mirror of
https://github.com/OpenMTC/OpenMTC.git
synced 2024-12-29 01:09:00 +00:00
95 lines
3.1 KiB
Python
95 lines
3.1 KiB
Python
import time
|
|
from collections import deque
|
|
from math import sqrt
|
|
|
|
from openmtc_app.onem2m import XAE
|
|
from openmtc_onem2m.model import Container
|
|
|
|
|
|
class DataAggregation(XAE):
|
|
remove_registration = True
|
|
remote_cse = '/mn-cse-1/onem2m'
|
|
period = 10
|
|
|
|
def _on_register(self):
|
|
# init variables
|
|
self.sensor_register = {}
|
|
self.dev_cnt_list = []
|
|
# start endless loop
|
|
self.periodic_discover(
|
|
self.remote_cse,
|
|
{
|
|
'labels': ['openmtc:sensor_data'],
|
|
},
|
|
self.period,
|
|
self.handle_discovery_sensor
|
|
)
|
|
|
|
def handle_discovery_sensor(self, discovery):
|
|
for uri in discovery:
|
|
self.sensor_register[uri] = {
|
|
'values': deque([], 10)
|
|
}
|
|
content = self.get_content(uri)
|
|
if content:
|
|
self.handle_sensor(uri, content)
|
|
self.add_container_subscription(uri, self.handle_sensor)
|
|
|
|
def create_sensor_structure(self, sensor_entry, content):
|
|
# dev_cnt
|
|
cnt_name = '_'.join(content[0]['bn'].split(':')[2:])
|
|
cnt_name += '_' + content[0]['n']
|
|
dev_cnt = Container(resourceName=cnt_name)
|
|
if dev_cnt not in self.dev_cnt_list:
|
|
sensor_entry['dev_cnt'] = dev_cnt = self.create_container(None, dev_cnt)
|
|
# mean cnt
|
|
mean_cnt = Container(resourceName='mean', labels=["openmtc:mean_data"])
|
|
sensor_entry['mean_cnt'] = self.create_container(dev_cnt, mean_cnt)
|
|
# Standard_deviation cnt
|
|
deviation_cnt = Container(resourceName='Standard_deviation', labels=["openmtc:Standard_deviation_data"])
|
|
sensor_entry['deviation_cnt'] = self.create_container(dev_cnt, deviation_cnt)
|
|
self.dev_cnt_list.append(dev_cnt)
|
|
else:
|
|
return dev_cnt,"already exists "
|
|
|
|
def handle_sensor(self, container, content):
|
|
sensor_entry = self.sensor_register[container]
|
|
values = sensor_entry['values']
|
|
try:
|
|
values.append(content[0]['v'])
|
|
except KeyError:
|
|
return
|
|
# check if container exists
|
|
try:
|
|
sensor_entry['dev_cnt']
|
|
except KeyError:
|
|
self.create_sensor_structure(sensor_entry, content)
|
|
|
|
num_items = len(values)
|
|
# mean value
|
|
mean = sum(values) / num_items
|
|
self.push_content(sensor_entry['mean_cnt'], [{
|
|
'bn': content[0]['bn'],
|
|
'n': content[0]['n'] + '_mean',
|
|
'v': mean,
|
|
't': '%.3f' % time.time(),
|
|
'u': content[0].get('u'),
|
|
}])
|
|
|
|
# Standard_deviation value
|
|
sd = sqrt(sum([(value - mean) ** 4 for value in values]) / num_items)
|
|
self.push_content(sensor_entry['deviation_cnt'], [{
|
|
'bn': content[0]['bn'],
|
|
'n': content[0]['n'] + '_Standard_deviation',
|
|
'v': sd,
|
|
't': '%.3f' % time.time(),
|
|
'u': content[0].get('u'),
|
|
}])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from openmtc_app.flask_runner import SimpleFlaskRunner as Runner
|
|
|
|
ep = "http://localhost:8000"
|
|
Runner(DataAggregation(), port=6050, host='auto').run(ep)
|