LocalAI/pkg/startup/model_preload.go
Ettore Di Giacinto af9e5a2d05
Revert #1963 (#2056)
* Revert "fix(fncall): fix regression introduced in #1963 (#2048)"

This reverts commit 6b06d4e0af.

* Revert "fix: action-tmate back to upstream, dead code removal (#2038)"

This reverts commit fdec8a9d00.

* Revert "feat(grpc): return consumed token count and update response accordingly (#2035)"

This reverts commit e843d7df0e.

* Revert "refactor: backend/service split, channel-based llm flow (#1963)"

This reverts commit eed5706994.

* feat(grpc): return consumed token count and update response accordingly

Fixes: #1920

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>

---------

Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2024-04-17 23:33:49 +02:00

86 lines
3.0 KiB
Go

package startup
import (
"errors"
"os"
"path/filepath"
"github.com/go-skynet/LocalAI/embedded"
"github.com/go-skynet/LocalAI/pkg/downloader"
"github.com/go-skynet/LocalAI/pkg/utils"
"github.com/rs/zerolog/log"
)
// PreloadModelsConfigurations will preload models from the given list of URLs
// It will download the model if it is not already present in the model path
// It will also try to resolve if the model is an embedded model YAML configuration
func PreloadModelsConfigurations(modelLibraryURL string, modelPath string, models ...string) {
for _, url := range models {
// As a best effort, try to resolve the model from the remote library
// if it's not resolved we try with the other method below
if modelLibraryURL != "" {
lib, err := embedded.GetRemoteLibraryShorteners(modelLibraryURL)
if err == nil {
if lib[url] != "" {
log.Debug().Msgf("[startup] model configuration is defined remotely: %s (%s)", url, lib[url])
url = lib[url]
}
}
}
url = embedded.ModelShortURL(url)
switch {
case embedded.ExistsInModelsLibrary(url):
modelYAML, err := embedded.ResolveContent(url)
// If we resolve something, just save it to disk and continue
if err != nil {
log.Error().Err(err).Msg("error resolving model content")
continue
}
log.Debug().Msgf("[startup] resolved embedded model: %s", url)
md5Name := utils.MD5(url)
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error writing model definition")
}
case downloader.LooksLikeURL(url):
log.Debug().Msgf("[startup] resolved model to download: %s", url)
// md5 of model name
md5Name := utils.MD5(url)
// check if file exists
if _, err := os.Stat(filepath.Join(modelPath, md5Name)); errors.Is(err, os.ErrNotExist) {
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
err := downloader.DownloadFile(url, modelDefinitionFilePath, "", func(fileName, current, total string, percent float64) {
utils.DisplayDownloadFunction(fileName, current, total, percent)
})
if err != nil {
log.Error().Err(err).Str("url", url).Str("filepath", modelDefinitionFilePath).Msg("error downloading model")
}
}
default:
if _, err := os.Stat(url); err == nil {
log.Debug().Msgf("[startup] resolved local model: %s", url)
// copy to modelPath
md5Name := utils.MD5(url)
modelYAML, err := os.ReadFile(url)
if err != nil {
log.Error().Err(err).Str("filepath", url).Msg("error reading model definition")
continue
}
modelDefinitionFilePath := filepath.Join(modelPath, md5Name) + ".yaml"
if err := os.WriteFile(modelDefinitionFilePath, modelYAML, os.ModePerm); err != nil {
log.Error().Err(err).Str("filepath", modelDefinitionFilePath).Msg("error loading model: %s")
}
} else {
log.Warn().Msgf("[startup] failed resolving model '%s'", url)
}
}
}
}