mirror of
https://github.com/mudler/LocalAI.git
synced 2025-01-18 02:40:01 +00:00
a181dd0ebc
* refactor(gallery): move under core/ Signed-off-by: Ettore Di Giacinto <mudler@localai.io> * fix(unarchive): do not allow symlinks Signed-off-by: Ettore Di Giacinto <mudler@localai.io> --------- Signed-off-by: Ettore Di Giacinto <mudler@localai.io>
1086 lines
35 KiB
Go
1086 lines
35 KiB
Go
package http_test
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"embed"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net/http"
|
|
"os"
|
|
"path/filepath"
|
|
"runtime"
|
|
|
|
"github.com/mudler/LocalAI/core/config"
|
|
. "github.com/mudler/LocalAI/core/http"
|
|
"github.com/mudler/LocalAI/core/schema"
|
|
"github.com/mudler/LocalAI/core/startup"
|
|
|
|
"github.com/gofiber/fiber/v2"
|
|
"github.com/mudler/LocalAI/core/gallery"
|
|
"github.com/mudler/LocalAI/pkg/downloader"
|
|
"github.com/mudler/LocalAI/pkg/model"
|
|
. "github.com/onsi/ginkgo/v2"
|
|
. "github.com/onsi/gomega"
|
|
"gopkg.in/yaml.v3"
|
|
|
|
openaigo "github.com/otiai10/openaigo"
|
|
"github.com/sashabaranov/go-openai"
|
|
"github.com/sashabaranov/go-openai/jsonschema"
|
|
)
|
|
|
|
const testPrompt = `### System:
|
|
You are an AI assistant that follows instruction extremely well. Help as much as you can.
|
|
|
|
### User:
|
|
|
|
Can you help rephrasing sentences?
|
|
|
|
### Response:`
|
|
|
|
type modelApplyRequest struct {
|
|
ID string `json:"id"`
|
|
URL string `json:"url"`
|
|
ConfigURL string `json:"config_url"`
|
|
Name string `json:"name"`
|
|
Overrides map[string]interface{} `json:"overrides"`
|
|
}
|
|
|
|
func getModelStatus(url string) (response map[string]interface{}) {
|
|
// Create the HTTP request
|
|
resp, err := http.Get(url)
|
|
if err != nil {
|
|
fmt.Println("Error creating request:", err)
|
|
return
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
fmt.Println("Error reading response body:", err)
|
|
return
|
|
}
|
|
|
|
// Unmarshal the response into a map[string]interface{}
|
|
err = json.Unmarshal(body, &response)
|
|
if err != nil {
|
|
fmt.Println("Error unmarshaling JSON response:", err)
|
|
return
|
|
}
|
|
return
|
|
}
|
|
|
|
func getModels(url string) (response []gallery.GalleryModel) {
|
|
// TODO: No tests currently seem to exercise file:// urls. Fix?
