LocalAI/extra/grpc/diffusers/backend_diffusers.py
Ettore Di Giacinto f347e51927
feat(conda): conda environments (#1144)
* feat(autogptq): add a separate conda environment for autogptq (#1137)

**Description**

This PR related to #1117

**Notes for Reviewers**

Here we lock down the version of the dependencies. Make sure it can be
used all the time without failed if the version of dependencies were
upgraded.

I change the order of importing packages according to the pylint, and no
change the logic of code. It should be ok.

I will do more investigate on writing some test cases for every backend.
I can run the service in my environment, but there is not exist a way to
test it. So, I am not confident on it.

Add a README.md in the `grpc` root. This is the common commands for
creating `conda` environment. And it can be used to the reference file
for creating extral gRPC backend document.

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* [Extra backend] Add seperate environment for ttsbark (#1141)

**Description**

This PR relates to #1117

**Notes for Reviewers**

Same to the latest PR:
* The code is also changed, but only the order of the import package
parts. And some code comments are also added.
* Add a configuration of the `conda` environment
* Add a simple test case for testing if the service can be startup in
current `conda` environment. It is succeed in VSCode, but the it is not
out of box on terminal. So, it is hard to say the test case really
useful.

**[Signed
commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
- [x] Yes, I signed my commits.

<!--
Thank you for contributing to LocalAI!

Contributing Conventions
-------------------------

The draft above helps to give a quick overview of your PR.

Remember to remove this comment and to at least:

1. Include descriptive PR titles with [<component-name>] prepended. We
use [conventional
commits](https://www.conventionalcommits.org/en/v1.0.0/).
2. Build and test your changes before submitting a PR (`make build`).
3. Sign your commits
4. **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below).
5. **X/Twitter handle:** we announce bigger features on X/Twitter. If
your PR gets announced, and you'd like a mention, we'll gladly shout you
out!

By following the community's contribution conventions upfront, the
review process will
be accelerated and your PR merged more quickly.

If no one reviews your PR within a few days, please @-mention @mudler.
-->

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(conda): add make target and entrypoints for the dockerfile

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(conda): Add seperate conda env for diffusers (#1145)

**Description**

This PR relates to  #1117

**Notes for Reviewers**

* Add `conda` env `diffusers.yml`
* Add Makefile to create it automatically
* Add `run.sh` to support running as a extra backend
  * Also adding it to the main Dockerfile
* Add make command in the root Makefile
* Testing the server, it can start up under the env

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(conda):Add seperate env for vllm (#1148)

**Description**

This PR is related to #1117

**Notes for Reviewers**

* The gRPC server can be started as normal
* The test case can be triggered in VSCode
* Same to other this kind of PRs, add `vllm.yml` Makefile and add
`run.sh` to the main Dockerfile, and command to the main Makefile

**[Signed
commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
- [x] Yes, I signed my commits.

<!--
Thank you for contributing to LocalAI!

Contributing Conventions
-------------------------

The draft above helps to give a quick overview of your PR.

Remember to remove this comment and to at least:

1. Include descriptive PR titles with [<component-name>] prepended. We
use [conventional
commits](https://www.conventionalcommits.org/en/v1.0.0/).
2. Build and test your changes before submitting a PR (`make build`).
3. Sign your commits
4. **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below).
5. **X/Twitter handle:** we announce bigger features on X/Twitter. If
your PR gets announced, and you'd like a mention, we'll gladly shout you
out!

By following the community's contribution conventions upfront, the
review process will
be accelerated and your PR merged more quickly.

