LocalAI/gallery/deephermes.yaml
Ettore Di Giacinto 83202cae54
chore(model gallery): add nousresearch_deephermes-3-llama-3-8b-preview (#4828)
Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
2025-02-14 12:25:00 +01:00

60 lines
1.9 KiB
YAML

---
name: "deephermes"
config_file: |
mmap: true
context_size: 8192
stopwords:
- "<|im_end|>"
- "<dummy32000>"
- "<|eot_id|>"
- "<|end_of_text|>"
function:
disable_no_action: true
grammar:
triggers:
word: "<tool_call>"
at_start: false
template:
chat_message: |
<|start_header_id|>{{if eq .RoleName "assistant"}}assistant{{else if eq .RoleName "system"}}system{{else if eq .RoleName "tool"}}tool{{else if eq .RoleName "user"}}user{{end}}<|end_header_id|>
{{ if .FunctionCall -}}
<tool_call>
{{ else if eq .RoleName "tool" -}}
<tool_response>
{{ end -}}
{{ if .Content -}}
{{.Content -}}
</tool_response>
{{ else if .FunctionCall -}}
{{ toJson .FunctionCall -}}
</tool_call>
{{ end -}}
<|eot_id|>
function: |
<|start_header_id|>system<|end_header_id|>
You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions.
Here are the available tools:
<tools>
{{range .Functions}}
{{toJson .}}
{{end}}
</tools>
Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"}
For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows:
<tool_call>
{"arguments": <args-dict>, "name": <function-name>}
</tool_call><|eot_id|>{{.Input }}
<|start_header_id|>assistant<|end_header_id|>
chat: |
{{.Input }}
<|start_header_id|>assistant<|end_header_id|>
completion: |
{{.Input}}