|
|
downloader.DownloadAndUnmarshal(url, "", func(url string, i []byte) error {
|
|
// Unmarshal YAML data into a struct
|
|
return json.Unmarshal(i, &response)
|
|
})
|
|
return
|
|
}
|
|
|
|
func postModelApplyRequest(url string, request modelApplyRequest) (response map[string]interface{}) {
|
|
|
|
//url := "http://localhost:AI/models/apply"
|
|
|
|
// Create the request payload
|
|
|
|
payload, err := json.Marshal(request)
|
|
if err != nil {
|
|
fmt.Println("Error marshaling JSON:", err)
|
|
return
|
|
}
|
|
|
|
// Create the HTTP request
|
|
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
|
|
if err != nil {
|
|
fmt.Println("Error creating request:", err)
|
|
return
|
|
}
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
// Make the request
|
|
client := &http.Client{}
|
|
resp, err := client.Do(req)
|
|
if err != nil {
|
|
fmt.Println("Error making request:", err)
|
|
return
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
fmt.Println("Error reading response body:", err)
|
|
return
|
|
}
|
|
|
|
// Unmarshal the response into a map[string]interface{}
|
|
err = json.Unmarshal(body, &response)
|
|
if err != nil {
|
|
fmt.Println("Error unmarshaling JSON response:", err)
|
|
return
|
|
}
|
|
return
|
|
}
|
|
|
|
func postRequestJSON[B any](url string, bodyJson *B) error {
|
|
payload, err := json.Marshal(bodyJson)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
GinkgoWriter.Printf("POST %s: %s\n", url, string(payload))
|
|
|
|
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
client := &http.Client{}
|
|
resp, err := client.Do(req)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if resp.StatusCode < 200 || resp.StatusCode >= 400 {
|
|
return fmt.Errorf("unexpected status code: %d, body: %s", resp.StatusCode, string(body))
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func postRequestResponseJSON[B1 any, B2 any](url string, reqJson *B1, respJson *B2) error {
|
|
payload, err := json.Marshal(reqJson)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
GinkgoWriter.Printf("POST %s: %s\n", url, string(payload))
|
|
|
|
req, err := http.NewRequest("POST", url, bytes.NewBuffer(payload))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
req.Header.Set("Content-Type", "application/json")
|
|
|
|
client := &http.Client{}
|
|
resp, err := client.Do(req)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
defer resp.Body.Close()
|
|
|
|
body, err := io.ReadAll(resp.Body)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if resp.StatusCode < 200 || resp.StatusCode >= 400 {
|
|
return fmt.Errorf("unexpected status code: %d, body: %s", resp.StatusCode, string(body))
|
|
}
|
|
|
|
return json.Unmarshal(body, respJson)
|
|
}
|
|
|
|
//go:embed backend-assets/*
|
|
var backendAssets embed.FS
|
|
|
|
var _ = Describe("API test", func() {
|
|
|
|
var app *fiber.App
|
|
var client *openai.Client
|
|
var client2 *openaigo.Client
|
|
var c context.Context
|
|
var cancel context.CancelFunc
|
|
var tmpdir string
|
|
var modelDir string
|
|
var bcl *config.BackendConfigLoader
|
|
var ml *model.ModelLoader
|
|
var applicationConfig *config.ApplicationConfig
|
|
|
|
commonOpts := []config.AppOption{
|
|
config.WithDebug(true),
|
|
}
|
|
|
|
Context("API with ephemeral models", func() {
|
|
|
|
BeforeEach(func(sc SpecContext) {
|
|
var err error
|
|
tmpdir, err = os.MkdirTemp("", "")
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
modelDir = filepath.Join(tmpdir, "models")
|
|
err = os.Mkdir(modelDir, 0750)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
|
|
err = os.Mkdir(backendAssetsDir, 0750)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
c, cancel = context.WithCancel(context.Background())
|
|
|
|
g := []gallery.GalleryModel{
|
|
{
|
|
Name: "bert",
|
|
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
|
},
|
|
{
|
|
Name: "bert2",
|
|
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
|
Overrides: map[string]interface{}{"foo": "bar"},
|
|
AdditionalFiles: []gallery.File{{Filename: "foo.yaml", URI: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml"}},
|
|
},
|
|
}
|
|
out, err := yaml.Marshal(g)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