If no one reviews your PR within a few days, please @-mention @mudler.
-->

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(conda):Add seperate env for huggingface (#1146)

**Description**

This PR is related to  #1117

**Notes for Reviewers**

* Add conda env `huggingface.yml`
* Change the import order, and also remove the no-used packages
* Add `run.sh` and `make command` to the main Dockerfile and Makefile
* Add test cases for it. It can be triggered and succeed under VSCode
Python extension but it is hang by using `python -m unites
test_huggingface.py` in the terminal

```
Running tests (unittest): /workspaces/LocalAI/extra/grpc/huggingface
Running tests: /workspaces/LocalAI/extra/grpc/huggingface/test_huggingface.py::TestBackendServicer::test_embedding
/workspaces/LocalAI/extra/grpc/huggingface/test_huggingface.py::TestBackendServicer::test_load_model
/workspaces/LocalAI/extra/grpc/huggingface/test_huggingface.py::TestBackendServicer::test_server_startup
./test_huggingface.py::TestBackendServicer::test_embedding Passed

./test_huggingface.py::TestBackendServicer::test_load_model Passed

./test_huggingface.py::TestBackendServicer::test_server_startup Passed

Total number of tests expected to run: 3
Total number of tests run: 3
Total number of tests passed: 3
Total number of tests failed: 0
Total number of tests failed with errors: 0
Total number of tests skipped: 0

Finished running tests!
```

**[Signed
commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
- [x] Yes, I signed my commits.

<!--
Thank you for contributing to LocalAI!

Contributing Conventions
-------------------------

The draft above helps to give a quick overview of your PR.

Remember to remove this comment and to at least:

1. Include descriptive PR titles with [<component-name>] prepended. We
use [conventional
commits](https://www.conventionalcommits.org/en/v1.0.0/).
2. Build and test your changes before submitting a PR (`make build`).
3. Sign your commits
4. **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below).
5. **X/Twitter handle:** we announce bigger features on X/Twitter. If
your PR gets announced, and you'd like a mention, we'll gladly shout you
out!

By following the community's contribution conventions upfront, the
review process will
be accelerated and your PR merged more quickly.

If no one reviews your PR within a few days, please @-mention @mudler.
-->

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(conda): Add the seperate conda env for VALL-E X (#1147)

**Description**

This PR is related  to #1117

**Notes for Reviewers**

* The gRPC server cannot start up

```
(ttsvalle) @Aisuko ➜ /workspaces/LocalAI (feat/vall-e-x) $ /opt/conda/envs/ttsvalle/bin/python /workspaces/LocalAI/extra/grpc/vall-e-x/ttsvalle.py
Traceback (most recent call last):
  File "/workspaces/LocalAI/extra/grpc/vall-e-x/ttsvalle.py", line 14, in <module>
    from utils.generation import SAMPLE_RATE, generate_audio, preload_models
ModuleNotFoundError: No module named 'utils'
```

The installation steps follow
https://github.com/Plachtaa/VALL-E-X#-installation below:

* Under the `ttsvalle` conda env

```
git clone https://github.com/Plachtaa/VALL-E-X.git
cd VALL-E-X
pip install -r requirements.txt
```

**[Signed
commits](../CONTRIBUTING.md#signing-off-on-commits-developer-certificate-of-origin)**
- [x] Yes, I signed my commits.

<!--
Thank you for contributing to LocalAI!

Contributing Conventions
-------------------------

The draft above helps to give a quick overview of your PR.

Remember to remove this comment and to at least:

1. Include descriptive PR titles with [<component-name>] prepended. We
use [conventional
commits](https://www.conventionalcommits.org/en/v1.0.0/).
2. Build and test your changes before submitting a PR (`make build`).
3. Sign your commits
4. **Tag maintainer:** for a quicker response, tag the relevant
maintainer (see below).
5. **X/Twitter handle:** we announce bigger features on X/Twitter. If
your PR gets announced, and you'd like a mention, we'll gladly shout you
out!

By following the community's contribution conventions upfront, the
review process will
be accelerated and your PR merged more quickly.

