cryptk e2de8a88f7
feat: create bash library to handle install/run/test of python backends (#2286)
* feat: create bash library to handle install/run/test of python backends

Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>

* chore: minor cleanup

Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>

* fix: remove incorrect LIMIT_TARGETS from parler-tts

Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>

* fix: update runUnitests to handle running tests from a custom test file

Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>

* chore: document runUnittests

Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>

---------

Signed-off-by: Chris Jowett <421501+cryptk@users.noreply.github.com>
2024-05-11 18:32:46 +02:00

452 lines
18 KiB
Python
Executable File

#!/usr/bin/env python3
from concurrent import futures
import argparse
from collections import defaultdict
from enum import Enum
import signal
import sys
import time
import os
from PIL import Image
import torch
import backend_pb2
import backend_pb2_grpc
import grpc
from diffusers import StableDiffusionXLPipeline, StableDiffusionDepth2ImgPipeline, DPMSolverMultistepScheduler, StableDiffusionPipeline, DiffusionPipeline, EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionImg2ImgPipeline, AutoPipelineForText2Image, ControlNetModel, StableVideoDiffusionPipeline
from diffusers.pipelines.stable_diffusion import safety_checker
from diffusers.utils import load_image,export_to_video
from compel import Compel, ReturnedEmbeddingsType
from transformers import CLIPTextModel
from safetensors.torch import load_file
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
COMPEL=os.environ.get("COMPEL", "0") == "1"
XPU=os.environ.get("XPU", "0") == "1"
CLIPSKIP=os.environ.get("CLIPSKIP", "1") == "1"
SAFETENSORS=os.environ.get("SAFETENSORS", "1") == "1"
CHUNK_SIZE=os.environ.get("CHUNK_SIZE", "8")
FPS=os.environ.get("FPS", "7")
DISABLE_CPU_OFFLOAD=os.environ.get("DISABLE_CPU_OFFLOAD", "0") == "1"
FRAMES=os.environ.get("FRAMES", "64")
if XPU:
import intel_extension_for_pytorch as ipex
print(ipex.xpu.get_device_name(0))
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
# https://github.com/CompVis/stable-diffusion/issues/239#issuecomment-1627615287
def sc(self, clip_input, images) : return images, [False for i in images]
# edit the StableDiffusionSafetyChecker class so that, when called, it just returns the images and an array of True values
safety_checker.StableDiffusionSafetyChecker.forward = sc
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
KDPM2DiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UniPCMultistepScheduler,
)
# The scheduler list mapping was taken from here: https://github.com/neggles/animatediff-cli/blob/6f336f5f4b5e38e85d7f06f1744ef42d0a45f2a7/src/animatediff/schedulers.py#L39
# Credits to https://github.com/neggles
# See https://github.com/huggingface/diffusers/issues/4167 for more details on sched mapping from A1111
class DiffusionScheduler(str, Enum):
ddim = "ddim" # DDIM
pndm = "pndm" # PNDM
heun = "heun" # Heun
unipc = "unipc" # UniPC
euler = "euler" # Euler
euler_a = "euler_a" # Euler a
lms = "lms" # LMS
k_lms = "k_lms" # LMS Karras
dpm_2 = "dpm_2" # DPM2
k_dpm_2 = "k_dpm_2" # DPM2 Karras
dpm_2_a = "dpm_2_a" # DPM2 a
k_dpm_2_a = "k_dpm_2_a" # DPM2 a Karras
dpmpp_2m = "dpmpp_2m" # DPM++ 2M
k_dpmpp_2m = "k_dpmpp_2m" # DPM++ 2M Karras
dpmpp_sde = "dpmpp_sde" # DPM++ SDE
k_dpmpp_sde = "k_dpmpp_sde" # DPM++ SDE Karras
dpmpp_2m_sde = "dpmpp_2m_sde" # DPM++ 2M SDE
k_dpmpp_2m_sde = "k_dpmpp_2m_sde" # DPM++ 2M SDE Karras
def get_scheduler(name: str, config: dict = {}):
is_karras = name.startswith("k_")
if is_karras:
# strip the k_ prefix and add the karras sigma flag to config
name = name.lstrip("k_")
config["use_karras_sigmas"] = True
if name == DiffusionScheduler.ddim:
sched_class = DDIMScheduler
elif name == DiffusionScheduler.pndm:
sched_class = PNDMScheduler
elif name == DiffusionScheduler.heun:
sched_class = HeunDiscreteScheduler
elif name == DiffusionScheduler.unipc:
sched_class = UniPCMultistepScheduler
elif name == DiffusionScheduler.euler:
sched_class = EulerDiscreteScheduler
elif name == DiffusionScheduler.euler_a:
sched_class = EulerAncestralDiscreteScheduler
elif name == DiffusionScheduler.lms:
sched_class = LMSDiscreteScheduler
elif name == DiffusionScheduler.dpm_2:
# Equivalent to DPM2 in K-Diffusion
sched_class = KDPM2DiscreteScheduler
elif name == DiffusionScheduler.dpm_2_a:
# Equivalent to `DPM2 a`` in K-Diffusion
sched_class = KDPM2AncestralDiscreteScheduler
elif name == DiffusionScheduler.dpmpp_2m:
# Equivalent to `DPM++ 2M` in K-Diffusion
sched_class = DPMSolverMultistepScheduler
config["algorithm_type"] = "dpmsolver++"
config["solver_order"] = 2