err = os.WriteFile(filepath.Join(modelDir, "gallery_simple.yaml"), out, 0600)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
galleries := []config.Gallery{
|
|
{
|
|
Name: "test",
|
|
URL: "file://" + filepath.Join(modelDir, "gallery_simple.yaml"),
|
|
},
|
|
}
|
|
|
|
bcl, ml, applicationConfig, err = startup.Startup(
|
|
append(commonOpts,
|
|
config.WithContext(c),
|
|
config.WithGalleries(galleries),
|
|
config.WithModelPath(modelDir),
|
|
config.WithBackendAssets(backendAssets),
|
|
config.WithBackendAssetsOutput(backendAssetsDir))...)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
app, err = App(bcl, ml, applicationConfig)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
go app.Listen("127.0.0.1:9090")
|
|
|
|
defaultConfig := openai.DefaultConfig("")
|
|
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
|
|
|
client2 = openaigo.NewClient("")
|
|
client2.BaseURL = defaultConfig.BaseURL
|
|
|
|
// Wait for API to be ready
|
|
client = openai.NewClientWithConfig(defaultConfig)
|
|
Eventually(func() error {
|
|
_, err := client.ListModels(context.TODO())
|
|
return err
|
|
}, "2m").ShouldNot(HaveOccurred())
|
|
})
|
|
|
|
AfterEach(func(sc SpecContext) {
|
|
cancel()
|
|
if app != nil {
|
|
err := app.Shutdown()
|
|
Expect(err).ToNot(HaveOccurred())
|
|
}
|
|
err := os.RemoveAll(tmpdir)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
_, err = os.ReadDir(tmpdir)
|
|
Expect(err).To(HaveOccurred())
|
|
})
|
|
|
|
Context("Applying models", func() {
|
|
|
|
It("applies models from a gallery", func() {
|
|
models := getModels("http://127.0.0.1:9090/models/available")
|
|
Expect(len(models)).To(Equal(2), fmt.Sprint(models))
|
|
Expect(models[0].Installed).To(BeFalse(), fmt.Sprint(models))
|
|
Expect(models[1].Installed).To(BeFalse(), fmt.Sprint(models))
|
|
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
ID: "test@bert2",
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
resp := map[string]interface{}{}
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
fmt.Println(response)
|
|
resp = response
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
Expect(resp["message"]).ToNot(ContainSubstring("error"))
|
|
|
|
dat, err := os.ReadFile(filepath.Join(modelDir, "bert2.yaml"))
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
_, err = os.ReadFile(filepath.Join(modelDir, "foo.yaml"))
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
content := map[string]interface{}{}
|
|
err = yaml.Unmarshal(dat, &content)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(content["backend"]).To(Equal("bert-embeddings"))
|
|
Expect(content["foo"]).To(Equal("bar"))
|
|
|
|
models = getModels("http://127.0.0.1:9090/models/available")
|
|
Expect(len(models)).To(Equal(2), fmt.Sprint(models))
|
|
Expect(models[0].Name).To(Or(Equal("bert"), Equal("bert2")))
|
|
Expect(models[1].Name).To(Or(Equal("bert"), Equal("bert2")))
|
|
for _, m := range models {
|
|
if m.Name == "bert2" {
|
|
Expect(m.Installed).To(BeTrue())
|
|
} else {
|
|
Expect(m.Installed).To(BeFalse())
|
|
}
|
|
}
|
|
})
|
|
It("overrides models", func() {
|
|
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
|
Name: "bert",
|
|
Overrides: map[string]interface{}{
|
|
"backend": "llama",
|
|
},
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
dat, err := os.ReadFile(filepath.Join(modelDir, "bert.yaml"))
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
content := map[string]interface{}{}
|
|
err = yaml.Unmarshal(dat, &content)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(content["backend"]).To(Equal("llama"))
|
|
})
|
|
It("apply models from config", func() {
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
ConfigURL: "https://raw.githubusercontent.com/mudler/LocalAI/master/embedded/models/hermes-2-pro-mistral.yaml",
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
Eventually(func() []string {
|
|
models, _ := client.ListModels(context.TODO())
|
|
modelList := []string{}
|
|
for _, m := range models.Models {
|
|
modelList = append(modelList, m.ID)
|
|
}
|
|
return modelList
|
|
}, "360s", "10s").Should(ContainElements("hermes-2-pro-mistral"))
|
|
})
|
|
It("apply models without overrides", func() {
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/bert-embeddings.yaml",
|
|
Name: "bert",
|
|
