mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-18 02:40:01 +00:00
d23e73b118
* Enhance autogptq backend to support VL models * update dependencies for autogptq * remove redundant auto-gptq dependency * Convert base64 to image_url for Qwen-VL model * implemented model inference for qwen-vl * remove user prompt from generated answer * fixed write image error * fixed use_triton issue when loading Qwen-VL model --------- Co-authored-by: Binghua Wu <bingwu@estee.com>
153 lines
5.8 KiB
Python
Executable File
153 lines
5.8 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
from concurrent import futures
|
|
import argparse
|
|
import signal
|
|
import sys
|
|
import os
|
|
import time
|
|
import base64
|
|
|
|
import grpc
|
|
import backend_pb2
|
|
import backend_pb2_grpc
|
|
|
|
from auto_gptq import AutoGPTQForCausalLM
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
from transformers import TextGenerationPipeline
|
|
|
|
_ONE_DAY_IN_SECONDS = 60 * 60 * 24
|
|
|
|
# If MAX_WORKERS are specified in the environment use it, otherwise default to 1
|
|
MAX_WORKERS = int(os.environ.get('PYTHON_GRPC_MAX_WORKERS', '1'))
|
|
|
|
# Implement the BackendServicer class with the service methods
|
|
class BackendServicer(backend_pb2_grpc.BackendServicer):
|
|
def Health(self, request, context):
|
|
return backend_pb2.Reply(message=bytes("OK", 'utf-8'))
|
|
def LoadModel(self, request, context):
|
|
try:
|
|
device = "cuda:0"
|
|
if request.Device != "":
|
|
device = request.Device
|
|
|
|
# support loading local model files
|
|
model_path = os.path.join(os.environ.get('MODELS_PATH', './'), request.Model)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True, trust_remote_code=request.TrustRemoteCode)
|
|
|
|
# support model `Qwen/Qwen-VL-Chat-Int4`
|
|
if "qwen-vl" in request.Model.lower():
|
|
self.model_name = "Qwen-VL-Chat"
|
|
model = AutoModelForCausalLM.from_pretrained(model_path,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
device_map="auto").eval()
|
|
else:
|
|
model = AutoGPTQForCausalLM.from_quantized(model_path,
|
|
model_basename=request.ModelBaseName,
|
|
use_safetensors=True,
|
|
trust_remote_code=request.TrustRemoteCode,
|
|
device=device,
|
|
use_triton=request.UseTriton,
|
|
quantize_config=None)
|
|
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
except Exception as err:
|
|
return backend_pb2.Result(success=False, message=f"Unexpected {err=}, {type(err)=}")
|
|
return backend_pb2.Result(message="Model loaded successfully", success=True)
|
|
|
|
def Predict(self, request, context):
|
|
penalty = 1.0
|
|
if request.Penalty != 0.0:
|
|
penalty = request.Penalty
|
|
tokens = 512
|
|
if request.Tokens != 0:
|
|
tokens = request.Tokens
|
|
top_p = 0.95
|
|
if request.TopP != 0.0:
|
|
top_p = request.TopP
|
|
|
|
|
|
prompt_images = self.recompile_vl_prompt(request)
|
|
compiled_prompt = prompt_images[0]
|
|
print(f"Prompt: {compiled_prompt}", file=sys.stderr)
|
|
|
|
# Implement Predict RPC
|
|
pipeline = TextGenerationPipeline(
|
|
model=self.model,
|
|
tokenizer=self.tokenizer,
|
|
max_new_tokens=tokens,
|
|
temperature=request.Temperature,
|
|
top_p=top_p,
|
|
repetition_penalty=penalty,
|
|
)
|
|
t = pipeline(compiled_prompt)[0]["generated_text"]
|
|
print(f"generated_text: {t}", file=sys.stderr)
|
|
|
|
if compiled_prompt in t:
|
|
t = t.replace(compiled_prompt, "")
|
|
# house keeping. Remove the image files from /tmp folder
|
|
for img_path in prompt_images[1]:
|
|
try:
|
|
os.remove(img_path)
|
|
except Exception as e:
|
|
print(f"Error removing image file: {img_path}, {e}", file=sys.stderr)
|
|
|
|
return backend_pb2.Result(message=bytes(t, encoding='utf-8'))
|
|
|
|
def PredictStream(self, request, context):
|
|
# Implement PredictStream RPC
|
|
#for reply in some_data_generator():
|
|
# yield reply
|
|
# Not implemented yet
|
|
return self.Predict(request, context)
|
|
|
|
def recompile_vl_prompt(self, request):
|
|
prompt = request.Prompt
|
|
image_paths = []
|
|
|
|
if "qwen-vl" in self.model_name.lower():
|
|
# request.Images is an array which contains base64 encoded images. Iterate the request.Images array, decode and save each image to /tmp folder with a random filename.
|
|
# Then, save the image file paths to an array "image_paths".
|
|
# read "request.Prompt", replace "[img-%d]" with the image file paths in the order they appear in "image_paths". Save the new prompt to "prompt".
|
|
for i, img in enumerate(request.Images):
|
|
timestamp = str(int(time.time() * 1000)) # Generate timestamp
|
|
img_path = f"/tmp/vl-{timestamp}.jpg" # Use timestamp in filename
|
|
with open(img_path, "wb") as f:
|
|
f.write(base64.b64decode(img))
|
|
image_paths.append(img_path)
|
|
prompt = prompt.replace(f"[img-{i}]", "<img>" + img_path + "</img>,")
|
|
else:
|
|
prompt = request.Prompt
|
|
return (prompt, image_paths)
|
|
|
|
def serve(address):
|
|
server = grpc.server(futures.ThreadPoolExecutor(max_workers=MAX_WORKERS))
|
|
backend_pb2_grpc.add_BackendServicer_to_server(BackendServicer(), server)
|
|
server.add_insecure_port(address)
|
|
server.start()
|
|
print("Server started. Listening on: " + address, file=sys.stderr)
|
|
|
|
# Define the signal handler function
|
|
def signal_handler(sig, frame):
|
|
print("Received termination signal. Shutting down...")
|
|
server.stop(0)
|
|
sys.exit(0)
|
|
|
|
# Set the signal handlers for SIGINT and SIGTERM
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
signal.signal(signal.SIGTERM, signal_handler)
|
|
|
|
try:
|
|
while True:
|
|
time.sleep(_ONE_DAY_IN_SECONDS)
|
|
except KeyboardInterrupt:
|
|
server.stop(0)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run the gRPC server.")
|
|
parser.add_argument(
|
|
"--addr", default="localhost:50051", help="The address to bind the server to."
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
serve(args.addr) |