function [rho,a,temp,press,kvisc,ZorH]=stdatmo(H_in,Toffset,Units,GeomFlag) % STDATMO Find gas properties in earth's atmosphere. % [rho,a,T,P,nu,ZorH]=STDATMO(H,dT,Units,GeomFlag) % % STDATMO by itself gives the atmospheric properties at sea level on a % standard day. % % STDATMO(H) returns the properties of the 1976 Standard Atmosphere at % geopotential altitude H (meters), where H is a scalar, vector, matrix, % or ND array. % % STDATMO(H,dT) returns properties when the temperature is dT degrees % offset from standand conditions. H and dT must be the same size or else % one must be a scalar. % % STDATMO(H,dT,Units) specifies units for the inputs outputs. Options are % SI (default) or US (a.k.a. Imperial, English). For SI, set Units to [] % or 'SI'. For US, set Units to 'US'. Input and output units may be % different by passing a cell array of the form {Units_in Units_out}, % e.g. {'US' 'SI'}. Keep in mind that dT is an offset, so when converting % between Celsius and Fahrenheit, use only the scaling factor (dC/dF = % dK/dR = 5/9). Units are as follows: % Input: SI (default) US % H: Altitude m ft % dT: Temp. offset °C/°K °F/°R % Output: % rho: Density kg/m^3 slug/ft^3 % a: Speed of sound m/s ft/s % T: Temperature °K °R % P: Pressure Pa lbf/ft^2 % nu: Kinem. viscosity m^2/s ft^2/s % ZorH: Height or altitude m ft % % STDATMO(H,dT,u), where u is a structure created by the UNITS function, % accepts variables of the DimensionedVariable class as inputs. Outputs % are of the DimensionedVariable class. If a DimensionedVariable is not % provided for an input, STDATMO assumes SI input. % % STDATMO(H,dT,Units,GeomFlag) with logical input GeomFlag returns % properties at geometric altitude input H instead of the normal % geopotential altitude. % % [rho,a,T,P,nu]=STDATMO(H,dT,...) returns atmospheric properties the % same size as H and/or dT (P does not vary with temperature offset and % is always the size of H) % % [rho,a,T,P,nu,ZorH]=STDATMO(H,...) returns either geometric height, Z, % (GeomFlag not set) or geopotential height, H, (GeomFlag set). % % Example 1: Find atmospheric properties at every 100 m of geometric % height for an off-standard atmosphere with temperature offset varying % +/- 25°C sinusoidally with a period of 4 km. % Z = 0:100:86000; % [rho,a,T,P,nu,H]=stdatmo(Z,25*sin(pi*Z/2000),'',true); % semilogx(rho/stdatmo,H/1000) % title('Density variation with sinusoidal off-standard atmosphere') % xlabel('\sigma'); ylabel('Altitude (km)') % % Example 2: Create tables of atmospheric properties up to 30000 ft for a % cold (-15°C), standard, and hot (+15°C) day with columns % [h(ft) Z(ft) rho(slug/ft3) sigma a(ft/s) T(R) P(psf) µ(slug/ft-s) nu(ft2/s)] % using 3-dimensional array inputs. % [~,h,dT]=meshgrid(0,-5000:1000:30000,-15:15:15); % [rho,a,T,P,nu,Z]=stdatmo(h,dT*9/5,'US',0); % Table = [h Z rho rho/stdatmo(0,0,'US') T P nu.*rho nu]; % format short e % ColdTable = Table(:,:,1) % StandardTable = Table(:,:,2) % HotTable = Table(:,:,3) % % Example 3: Use the unit consistency enforced by the DimensionedVariable % class to find the SI dynamic pressure, Mach number, Reynolds number, and % stagnation temperature of an aircraft flying at flight level FL500 % (50000 ft) with speed 500 knots and characteristic length of 80 inches. % u = units; % V = 500*u.kts; c = 80*u.in; % [rho,a,T,P,nu]=stdatmo(50*u.kft,[],u); % Dyn_Press = 1/2*rho*V^2; % M = V/a; % Re = V*c/nu; % T0 = T*(1+(1.4-1)/2*M^2); % % This