elif name == DiffusionScheduler.dpmpp_sde:
# Equivalent to `DPM++ SDE` in K-Diffusion
sched_class = DPMSolverSinglestepScheduler
elif name == DiffusionScheduler.dpmpp_2m_sde:
# Equivalent to `DPM++ 2M SDE` in K-Diffusion
sched_class = DPMSolverMultistepScheduler
config["algorithm_type"] = "sde-dpmsolver++"
else:
raise ValueError(f"Invalid scheduler '{'k_' if is_karras else ''}{name}'")
return sched_class.from_config(config)
# Implement the BackendServicer class with the service methods
class BackendServicer(backend_pb2_grpc.BackendServicer):
def Health(self, request, context):
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
def LoadModel(self, request, context):
try:
print(f"Loading model {request.Model}...", file=sys.stderr)
print(f"Request {request}", file=sys.stderr)
torchType = torch.float32
variant = None
if request.F16Memory:
torchType = torch.float16
variant="fp16"
local = False
modelFile = request.Model
self.cfg_scale = 7
if request.CFGScale != 0:
self.cfg_scale = request.CFGScale
clipmodel = "runwayml/stable-diffusion-v1-5"
if request.CLIPModel != "":
clipmodel = request.CLIPModel
clipsubfolder = "text_encoder"
if request.CLIPSubfolder != "":
clipsubfolder = request.CLIPSubfolder
# Check if ModelFile exists
if request.ModelFile != "":
if os.path.exists(request.ModelFile):
local = True
modelFile = request.ModelFile
fromSingleFile = request.Model.startswith("http") or request.Model.startswith("/") or local
self.img2vid=False
self.txt2vid=False
## img2img
if (request.PipelineType == "StableDiffusionImg2ImgPipeline") or (request.IMG2IMG and request.PipelineType == ""):
if fromSingleFile:
self.pipe = StableDiffusionImg2ImgPipeline.from_single_file(modelFile,
torch_dtype=torchType)
else:
self.pipe = StableDiffusionImg2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "StableDiffusionDepth2ImgPipeline":
self.pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
## img2vid
elif request.PipelineType == "StableVideoDiffusionPipeline":
self.img2vid=True
self.pipe = StableVideoDiffusionPipeline.from_pretrained(
request.Model, torch_dtype=torchType, variant=variant
)
if not DISABLE_CPU_OFFLOAD:
self.pipe.enable_model_cpu_offload()
## text2img
elif request.PipelineType == "AutoPipelineForText2Image" or request.PipelineType == "":
self.pipe = AutoPipelineForText2Image.from_pretrained(request.Model,
torch_dtype=torchType,
use_safetensors=SAFETENSORS,
variant=variant)
elif request.PipelineType == "StableDiffusionPipeline":
if fromSingleFile:
self.pipe = StableDiffusionPipeline.from_single_file(modelFile,
torch_dtype=torchType)
else:
self.pipe = StableDiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "DiffusionPipeline":
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "VideoDiffusionPipeline":
self.txt2vid=True
self.pipe = DiffusionPipeline.from_pretrained(request.Model,
torch_dtype=torchType)
elif request.PipelineType == "StableDiffusionXLPipeline":
if fromSingleFile:
self.pipe = StableDiffusionXLPipeline.from_single_file(modelFile,
torch_dtype=torchType,
use_safetensors=True)
else:
self.pipe = StableDiffusionXLPipeline.from_pretrained(
request.Model,
torch_dtype=torchType,
use_safetensors=True,
variant=variant)
if CLIPSKIP and request.CLIPSkip != 0:
self.clip_skip = request.CLIPSkip
else:
self.clip_skip = 0
# torch_dtype needs to be customized. float16 for GPU, float32 for CPU
# TODO: this needs to be customized
if request.SchedulerType != "":
self.pipe.scheduler = get_scheduler(request.SchedulerType, self.pipe.scheduler.config)
if COMPEL:
self.compel = Compel(
tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2 ],
text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
if request.ControlNet:
self.controlnet = ControlNetModel.from_pretrained(
request.ControlNet, torch_dtype=torchType, variant=variant
)
self.pipe.controlnet = self.controlnet
else:
self.controlnet = None
if request.CUDA:
self.pipe.to('cuda')
if self.controlnet:
self.controlnet.to('cuda')
if XPU:
self.pipe = self.pipe.to("xpu")
# Assume directory from request.ModelFile.
# Only if request.LoraAdapter it's not an absolute path
if request.LoraAdapter and request.ModelFile != "" and not os.path.isabs(request.LoraAdapter) and request.LoraAdapter:
# get base path of modelFile
modelFileBase = os.path.dirname(request.ModelFile)
# modify LoraAdapter to be relative to modelFileBase
request.LoraAdapter = os.path.join(modelFileBase, request.LoraAdapter)
device = "cpu" if not request.CUDA else "cuda"
self.device = device
if request.LoraAdapter:
# Check if its a local file and not a directory ( we load lora differently for a safetensor file )
if os.path.exists(request.LoraAdapter) and not os.path.isdir(request.LoraAdapter):
self.load_lora_weights(request.LoraAdapter, 1, device, torchType)