Overrides: map[string]interface{}{},
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
dat, err := os.ReadFile(filepath.Join(modelDir, "bert.yaml"))
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
content := map[string]interface{}{}
|
|
err = yaml.Unmarshal(dat, &content)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(content["backend"]).To(Equal("bert-embeddings"))
|
|
})
|
|
|
|
It("runs openllama(llama-ggml backend)", Label("llama"), func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
URL: "github:go-skynet/model-gallery/openllama_3b.yaml",
|
|
Name: "openllama_3b",
|
|
Overrides: map[string]interface{}{"backend": "llama-ggml", "mmap": true, "f16": true, "context_size": 128},
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
By("testing completion")
|
|
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "openllama_3b", Prompt: "Count up to five: one, two, three, four, "})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
|
|
|
|
By("testing functions")
|
|
resp2, err := client.CreateChatCompletion(
|
|
context.TODO(),
|
|
openai.ChatCompletionRequest{
|
|
Model: "openllama_3b",
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: "user",
|
|
Content: "What is the weather like in San Francisco (celsius)?",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefinition{
|
|
openai.FunctionDefinition{
|
|
Name: "get_current_weather",
|
|
Description: "Get the current weather",
|
|
Parameters: jsonschema.Definition{
|
|
Type: jsonschema.Object,
|
|
Properties: map[string]jsonschema.Definition{
|
|
"location": {
|
|
Type: jsonschema.String,
|
|
Description: "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
Type: jsonschema.String,
|
|
Enum: []string{"celcius", "fahrenheit"},
|
|
},
|
|
},
|
|
Required: []string{"location"},
|
|
},
|
|
},
|
|
},
|
|
})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp2.Choices)).To(Equal(1))
|
|
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
|
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
|
|
|
var res map[string]string
|
|
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(res["location"]).To(Equal("San Francisco"), fmt.Sprint(res))
|
|
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
|
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
|
|
|
|
})
|
|
|
|
It("runs openllama gguf(llama-cpp)", Label("llama-gguf"), func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
|
|
modelName := "hermes-2-pro-mistral"
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
ConfigURL: "https://raw.githubusercontent.com/mudler/LocalAI/master/embedded/models/hermes-2-pro-mistral.yaml",
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
By("testing chat")
|
|
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: modelName, Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: "user",
|
|
Content: "How much is 2+2?",
|
|
},
|
|
}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Message.Content).To(Or(ContainSubstring("4"), ContainSubstring("four")))
|
|
|
|
By("testing functions")
|
|
resp2, err := client.CreateChatCompletion(
|
|
context.TODO(),
|
|
openai.ChatCompletionRequest{
|
|
Model: modelName,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: "user",
|
|
Content: "What is the weather like in San Francisco (celsius)?",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefinition{
|
|
openai.FunctionDefinition{
|
|
Name: "get_current_weather",
|
|
Description: "Get the current weather",
|
|
Parameters: jsonschema.Definition{
|
|
Type: jsonschema.Object,
|
|
Properties: map[string]jsonschema.Definition{
|
|
"location": {
|
|
Type: jsonschema.String,
|
|
Description: "The city and state, e.g. San Francisco, CA",
|
|
},
|
|
"unit": {
|
|
Type: jsonschema.String,
|
|
Enum: []string{"celcius", "fahrenheit"},
|
|
},
|
|
},
|
|
Required: []string{"location"},
|
|
},
|
|
},
|
|
},
|
|
})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp2.Choices)).To(Equal(1))
|
|
Expect(resp2.Choices[0].Message.FunctionCall).ToNot(BeNil())
|
|
Expect(resp2.Choices[0].Message.FunctionCall.Name).To(Equal("get_current_weather"), resp2.Choices[0].Message.FunctionCall.Name)
|
|
|
|
var res map[string]string
|
|