If no one reviews your PR within a few days, please @-mention @mudler.
-->

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fix: set image type

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* feat(conda):Add seperate conda env for exllama (#1149)

Add seperate env for exllama

Signed-off-by: Aisuko <urakiny@gmail.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Setup conda

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Set image_type arg

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* ci: prepare only conda env in tests

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* Dockerfile: comment manual pip calls

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* conda: add conda to PATH

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* fixes

* add shebang

* Fixups

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* file perms

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

* debug

* Install new conda in the worker

* Disable GPU tests for now until the worker is back

* Rename workflows

* debug

* Fixup conda install

* fixup(wrapper): pass args

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: GitHub <noreply@github.com>
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
Signed-off-by: Aisuko <urakiny@gmail.com>
Signed-off-by: Ettore Di Giacinto <mudler@users.noreply.github.com>
Co-authored-by: Aisuko <urakiny@gmail.com>
2023-11-04 15:30:32 +01:00

386 lines
16 KiB
Python
Executable File

#!/usr/bin/env python3
from concurrent import futures
import argparse
from collections import defaultdict
from enum import Enum
import signal
import sys
import time
import os
from PIL import Image
import torch
import backend_pb2
import backend_pb2_grpc
import grpc
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionImg2ImgPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from compel import Compel
from transformers import CLIPTextModel
from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL=os.environ.get("COMPEL", "1") == "1"
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
def sc(self, clip_input, images) : return images, [False for i in images]
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
safety_checker.StableDiffusionSafetyChecker.forward = sc
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
)
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
# Credits to https://github.com/neggles
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
class DiffusionScheduler(str, Enum):
ddim = "ddim" # DDIM
pndm = "pndm" # PNDM
heun = "heun" # Heun
unipc = "unipc" # UniPC
euler = "euler" # Euler
euler_a = "euler_a" # Euler a
lms = "lms" # LMS
k_lms = "k_lms" # LMS Karras
dpm_2 = "dpm_2" # DPM2
k_dpm_2 = "k_dpm_2" # DPM2 Karras
dpm_2_a = "dpm_2_a" # DPM2 a
k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras
dpmpp_2m = "dpmpp_2m" # DPM++ 2M
k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras
dpmpp_sde = "dpmpp_sde" # DPM++ SDE
k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras
dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE
k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras
def get_scheduler(name: str, config: dict = {}):
is_karras = name.startswith("k_")
if is_karras:
# strip the k_ prefix and add the karras sigma flag to config
name = name.lstrip("k_")
config["use_karras_sigmas"] = True
if name == DiffusionScheduler.ddim:
sched_class = DDIMScheduler
elif name == DiffusionScheduler.pndm:
sched_class = PNDMScheduler
elif name == DiffusionScheduler.heun:
sched_class = HeunDiscreteScheduler
elif name == DiffusionScheduler.unipc:
sched_class = UniPCMultistepScheduler
elif name == DiffusionScheduler.euler:
sched_class = EulerDiscreteScheduler
elif name == DiffusionScheduler.euler_a:
sched_class = EulerAncestralDiscreteScheduler
elif name == DiffusionScheduler.lms:
sched_class = LMSDiscreteScheduler
elif name == DiffusionScheduler.dpm_2:
# Equivalent to DPM2 in K-Diffusion
sched_class = KDPM2DiscreteScheduler
elif name == DiffusionScheduler.dpm_2_a:
# Equivalent to `DPM2 a`` in K-Diffusion
sched_class = KDPM2AncestralDiscreteScheduler
elif name == DiffusionScheduler.dpmpp_2m:
# Equivalent to `DPM++ 2M` in K-Diffusion
sched_class = DPMSolverMultistepScheduler
config["algorithm_type"] = "dpmsolver++"
config["solver_order"] = 2
elif name == DiffusionScheduler.dpmpp_sde:
# Equivalent to `DPM++ SDE` in K-Diffusion
sched_class = DPMSolverSinglestepScheduler
elif name == DiffusionScheduler.dpmpp_2m_sde:
# Equivalent to `DPM++ 2M SDE` in K-Diffusion
sched_class = DPMSolverMultistepScheduler
config["algorithm_type"] = "sde-dpmsolver++"
else:
raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'")