atmospheric model is not recommended for use at altitudes above % 86 km geometric height (84852 m/278386 ft geopotential) and returns NaN % for altitudes above 90 km geopotential. % % See also DENSITYALT, ATMOSISA, ATMOSNONSTD, DENSITYALT, % UNITS, DIMENSIONEDVARIABLE. % http://www.mathworks.com/matlabcentral/fileexchange/39325 % http://www.mathworks.com/matlabcentral/fileexchange/38977 % % [rho,a,T,P,nu,ZorH]=STDATMO(H,dT,Units,GeomFlag) % About: %{ Author: Sky Sartorius www.mathworks.com/matlabcentral/fileexchange/authors/101715 References: ESDU 77022 www.pdas.com/atmos.html %} if nargin >= 3 && isstruct(Units) U = true; u = Units; if isa(H_in,'DimensionedVariable') H_in = H_in/u.m; end if isa(Toffset,'DimensionedVariable') Toffset = Toffset/u.K; end Units = 'si'; else U = false; end if nargin == 0 H_in = 0; end if nargin < 2 || isempty(Toffset) Toffset = 0; end if nargin <= 2 && all(H_in(:) <= 11000) %quick troposphere-only code TonTi=1-2.255769564462953e-005*H_in; press=101325*TonTi.^(5.255879812716677); temp = TonTi*288.15 + Toffset; rho = press./temp/287.05287; if nargout > 1 a = sqrt(401.874018 * temp); if nargout >= 5 kvisc = (1.458e-6 * temp.^1.5 ./ (temp + 110.4)) ./ rho; if nargout == 6 % Assume Geop in, find Z ZorH = 6356766*H_in./(6356766-H_in); end end end return end % index Lapse rate Base Temp Base Geopo Alt Base Pressure % i Ki (°C/m) Ti (°K) Hi (m) P (Pa) D =[1 -.0065 288.15 0 101325 2 0 216.65 11000 22632.0400950078 3 .001 216.65 20000 5474.87742428105 4 .0028 228.65 32000 868.015776620216 5 0 270.65 47000 110.90577336731 6 -.0028 270.65 51000 66.9385281211797 7 -.002 214.65 71000 3.9563921603966 8 0 186.94590831019 84852.0458449057 0.373377173762337 ]; % Constants R=287.05287; %N-m/kg-K; value from ESDU 77022 % R=287.0531; %N-m/kg-K; value used by MATLAB aerospace toolbox ATMOSISA gamma=1.4; g0=9.80665; %m/sec^2 RE=6356766; %Radius of the Earth, m Bs = 1.458e-6; %N-s/m2 K1/2 S = 110.4; %K K=D(:,2); %°K/m T=D(:,3); %°K H=D(:,4); %m P=D(:,5); %Pa temp=zeros(size(H_in)); press=temp; hmax = 90000; if nargin < 3 || isempty(Units) Uin = false; Uout = Uin; elseif isnumeric(Units) || islogical(Units) Uin = Units; Uout = Uin; else if ischar(Units) %input and output units the same Unitsin = Units; Unitsout = Unitsin; elseif iscell(Units) && length(Units) == 2 Unitsin = Units{1}; Unitsout = Units{2}; elseif iscell(Units) && length(Units) == 1 Unitsin = Units{1}; Unitsout = Unitsin; else error('Incorrect Units definition. Units must be ''SI'', ''US'', or 2-element cell array') end if strcmpi(Unitsin,'si') Uin = false; elseif strcmpi(Unitsin,'us') Uin = true; else error('Units must be ''SI'' or ''US''') end if strcmpi(Unitsout,'si') Uout = false; elseif strcmpi(Unitsout,'us') Uout = true; else error('Units must be ''SI'' or ''US''') end end % Convert from imperial units, if necessary. if Uin H_in = H_in * 0.3048; Toffset = Toffset * 5/9; end % Convert from geometric altitude to geopotental altitude, if necessary. if nargin < 4 GeomFlag = false; end if GeomFlag Hgeop=(RE*H_in)./(RE+H_in); else Hgeop=H_in; end n1=(Hgeop<=H(2)); n2=(Hgeop<=H(3) & Hgeop>H(2)); n3=(Hgeop<=H(4) & Hgeop>H(3)); n4=(Hgeop<=H(5) & Hgeop>H(4)); n5=(Hgeop<=H(6) & Hgeop>H(5)); n6=(Hgeop<=H(7) & Hgeop>H(6)); n7=(Hgeop<=H(8) & Hgeop>H(7)); n8=(Hgeop<=hmax & Hgeop>H(8)); n9=(Hgeop>hmax); % Troposphere if any(n1(:)) i=1; TonTi=1+K(i)*(Hgeop(n1)-H(i))/T(i); temp(n1)=TonTi*T(i); PonPi=TonTi.