b->next;
}
delete b;
--_s;
return true;
}
lastb = b;
b = b->next;
}
return false;
}
/**
* @param k Key
* @param v Value
* @return Reference to value in table
*/
inline V& set(const K& k, const V& v)
{
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
_Bucket* b = _t[bidx];
while (b) {
if (b->k == k) {
b->v = v;
return b->v;
}
b = b->next;
}
if (_s >= _bc) {
_grow();
bidx = h % _bc;
}
b = new _Bucket(k, v);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
return b->v;
}
/**
* @param k Key
* @return Value, possibly newly created
*/
inline V& operator[](const K& k)
{
const unsigned long h = _hc(k);
unsigned long bidx = h % _bc;
_Bucket* b = _t[bidx];
while (b) {
if (b->k == k) {
return b->v;
}
b = b->next;
}
if (_s >= _bc) {
_grow();
bidx = h % _bc;
}
b = new _Bucket(k);
b->next = _t[bidx];
_t[bidx] = b;
++_s;
return b->v;
}
/**
* @return Number of entries
*/
inline unsigned long size() const
{
return _s;
}
/**
* @return True if table is empty
*/
inline bool empty() const
{
return (_s == 0);
}
private:
template <typename O> static inline unsigned long _hc(const O& obj)
{
return (unsigned long)obj.hashCode();
}
static inline unsigned long _hc(const uint64_t i)
{
return (unsigned long)(i ^ (i >> 32)); // good for network IDs and addresses
}
static inline unsigned long _hc(const uint32_t i)
{
return ((unsigned long)i * (unsigned long)0x9e3779b1);
}
static inline unsigned long _hc(const uint16_t i)
{
return ((unsigned long)i * (unsigned long)0x9e3779b1);
}
static inline unsigned long _hc(const int i)
{
return ((unsigned long)i * (unsigned long)0x9e3379b1);
}
inline void _grow()
{
const unsigned long nc = _bc * 2;
_Bucket** nt = reinterpret_cast<_Bucket**>(::malloc(sizeof(_Bucket*) * nc));
if (nt) {
for (unsigned long i = 0; i < nc; ++i) {
nt[i] = (_Bucket*)0;
}
for (unsigned long i = 0; i < _bc; ++i) {
_Bucket* b = _t[i];
while (b) {
_Bucket* const nb = b->next;
const unsigned long nidx = _hc(b->k) % nc;
b->next = nt[nidx];
nt[nidx] = b;
b = nb;
}
}
::free(_t);
_t = nt;
_bc = nc;
}
}
_Bucket** _t;
unsigned long _bc;
unsigned long _s;
};
2024-09-26 12:52:29 +00:00
} // namespace ZeroTier
#endif