return sched_class.from_config(config)
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
if request.F16Memory:
torchType = torch.float16
local = False
modelFile = request.Model
cfg_scale = 7
if request.CFGScale != 0:
cfg_scale = request.CFGScale
clipmodel = "runwayml/stable-diffusion-v1-5"
if request.CLIPModel != "":
clipmodel = request.CLIPModel
clipsubfolder = "text_encoder"
if request.CLIPSubfolder != "":
clipsubfolder = request.CLIPSubfolder
# Check if ModelFile exists
if request.ModelFile != "":
if os.path.exists(request.ModelFile):
local = True
modelFile = request.ModelFile
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
if request.IMG2IMG and request.PipelineType == "":
request.PipelineType == "StableDiffusionImg2ImgPipeline"
if request.PipelineType == "":
request.PipelineType == "StableDiffusionPipeline"
## img2img
if request.PipelineType == "StableDiffusionImg2ImgPipeline":
if fromSingleFile:
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
torch_dtype=torchType,
guidance_scale=cfg_scale)
else:
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionDepth2ImgPipeline":
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
## text2img
if request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType,
guidance_scale=cfg_scale)
else:
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType,
guidance_scale=cfg_scale)
if request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType, use_safetensors=True,
guidance_scale=cfg_scale)
else:
self.pipe = StableDiffusionXLPipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
# variant="fp16"
guidance_scale=cfg_scale)
# https://github.com/huggingface/diffusers/issues/4446
# do not use text_encoder in the constructor since then
# https://github.com/huggingface/diffusers/issues/3212#issuecomment-1521841481
if CLIPSKIP and request.CLIPSkip != 0:
text_encoder = CLIPTextModel.from_pretrained(clipmodel, num_hidden_layers=request.CLIPSkip, subfolder=clipsubfolder, torch_dtype=torchType)
self.pipe.text_encoder=text_encoder
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
self.compel = Compel(tokenizer=self.pipe.tokenizer, text_encoder=self.pipe.text_encoder)
if request.CUDA:
self.pipe.to('cuda')
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
# get base path of modelFile
modelFileBase = os.path.dirname(request.ModelFile)
# modify LoraAdapter to be relative to modelFileBase
request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter)
device = "cpu" if not request.CUDA else "cuda"
self.device = device
if request.LoraAdapter:
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
self.load_lora_weights(request.LoraAdapter, 1, device, torchType)
else:
self.pipe.unet.load_attn_procs(request.LoraAdapter)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
# https://github.com/huggingface/diffusers/issues/3064
def load_lora_weights(self, checkpoint_path, multiplier, device, dtype):
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# load LoRA weight from .safetensors
state_dict = load_file(checkpoint_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split('.', 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = self.pipe.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = self.pipe.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems['lora_up.weight'].to(dtype)
weight_down = elems['lora_down.weight'].to(dtype)
alpha = elems['alpha'] if 'alpha' in elems else None
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
def GenerateImage(self, request, context):
prompt = request.positive_prompt
# create a dictionary of values for the parameters
options = {
"negative_prompt": request.negative_prompt,
"width": request.width,
"height": request.height,
"num_inference_steps": request.step,
}
if request.src != "":
image = Image.open(request.src)
options["image"] = image
# Get the keys that we will build the args for our pipe for
keys = options.keys()
if request.EnableParameters != "":
keys = request.EnableParameters.split(",")
if request.EnableParameters == "none":
keys = []
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
kwargs = {key: options[key] for key in keys}
# Set seed
if request.seed > 0:
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(
request.seed
)
image = {}
if COMPEL:
conditioning = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"]= conditioning
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
**kwargs
).images[0]
else:
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
prompt,
**kwargs
).images[0]
# save the result
image.save(request.dst)
return backend_pb2.Result(message="Model loaded successfully", success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)