^(-g0/(K(i)*R)); press(n1)=P(i)*PonPi; end % Tropopause if any(n2(:)) i=2; temp(n2)=T(i); PonPi=exp(-g0*(Hgeop(n2)-H(i))/(T(i)*R)); press(n2)=P(i)*PonPi; end % Stratosphere 1 if any(n3(:)) i=3; TonTi=1+K(i)*(Hgeop(n3)-H(i))/T(i); temp(n3)=TonTi*T(i); PonPi=TonTi.^(-g0/(K(i)*R)); press(n3)=P(i)*PonPi; end % Stratosphere 2 if any(n4(:)) i=4; TonTi=1+K(i)*(Hgeop(n4)-H(i))/T(i); temp(n4)=TonTi*T(i); PonPi=TonTi.^(-g0/(K(i)*R)); press(n4)=P(i)*PonPi; end % Stratopause if any(n5(:)) i=5; temp(n5)=T(i); PonPi=exp(-g0*(Hgeop(n5)-H(i))/(T(i)*R)); press(n5)=P(i)*PonPi; end % Mesosphere 1 if any(n6(:)) i=6; TonTi=1+K(i)*(Hgeop(n6)-H(i))/T(i); temp(n6)=TonTi*T(i); PonPi=TonTi.^(-g0/(K(i)*R)); press(n6)=P(i)*PonPi; end % Mesosphere 2 if any(n7(:)) i=7; TonTi=1+K(i)*(Hgeop(n7)-H(i))/T(i); temp(n7)=TonTi*T(i); PonPi=TonTi.^(-g0/(K(i)*R)); press(n7)=P(i)*PonPi; end % Mesopause if any(n8(:)) i=8; temp(n8)=T(i); PonPi=exp(-g0*(Hgeop(n8)-H(i))/(T(i)*R)); press(n8)=P(i)*PonPi; end if any(n9(:)) warning('One or more altitudes above upper limit.') temp(n9)=NaN; press(n9)=NaN; end temp = temp + Toffset; rho = press./temp/R; if nargout >= 2 a = sqrt(gamma * R * temp); if nargout >= 5 kvisc = (Bs * temp.^1.5 ./ (temp + S)) ./ rho; %m2/s if nargout == 6 if GeomFlag % Geometric in, ZorH is geopotential altitude (H) ZorH = Hgeop; else % Geop in, find Z ZorH = RE*Hgeop./(RE-Hgeop); end end end end if Uout %convert to imperial units if output in imperial units rho = rho / 515.3788; if nargout >= 2 a = a / 0.3048; temp = temp * 1.8; press = press / 47.88026; if nargout >= 5 kvisc = kvisc / 0.09290304; if nargout == 6 ZorH = ZorH / 0.3048; end end end end if U rho = rho*u.kg/(u.m^3); if nargout >= 2 a = a*u.m/u.s; temp = temp*u.K; press = press*u.Pa; if nargout >= 5 kvisc = kvisc*u.m^2/u.s; if nargout == 6 ZorH = ZorH*u.m; end end end end end % Credit for elements of coding scheme: % cobweb.ecn.purdue.edu/~andrisan/Courses/AAE490A_S2001/Exp1/ % Revision history: %{ V1.0 5 July 2010 V1.1 8 July 2010 Update to references and improved input handling V2.0 12 July 2010 Changed input ImperialFlag to Units. Units must now be a string or cell array {Units_in Units_out}. Version 1 syntax works as before. Two examples added to help V2.1 15 July 2010 Changed help formatting Sped up code - no longer caclulates a or nu if outputs not specified. Also used profiler to speed test against ATMOSISA, which is consistently about 5 times slower than STDATMO 17 July 2010 Cleaned up Example 1 setup using meshgrid 26 July 2010 Switched to logical indexing, which sped up running Example 1 significantly(running [rho,a,T,P,nu,h]=stdatmo(Z,dT,'US',1) 1000 times: ~.67s before, ~.51s after) V3.0 7 August 2010 Consolodated some lines for succintness Changed Hgeop output to be either geopotential altitude or geometric altitude, depending on which was input. Updated help and examples accordingly. V3.1 27 August 2010 Added a very quick, troposhere-only section V3.2 23 December 2010 Minor changes, tested on R2010a, and sinusoidal example added V4.0 6 July 2011 Imperial temp offset now °F/°R instead of °C/°K V4.1 12 Sep 2012 Added ZorH output support for quick troposphere calculation uploaded V4.2 tiny changes to help and input handling nov 2012: some :s added to make use of any() better added see alsos uploaded V5.0 STDATMODIM wrapper created that takes DimensionedVariable input uploaded 5 Dec 2012 V6.0 STDATMODIM functionality integrated into STDATMO; example three changed for illustration. %}