mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-13 00:10:14 +00:00
f895d06605
* fix(defaults): set better defaults for inferencing This changeset aim to have better defaults and to properly detect when no inference settings are provided with the model. If not specified, we defaults to mirostat sampling, and offload all the GPU layers (if a GPU is detected). Related to https://github.com/mudler/LocalAI/issues/1373 and https://github.com/mudler/LocalAI/issues/1723 * Adapt tests * Also pre-initialize default seed
171 lines
4.3 KiB
Go
171 lines
4.3 KiB
Go
package backend
|
|
|
|
import (
|
|
"context"
|
|
"os"
|
|
"regexp"
|
|
"strings"
|
|
"sync"
|
|
"unicode/utf8"
|
|
|
|
"github.com/go-skynet/LocalAI/core/config"
|
|
|
|
"github.com/go-skynet/LocalAI/pkg/gallery"
|
|
"github.com/go-skynet/LocalAI/pkg/grpc"
|
|
model "github.com/go-skynet/LocalAI/pkg/model"
|
|
"github.com/go-skynet/LocalAI/pkg/utils"
|
|
)
|
|
|
|
type LLMResponse struct {
|
|
Response string // should this be []byte?
|
|
Usage TokenUsage
|
|
}
|
|
|
|
type TokenUsage struct {
|
|
Prompt int
|
|
Completion int
|
|
}
|
|
|
|
func ModelInference(ctx context.Context, s string, images []string, loader *model.ModelLoader, c config.BackendConfig, o *config.ApplicationConfig, tokenCallback func(string, TokenUsage) bool) (func() (LLMResponse, error), error) {
|
|
modelFile := c.Model
|
|
threads := c.Threads
|
|
if *threads == 0 && o.Threads != 0 {
|
|
threads = &o.Threads
|
|
}
|
|
grpcOpts := gRPCModelOpts(c)
|
|
|
|
var inferenceModel grpc.Backend
|
|
var err error
|
|
|
|
opts := modelOpts(c, o, []model.Option{
|
|
model.WithLoadGRPCLoadModelOpts(grpcOpts),
|
|
model.WithThreads(uint32(*threads)), // some models uses this to allocate threads during startup
|
|
model.WithAssetDir(o.AssetsDestination),
|
|
model.WithModel(modelFile),
|
|
model.WithContext(o.Context),
|
|
})
|
|
|
|
if c.Backend != "" {
|
|
opts = append(opts, model.WithBackendString(c.Backend))
|
|
}
|
|
|
|
// Check if the modelFile exists, if it doesn't try to load it from the gallery
|
|
if o.AutoloadGalleries { // experimental
|
|
if _, err := os.Stat(modelFile); os.IsNotExist(err) {
|
|
utils.ResetDownloadTimers()
|
|
// if we failed to load the model, we try to download it
|
|
err := gallery.InstallModelFromGalleryByName(o.Galleries, modelFile, loader.ModelPath, gallery.GalleryModel{}, utils.DisplayDownloadFunction)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
}
|
|
|
|
if c.Backend == "" {
|
|
inferenceModel, err = loader.GreedyLoader(opts...)
|
|
} else {
|
|
inferenceModel, err = loader.BackendLoader(opts...)
|
|
}
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// in GRPC, the backend is supposed to answer to 1 single token if stream is not supported
|
|
fn := func() (LLMResponse, error) {
|
|
opts := gRPCPredictOpts(c, loader.ModelPath)
|
|
opts.Prompt = s
|
|
opts.Images = images
|
|
|
|
tokenUsage := TokenUsage{}
|
|
|
|
// check the per-model feature flag for usage, since tokenCallback may have a cost.
|
|
// Defaults to off as for now it is still experimental
|
|
if c.FeatureFlag.Enabled("usage") {
|
|
userTokenCallback := tokenCallback
|
|
if userTokenCallback == nil {
|
|
userTokenCallback = func(token string, usage TokenUsage) bool {
|
|
return true
|
|
}
|
|
}
|
|
|
|
promptInfo, pErr := inferenceModel.TokenizeString(ctx, opts)
|
|
if pErr == nil && promptInfo.Length > 0 {
|
|
tokenUsage.Prompt = int(promptInfo.Length)
|
|
}
|
|
|
|
tokenCallback = func(token string, usage TokenUsage) bool {
|
|
tokenUsage.Completion++
|
|
return userTokenCallback(token, tokenUsage)
|
|
}
|
|
}
|
|
|
|
if tokenCallback != nil {
|
|
ss := ""
|
|
|
|
var partialRune []byte
|
|
err := inferenceModel.PredictStream(ctx, opts, func(chars []byte) {
|
|
partialRune = append(partialRune, chars...)
|
|
|
|
for len(partialRune) > 0 {
|
|
r, size := utf8.DecodeRune(partialRune)
|
|
if r == utf8.RuneError {
|
|
// incomplete rune, wait for more bytes
|
|
break
|
|
}
|
|
|
|
tokenCallback(string(r), tokenUsage)
|
|
ss += string(r)
|
|
|
|
partialRune = partialRune[size:]
|
|
}
|
|
})
|
|
return LLMResponse{
|
|
Response: ss,
|
|
Usage: tokenUsage,
|
|
}, err
|
|
} else {
|
|
// TODO: Is the chicken bit the only way to get here? is that acceptable?
|
|
reply, err := inferenceModel.Predict(ctx, opts)
|
|
if err != nil {
|
|
return LLMResponse{}, err
|
|
}
|
|
return LLMResponse{
|
|
Response: string(reply.Message),
|
|
Usage: tokenUsage,
|
|
}, err
|
|
}
|
|
}
|
|
|
|
return fn, nil
|
|
}
|
|
|
|
var cutstrings map[string]*regexp.Regexp = make(map[string]*regexp.Regexp)
|
|
var mu sync.Mutex = sync.Mutex{}
|
|
|
|
func Finetune(config config.BackendConfig, input, prediction string) string {
|
|
if config.Echo {
|
|
prediction = input + prediction
|
|
}
|
|
|
|
for _, c := range config.Cutstrings {
|
|
mu.Lock()
|
|
reg, ok := cutstrings[c]
|
|
if !ok {
|
|
cutstrings[c] = regexp.MustCompile(c)
|
|
reg = cutstrings[c]
|
|
}
|
|
mu.Unlock()
|
|
prediction = reg.ReplaceAllString(prediction, "")
|
|
}
|
|
|
|
for _, c := range config.TrimSpace {
|
|
prediction = strings.TrimSpace(strings.TrimPrefix(prediction, c))
|
|
}
|
|
|
|
for _, c := range config.TrimSuffix {
|
|
prediction = strings.TrimSpace(strings.TrimSuffix(prediction, c))
|
|
}
|
|
return prediction
|
|
}
|