mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-02 02:46:41 +00:00
366 lines
9.2 KiB
Go
366 lines
9.2 KiB
Go
package model
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"io/ioutil"
|
|
"os"
|
|
"path/filepath"
|
|
"strings"
|
|
"sync"
|
|
"text/template"
|
|
|
|
"github.com/hashicorp/go-multierror"
|
|
"github.com/rs/zerolog/log"
|
|
|
|
rwkv "github.com/donomii/go-rwkv.cpp"
|
|
gpt2 "github.com/go-skynet/go-gpt2.cpp"
|
|
gptj "github.com/go-skynet/go-gpt4all-j.cpp"
|
|
llama "github.com/go-skynet/go-llama.cpp"
|
|
)
|
|
|
|
type ModelLoader struct {
|
|
ModelPath string
|
|
mu sync.Mutex
|
|
|
|
models map[string]*llama.LLama
|
|
gptmodels map[string]*gptj.GPTJ
|
|
gpt2models map[string]*gpt2.GPT2
|
|
gptstablelmmodels map[string]*gpt2.StableLM
|
|
rwkv map[string]*rwkv.RwkvState
|
|
promptsTemplates map[string]*template.Template
|
|
}
|
|
|
|
func NewModelLoader(modelPath string) *ModelLoader {
|
|
return &ModelLoader{
|
|
ModelPath: modelPath,
|
|
gpt2models: make(map[string]*gpt2.GPT2),
|
|
gptmodels: make(map[string]*gptj.GPTJ),
|
|
gptstablelmmodels: make(map[string]*gpt2.StableLM),
|
|
models: make(map[string]*llama.LLama),
|
|
rwkv: make(map[string]*rwkv.RwkvState),
|
|
promptsTemplates: make(map[string]*template.Template),
|
|
}
|
|
}
|
|
|
|
func (ml *ModelLoader) ExistsInModelPath(s string) bool {
|
|
_, err := os.Stat(filepath.Join(ml.ModelPath, s))
|
|
return err == nil
|
|
}
|
|
|
|
func (ml *ModelLoader) ListModels() ([]string, error) {
|
|
files, err := ioutil.ReadDir(ml.ModelPath)
|
|
if err != nil {
|
|
return []string{}, err
|
|
}
|
|
|
|
models := []string{}
|
|
for _, file := range files {
|
|
// Skip templates, YAML and .keep files
|
|
if strings.HasSuffix(file.Name(), ".tmpl") || strings.HasSuffix(file.Name(), ".keep") || strings.HasSuffix(file.Name(), ".yaml") || strings.HasSuffix(file.Name(), ".yml") {
|
|
continue
|
|
}
|
|
|
|
models = append(models, file.Name())
|
|
}
|
|
|
|
return models, nil
|
|
}
|
|
|
|
func (ml *ModelLoader) TemplatePrefix(modelName string, in interface{}) (string, error) {
|
|
ml.mu.Lock()
|
|
defer ml.mu.Unlock()
|
|
|
|
m, ok := ml.promptsTemplates[modelName]
|
|
if !ok {
|
|
modelFile := filepath.Join(ml.ModelPath, modelName)
|
|
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
|
|
return "", err
|
|
}
|
|
|
|
t, exists := ml.promptsTemplates[modelName]
|
|
if exists {
|
|
m = t
|
|
}
|
|
}
|
|
if m == nil {
|
|
return "", fmt.Errorf("failed loading any template")
|
|
}
|
|
|
|
var buf bytes.Buffer
|
|
|
|
if err := m.Execute(&buf, in); err != nil {
|
|
return "", err
|
|
}
|
|
return buf.String(), nil
|
|
}
|
|
|
|
func (ml *ModelLoader) loadTemplateIfExists(modelName, modelFile string) error {
|
|
// Check if the template was already loaded
|
|
if _, ok := ml.promptsTemplates[modelName]; ok {
|
|
return nil
|
|
}
|
|
|
|
// Check if the model path exists
|
|
// skip any error here - we run anyway if a template does not exist
|
|
modelTemplateFile := fmt.Sprintf("%s.tmpl", modelName)
|
|
|
|
if !ml.ExistsInModelPath(modelTemplateFile) {
|
|
return nil
|
|
}
|
|
|
|
dat, err := os.ReadFile(filepath.Join(ml.ModelPath, modelTemplateFile))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Parse the template
|
|
