fakezeta 6ef78ef7f6
bugfix: CUDA acceleration not working (#2475)
* bugfix: CUDA acceleration not working

CUDA not working after #2286.
Refactored the code to be more polish

* Update requirements.txt

Missing imports

Signed-off-by: fakezeta <fakezeta@gmail.com>

* Update requirements.txt

Signed-off-by: fakezeta <fakezeta@gmail.com>

---------

Signed-off-by: fakezeta <fakezeta@gmail.com>
2024-06-03 22:41:42 +02:00

407 lines
17 KiB
Python

#!/usr/bin/env python3
"""
Extra gRPC server for HuggingFace AutoModel models.
"""
from concurrent import futures
import argparse
import signal
import sys
import os
from threading import Thread
import asyncio
import time
import backend_pb2
import backend_pb2_grpc
import grpc
import torch
import torch.cuda
XPU=os.environ.get("XPU", "0") == "1"
from transformers import AutoTokenizer, AutoModel, set_seed, TextIteratorStreamer, StoppingCriteriaList, StopStringCriteria
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
def mean_pooling(model_output, attention_mask):
"""
Mean pooling to get sentence embeddings. See:
https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1
"""
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Sum columns
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sum_embeddings / sum_mask
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
"""
A gRPC servicer for the backend service.
This class implements the gRPC methods for the backend service, including Health, LoadModel, and Embedding.
"""
def Health(self, request, context):
"""
A gRPC method that returns the health status of the backend service.
Args:
request: A HealthRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Reply object that contains the health status of the backend service.
"""
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
"""
A gRPC method that loads a model into memory.
Args:
request: A LoadModelRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
A Result object that contains the result of the LoadModel operation.
"""
model_name = request.Model
compute = torch.float16
if request.F16Memory == True:
compute=torch.bfloat16
self.CUDA = torch.cuda.is_available()
self.OV=False
device_map="cpu"
quantization = None
if self.CUDA:
from transformers import BitsAndBytesConfig, AutoModelForCausalLM
if request.MainGPU:
device_map=request.MainGPU
else:
device_map="cuda:0"
if request.Quantization == "bnb_4bit":
quantization = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_compute_dtype = compute,
bnb_4bit_quant_type = "nf4",
bnb_4bit_use_double_quant = True,
load_in_8bit = False,
)
elif request.Quantization == "bnb_8bit":
quantization = BitsAndBytesConfig(
load_in_4bit=False,
bnb_4bit_compute_dtype = None,
load_in_8bit=True,
)
try:
if request.Type == "AutoModelForCausalLM":
if XPU:
import intel_extension_for_pytorch as ipex
from intel_extension_for_transformers.transformers.modeling import AutoModelForCausalLM
device_map="xpu"
compute=torch.float16
if request.Quantization == "xpu_4bit":
xpu_4bit = True
xpu_8bit = False
elif request.Quantization == "xpu_8bit":
xpu_4bit = False
xpu_8bit = True
else:
xpu_4bit = False
xpu_8bit = False
self.model = AutoModelForCausalLM.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
device_map=device_map,
load_in_4bit=xpu_4bit,
load_in_8bit=xpu_8bit,
torch_dtype=compute)
else:
self.model = AutoModelForCausalLM.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
quantization_config=quantization,
device_map=device_map,
torch_dtype=compute)
elif request.Type == "OVModelForCausalLM":
from optimum.intel.openvino import OVModelForCausalLM
from openvino.runtime import Core
if request.MainGPU:
device_map=request.MainGPU
else:
device_map="AUTO"
devices = Core().available_devices
if "GPU" in " ".join(devices):
device_map="AUTO:GPU"
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
if "CPU" or "NPU" in device_map:
if "-CPU" or "-NPU" not in device_map:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
else:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
self.model = OVModelForCausalLM.from_pretrained(model_name,
compile=True,
trust_remote_code=request.TrustRemoteCode,
ov_config=ovconfig,
device=device_map)
self.OV = True
elif request.Type == "OVModelForFeatureExtraction":
from optimum.intel.openvino import OVModelForFeatureExtraction
from openvino.runtime import Core
if request.MainGPU:
device_map=request.MainGPU
else:
device_map="AUTO"
devices = Core().available_devices
if "GPU" in " ".join(devices):
device_map="AUTO:GPU"
# While working on a fine tuned model, inference may give an inaccuracy and performance drop on GPU if winograd convolutions are selected.
# https://docs.openvino.ai/2024/openvino-workflow/running-inference/inference-devices-and-modes/gpu-device.html
if "CPU" or "NPU" in device_map:
if "-CPU" or "-NPU" not in device_map:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT"}
else:
ovconfig={"PERFORMANCE_HINT": "CUMULATIVE_THROUGHPUT","GPU_DISABLE_WINOGRAD_CONVOLUTION": "YES"}
self.model = OVModelForFeatureExtraction.from_pretrained(model_name,
compile=True,
trust_remote_code=request.TrustRemoteCode,
ov_config=ovconfig,
export=True,
device=device_map)
self.OV = True
else:
print("Automodel", file=sys.stderr)
self.model = AutoModel.from_pretrained(model_name,
trust_remote_code=request.TrustRemoteCode,
use_safetensors=True,