else:
self.pipe.unet.load_attn_procs(request.LoraAdapter)
except Exception as err:
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
# Implement your logic here for the LoadModel service
# Replace this with your desired response
return backend_pb2.Result(message="Model loaded successfully", success=True)
# https://github.com/huggingface/diffusers/issues/3064
def load_lora_weights(self, checkpoint_path, multiplier, device, dtype):
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# load LoRA weight from .safetensors
state_dict = load_file(checkpoint_path, device=device)
updates = defaultdict(dict)
for key, value in state_dict.items():
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
layer, elem = key.split('.', 1)
updates[layer][elem] = value
# directly update weight in diffusers model
for layer, elems in updates.items():
if "text" in layer:
layer_infos = layer.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
curr_layer = self.pipe.text_encoder
else:
layer_infos = layer.split(LORA_PREFIX_UNET + "_")[-1].split("_")
curr_layer = self.pipe.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# get elements for this layer
weight_up = elems['lora_up.weight'].to(dtype)
weight_down = elems['lora_down.weight'].to(dtype)
alpha = elems['alpha'] if 'alpha' in elems else None
if alpha:
alpha = alpha.item() / weight_up.shape[1]
else:
alpha = 1.0
# update weight
if len(weight_up.shape) == 4:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up.squeeze(3).squeeze(2), weight_down.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
else:
curr_layer.weight.data += multiplier * alpha * torch.mm(weight_up, weight_down)
def GenerateImage(self, request, context):
prompt = request.positive_prompt
steps = 1
if request.step != 0:
steps = request.step
# create a dictionary of values for the parameters
options = {
"negative_prompt": request.negative_prompt,
"width": request.width,
"height": request.height,
"num_inference_steps": steps,
}
if request.src != "" and not self.controlnet and not self.img2vid:
image = Image.open(request.src)
options["image"] = image
elif self.controlnet and request.src:
pose_image = load_image(request.src)
options["image"] = pose_image
if CLIPSKIP and self.clip_skip != 0:
options["clip_skip"]=self.clip_skip
# Get the keys that we will build the args for our pipe for
keys = options.keys()
if request.EnableParameters != "":
keys = request.EnableParameters.split(",")
if request.EnableParameters == "none":
keys = []
# create a dictionary of parameters by using the keys from EnableParameters and the values from defaults
kwargs = {key: options[key] for key in keys}
# Set seed
if request.seed > 0:
kwargs["generator"] = torch.Generator(device=self.device).manual_seed(
request.seed
)
if self.img2vid:
# Load the conditioning image
image = load_image(request.src)
image = image.resize((1024, 576))
generator = torch.manual_seed(request.seed)
frames = self.pipe(image, guidance_scale=self.cfg_scale, decode_chunk_size=CHUNK_SIZE, generator=generator).frames[0]
export_to_video(frames, request.dst, fps=FPS)
return backend_pb2.Result(message="Media generated successfully", success=True)
if self.txt2vid:
video_frames = self.pipe(prompt, guidance_scale=self.cfg_scale, num_inference_steps=steps, num_frames=int(FRAMES)).frames
export_to_video(video_frames, request.dst)
return backend_pb2.Result(message="Media generated successfully", success=True)
image = {}
if COMPEL:
conditioning, pooled = self.compel.build_conditioning_tensor(prompt)
kwargs["prompt_embeds"] = conditioning
kwargs["pooled_prompt_embeds"] = pooled
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
guidance_scale=self.cfg_scale,
**kwargs
).images[0]
else:
# pass the kwargs dictionary to the self.pipe method
image = self.pipe(
prompt,
guidance_scale=self.cfg_scale,
**kwargs
).images[0]
# save the result
image.save(request.dst)
return backend_pb2.Result(message="Media generated", success=True)
def serve(address):
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
server.add_insecure_port(address)
server.start()
print("Server started. Listening on: " + address, file=sys.stderr)
# Define the signal handler function
def signal_handler(sig, frame):
print("Received termination signal. Shutting down...")
server.stop(0)
sys.exit(0)
# Set the signal handlers for SIGINT and SIGTERM
signal.signal(signal.SIGINT, signal_handler)
signal.signal(signal.SIGTERM, signal_handler)
try:
while True:
time.sleep(_ONE_DAY_IN_SECONDS)
except KeyboardInterrupt:
server.stop(0)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the gRPC server.")
parser.add_argument(
"--addr", default="localhost:50051", help="The address to bind the server to."
)
args = parser.parse_args()
serve(args.addr)