mirror of
https://github.com/mudler/LocalAI.git
synced 2024-12-23 06:22:23 +00:00
887b3dff04
* Use cuda in transformers if available tensorflow probably needs a different check. Signed-off-by: Erich Schubert <kno10@users.noreply.github.com> * feat: expose CUDA at top level Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * tests: add to tests and create workflow for py extra backends * doc: update note on how to use core images --------- Signed-off-by: Erich Schubert <kno10@users.noreply.github.com> Signed-off-by: Ettore Di Giacinto <mudler@localai.io> Co-authored-by: Erich Schubert <kno10@users.noreply.github.com>
148 lines
5.4 KiB
Python
Executable File
148 lines
5.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
"""
|
|
Extra gRPC server for HuggingFace AutoModel models.
|
|
"""
|
|
from concurrent import futures
|
|
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
|
|
import time
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
import grpc
|
|
import torch
|
|
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
|
|
def mean_pooling(model_output, attention_mask):
|
|
"""
|
|
Mean pooling to get sentence embeddings. See:
|
|
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
|
|
"""
|
|
token_embeddings = model_output[0]
|
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
|
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Sum columns
|
|
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
|
return sum_embeddings / sum_mask
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
"""
|
|
A gRPC servicer for the backend service.
|
|
|
|
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
|
|
"""
|
|
def Health(self, request, context):
|
|
"""
|
|
A gRPC method that returns the health status of the backend service.
|
|
|
|
Args:
|
|
request: A HealthRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
A Reply object that contains the health status of the backend service.
|
|
"""
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
|
|
def LoadModel(self, request, context):
|
|
"""
|
|
A gRPC method that loads a model into memory.
|
|
|
|
Args:
|
|
request: A LoadModelRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
A Result object that contains the result of the LoadModel operation.
|
|
"""
|
|
model_name = request.Model
|
|
try:
|
|
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True) # trust_remote_code is needed to use the encode method with embeddings models like jinai-v2
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
if request.CUDA:
|
|
try:
|
|
# TODO: also tensorflow, make configurable
|
|
import torch.cuda
|
|
if torch.cuda.is_available():
|
|
print("Loading model", model_name, "to CUDA.", file=sys.stderr)
|
|
self.model = self.model.to("cuda")
|
|
except Exception as err:
|
|
print("Not using CUDA:", err, file=sys.stderr)
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
# Implement your logic here for the LoadModel service
|
|
# Replace this with your desired response
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def Embedding(self, request, context):
|
|
"""
|
|
A gRPC method that calculates embeddings for a given sentence.
|
|
|
|
Args:
|
|
request: An EmbeddingRequest object that contains the request parameters.
|
|
context: A grpc.ServicerContext object that provides information about the RPC.
|
|
|
|
Returns:
|
|
An EmbeddingResult object that contains the calculated embeddings.
|
|
"""
|
|
|
|
# Tokenize input
|
|
max_length = 512
|
|
if request.Tokens != 0:
|
|
max_length = request.Tokens
|
|
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
|
|
|
|
# Create word embeddings
|
|
model_output = self.model(**encoded_input)
|
|
|
|
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
|
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()
|
|
print("Calculated embeddings for: " + request.Embeddings, file=sys.stderr)
|
|
print("Embeddings:", sentence_embeddings, file=sys.stderr)
|
|
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings)
|
|
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr)
|