quantization_config=quantization,
device_map=device_map,
torch_dtype=compute)
if request.ContextSize > 0:
self.max_tokens = request.ContextSize
else:
self.max_tokens = self.model.config.max_position_embeddings
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_safetensors=True)
self.XPU = False
if XPU and self.OV == False:
self.XPU = True
try:
print("Optimizing model", model_name, "to XPU.", file=sys.stderr)
self.model = ipex.optimize_transformers(self.model, inplace=True, dtype=torch.float16, device="xpu")
except Exception as err:
print("Not using XPU:", err, file=sys.stderr)
except Exception as err:
print("Error:", err, file=sys.stderr)
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
def Embedding(self, request, context):
"""
A gRPC method that calculates embeddings for a given sentence.
Args:
request: An EmbeddingRequest object that contains the request parameters.
context: A grpc.ServicerContext object that provides information about the RPC.
Returns:
An EmbeddingResult object that contains the calculated embeddings.
"""
set_seed(request.Seed)
# Tokenize input
max_length = 512
if request.Tokens != 0:
max_length = request.Tokens
encoded_input = self.tokenizer(request.Embeddings, padding=True, truncation=True, max_length=max_length, return_tensors="pt")
# Create word embeddings
if self.CUDA:
encoded_input = encoded_input.to("cuda")
with torch.no_grad():
model_output = self.model(**encoded_input)
# Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
return backend_pb2.EmbeddingResult(embeddings=sentence_embeddings[0])
async def _predict(self, request, context, streaming=False):
set_seed(request.Seed)
if request.TopP < 0 or request.TopP > 1:
request.TopP = 1
if request.TopK <= 0:
request.TopK = 50
if request.Temperature > 0 :
sample=True
else:
sample=False
request.TopP == None
request.TopK == None
request.Temperature == None
prompt = request.Prompt
if not request.Prompt and request.UseTokenizerTemplate and request.Messages:
prompt = self.tokenizer.apply_chat_template(request.Messages, tokenize=False, add_generation_prompt=True)
inputs = self.tokenizer(prompt, return_tensors="pt")
if request.Tokens > 0:
max_tokens = request.Tokens
else:
max_tokens = self.max_tokens - inputs["input_ids"].size()[inputs["input_ids"].dim()-1]
if self.CUDA:
inputs = inputs.to("cuda")
if XPU and self.OV == False:
inputs = inputs.to("xpu")
streaming = False
criteria=[]
if request.StopPrompts:
criteria = StoppingCriteriaList(
[
StopStringCriteria(tokenizer=self.tokenizer, stop_strings=request.StopPrompts),
]
)
if streaming:
streamer=TextIteratorStreamer(self.tokenizer,
skip_prompt=True,
skip_special_tokens=True)
config=dict(inputs,
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=sample,
attention_mask=inputs["attention_mask"],
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id,
streamer=streamer,
stopping_criteria=criteria,
use_cache=True,
)
thread=Thread(target=self.model.generate, kwargs=config)
thread.start()
generated_text = ""
try:
for new_text in streamer:
generated_text += new_text
yield backend_pb2.Reply(message=bytes(new_text, encoding='utf-8'))
finally:
thread.join()
else:
if XPU and self.OV == False:
outputs = self.model.generate(inputs["input_ids"],
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=sample,
pad_token=self.tokenizer.eos_token_id)
else:
outputs = self.model.generate(**inputs,
max_new_tokens=max_tokens,
temperature=request.Temperature,
top_p=request.TopP,
top_k=request.TopK,
do_sample=sample,
eos_token_id=self.tokenizer.eos_token_id,
pad_token_id=self.tokenizer.eos_token_id,
stopping_criteria=criteria,
use_cache=True,
)
generated_text = self.tokenizer.batch_decode(outputs[:, inputs["input_ids"].shape[1]:], skip_special_tokens=True)[0]
if streaming:
return
yield backend_pb2.Reply(message=bytes(generated_text, encoding='utf-8'))
async def Predict(self, request, context):
"""
Generates text based on the given prompt and sampling parameters.
Args:
request: The predict request.
context: The gRPC context.
Returns:
backend_pb2.Reply: The predict result.
"""
gen = self._predict(request, context, streaming=False)
res = await gen.__anext__()
return res
async def PredictStream(self, request, context):
"""
Generates text based on the given prompt and sampling parameters, and streams the results.
Args:
request: The predict stream request.
context: The gRPC context.
Returns:
backend_pb2.Result: The predict stream result.
"""
iterations = self._predict(request, context, streaming=True)
try:
async for iteration in iterations:
yield iteration
finally:
await iterations.aclose()
async def serve(address):
# Start asyncio gRPC server
server = grpc.aio.server(migration_thread_pool=futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
# Add the servicer to the server
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
# Bind the server to the address
server.add_insecure_port(address)
# Gracefully shutdown the server on SIGTERM or SIGINT
loop = asyncio.get_event_loop()
for sig in (signal.SIGINT, signal.SIGTERM):
loop.add_signal_handler(
sig, lambda: asyncio.ensure_future(server.stop(5))
)
# Start the server
await server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Wait for the server to be terminated
await server.wait_for_termination()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
asyncio.run(serve(args.addr))