tmpl, err := template.New("prompt").Parse(string(dat))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
ml.promptsTemplates[modelName] = tmpl
|
|
|
|
return nil
|
|
}
|
|
|
|
func (ml *ModelLoader) LoadStableLMModel(modelName string) (*gpt2.StableLM, error) {
|
|
ml.mu.Lock()
|
|
defer ml.mu.Unlock()
|
|
|
|
// Check if we already have a loaded model
|
|
if !ml.ExistsInModelPath(modelName) {
|
|
return nil, fmt.Errorf("model does not exist")
|
|
}
|
|
|
|
if m, ok := ml.gptstablelmmodels[modelName]; ok {
|
|
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
|
|
return m, nil
|
|
}
|
|
|
|
// Load the model and keep it in memory for later use
|
|
modelFile := filepath.Join(ml.ModelPath, modelName)
|
|
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
|
|
|
|
model, err := gpt2.NewStableLM(modelFile)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If there is a prompt template, load it
|
|
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ml.gptstablelmmodels[modelName] = model
|
|
return model, err
|
|
}
|
|
|
|
func (ml *ModelLoader) LoadGPT2Model(modelName string) (*gpt2.GPT2, error) {
|
|
ml.mu.Lock()
|
|
defer ml.mu.Unlock()
|
|
|
|
// Check if we already have a loaded model
|
|
if !ml.ExistsInModelPath(modelName) {
|
|
return nil, fmt.Errorf("model does not exist")
|
|
}
|
|
|
|
if m, ok := ml.gpt2models[modelName]; ok {
|
|
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
|
|
return m, nil
|
|
}
|
|
|
|
// Load the model and keep it in memory for later use
|
|
modelFile := filepath.Join(ml.ModelPath, modelName)
|
|
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
|
|
|
|
model, err := gpt2.New(modelFile)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If there is a prompt template, load it
|
|
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ml.gpt2models[modelName] = model
|
|
return model, err
|
|
}
|
|
|
|
func (ml *ModelLoader) LoadGPTJModel(modelName string) (*gptj.GPTJ, error) {
|
|
ml.mu.Lock()
|
|
defer ml.mu.Unlock()
|
|
|
|
// Check if we already have a loaded model
|
|
if !ml.ExistsInModelPath(modelName) {
|
|
return nil, fmt.Errorf("model does not exist")
|
|
}
|
|
|
|
if m, ok := ml.gptmodels[modelName]; ok {
|
|
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
|
|
return m, nil
|
|
}
|
|
|
|
// Load the model and keep it in memory for later use
|
|
modelFile := filepath.Join(ml.ModelPath, modelName)
|
|
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
|
|
|
|
model, err := gptj.New(modelFile)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If there is a prompt template, load it
|
|
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ml.gptmodels[modelName] = model
|
|
return model, err
|
|
}
|
|
|
|
func (ml *ModelLoader) LoadRWKV(modelName, tokenFile string, threads uint32) (*rwkv.RwkvState, error) {
|
|
ml.mu.Lock()
|
|
defer ml.mu.Unlock()
|
|
|
|
log.Debug().Msgf("Loading model name: %s", modelName)
|
|
|
|
// Check if we already have a loaded model
|
|
if !ml.ExistsInModelPath(modelName) {
|
|
return nil, fmt.Errorf("model does not exist")
|
|
}
|
|
|
|
if m, ok := ml.rwkv[modelName]; ok {
|
|
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
|
|
return m, nil
|
|
}
|
|
|
|
// Load the model and keep it in memory for later use
|
|
modelFile := filepath.Join(ml.ModelPath, modelName)
|
|
tokenPath := filepath.Join(ml.ModelPath, tokenFile)
|
|
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
|
|
|
|
model := rwkv.LoadFiles(modelFile, tokenPath, threads)
|
|
if model == nil {
|
|
return nil, fmt.Errorf("could not load model")
|
|
}
|
|
|
|
ml.rwkv[modelName] = model
|
|
return model, nil
|
|
}
|
|
|
|
func (ml *ModelLoader) LoadLLaMAModel(modelName string, opts ...llama.ModelOption) (*llama.LLama, error) {
|
|
ml.mu.Lock()
|
|
defer ml.mu.Unlock()
|
|
|
|
log.Debug().Msgf("Loading model name: %s", modelName)
|
|
|
|
// Check if we already have a loaded model
|
|
if !ml.ExistsInModelPath(modelName) {
|
|
return nil, fmt.Errorf("model does not exist")
|
|
}
|
|
|
|
if m, ok := ml.models[modelName]; ok {
|
|
log.Debug().Msgf("Model already loaded in memory: %s", modelName)
|
|
return m, nil
|
|
}
|
|
|
|
// Load the model and keep it in memory for later use
|
|
modelFile := filepath.Join(ml.ModelPath, modelName)
|
|
log.Debug().Msgf("Loading model in memory from file: %s", modelFile)
|
|
|
|
model, err := llama.New(modelFile, opts...)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If there is a prompt template, load it
|
|
if err := ml.loadTemplateIfExists(modelName, modelFile); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
ml.models[modelName] = model
|
|
return model, err
|
|
}
|
|
|
|
const tokenizerSuffix = ".tokenizer.json"
|
|
|
|
var loadedModels map[string]interface{} = map[string]interface{}{}
|
|
var muModels sync.Mutex
|
|
|
|
func (ml *ModelLoader) BackendLoader(backendString string, modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
|
|
switch strings.ToLower(backendString) {
|
|
case "llama":
|
|
return ml.LoadLLaMAModel(modelFile, llamaOpts...)
|
|
case "stablelm":
|
|
return ml.LoadStableLMModel(modelFile)
|
|
case "gpt2":
|
|
return ml.LoadGPT2Model(modelFile)
|
|
case "gptj":
|
|
return ml.LoadGPTJModel(modelFile)
|
|
case "rwkv":
|
|
return ml.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
|
|
default:
|
|
return nil, fmt.Errorf("backend unsupported: %s", backendString)
|
|
}
|
|
}
|
|
|
|
func (ml *ModelLoader) GreedyLoader(modelFile string, llamaOpts []llama.ModelOption, threads uint32) (model interface{}, err error) {
|
|
updateModels := func(model interface{}) {
|
|
muModels.Lock()
|
|
defer muModels.Unlock()
|
|
loadedModels[modelFile] = model
|
|
}
|
|
|
|
muModels.Lock()
|
|
m, exists := loadedModels[modelFile]
|
|
if exists {
|
|
muModels.Unlock()
|
|
return m, nil
|
|
}
|
|
muModels.Unlock()
|
|
|
|
model, modelerr := ml.LoadLLaMAModel(modelFile, llamaOpts...)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = ml.LoadGPTJModel(modelFile)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = ml.LoadGPT2Model(modelFile)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = ml.LoadStableLMModel(modelFile)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
model, modelerr = ml.LoadRWKV(modelFile, modelFile+tokenizerSuffix, threads)
|
|
if modelerr == nil {
|
|
updateModels(model)
|
|
return model, nil
|
|
} else {
|
|
err = multierror.Append(err, modelerr)
|
|
}
|
|
|
|
return nil, fmt.Errorf("could not load model - all backends returned error: %s", err.Error())
|
|
}
|