err = json.Unmarshal([]byte(resp2.Choices[0].Message.FunctionCall.Arguments), &res)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(res["location"]).To(ContainSubstring("San Francisco"), fmt.Sprint(res))
|
|
Expect(res["unit"]).To(Equal("celcius"), fmt.Sprint(res))
|
|
Expect(string(resp2.Choices[0].FinishReason)).To(Equal("function_call"), fmt.Sprint(resp2.Choices[0].FinishReason))
|
|
})
|
|
|
|
It("runs gpt4all", Label("gpt4all"), func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
URL: "github:go-skynet/model-gallery/gpt4all-j.yaml",
|
|
Name: "gpt4all-j",
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
return response["processed"].(bool)
|
|
}, "960s", "10s").Should(Equal(true))
|
|
|
|
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-j", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: "How are you?"}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Message.Content).To(ContainSubstring("well"))
|
|
})
|
|
|
|
})
|
|
})
|
|
|
|
Context("Model gallery", func() {
|
|
BeforeEach(func() {
|
|
var err error
|
|
tmpdir, err = os.MkdirTemp("", "")
|
|
Expect(err).ToNot(HaveOccurred())
|
|
modelDir = filepath.Join(tmpdir, "models")
|
|
backendAssetsDir := filepath.Join(tmpdir, "backend-assets")
|
|
err = os.Mkdir(backendAssetsDir, 0750)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
c, cancel = context.WithCancel(context.Background())
|
|
|
|
galleries := []config.Gallery{
|
|
{
|
|
Name: "model-gallery",
|
|
URL: "https://raw.githubusercontent.com/go-skynet/model-gallery/main/index.yaml",
|
|
},
|
|
}
|
|
|
|
bcl, ml, applicationConfig, err = startup.Startup(
|
|
append(commonOpts,
|
|
config.WithContext(c),
|
|
config.WithAudioDir(tmpdir),
|
|
config.WithImageDir(tmpdir),
|
|
config.WithGalleries(galleries),
|
|
config.WithModelPath(modelDir),
|
|
config.WithBackendAssets(backendAssets),
|
|
config.WithBackendAssetsOutput(tmpdir))...,
|
|
)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
app, err = App(bcl, ml, applicationConfig)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
go app.Listen("127.0.0.1:9090")
|
|
|
|
defaultConfig := openai.DefaultConfig("")
|
|
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
|
|
|
client2 = openaigo.NewClient("")
|
|
client2.BaseURL = defaultConfig.BaseURL
|
|
|
|
// Wait for API to be ready
|
|
client = openai.NewClientWithConfig(defaultConfig)
|
|
Eventually(func() error {
|
|
_, err := client.ListModels(context.TODO())
|
|
return err
|
|
}, "2m").ShouldNot(HaveOccurred())
|
|
})
|
|
|
|
AfterEach(func() {
|
|
cancel()
|
|
if app != nil {
|
|
err := app.Shutdown()
|
|
Expect(err).ToNot(HaveOccurred())
|
|
}
|
|
err := os.RemoveAll(tmpdir)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
_, err = os.ReadDir(tmpdir)
|
|
Expect(err).To(HaveOccurred())
|
|
})
|
|
It("installs and is capable to run tts", Label("tts"), func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
ID: "model-gallery@voice-en-us-kathleen-low",
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
fmt.Println(response)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
// An HTTP Post to the /tts endpoint should return a wav audio file
|
|
resp, err := http.Post("http://127.0.0.1:9090/tts", "application/json", bytes.NewBuffer([]byte(`{"input": "Hello world", "model": "en-us-kathleen-low.onnx"}`)))
|
|
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
|
|
dat, err := io.ReadAll(resp.Body)
|
|
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
|
|
|
|
Expect(resp.StatusCode).To(Equal(200), fmt.Sprint(string(dat)))
|
|
Expect(resp.Header.Get("Content-Type")).To(Equal("audio/x-wav"))
|
|
})
|
|
It("installs and is capable to generate images", Label("stablediffusion"), func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
|
|
response := postModelApplyRequest("http://127.0.0.1:9090/models/apply", modelApplyRequest{
|
|
ID: "model-gallery@stablediffusion",
|
|
Overrides: map[string]interface{}{
|
|
"parameters": map[string]interface{}{"model": "stablediffusion_assets"},
|
|
},
|
|
})
|
|
|
|
Expect(response["uuid"]).ToNot(BeEmpty(), fmt.Sprint(response))
|
|
|
|
uuid := response["uuid"].(string)
|
|
|
|
Eventually(func() bool {
|
|
response := getModelStatus("http://127.0.0.1:9090/models/jobs/" + uuid)
|
|
fmt.Println(response)
|
|
return response["processed"].(bool)
|
|
}, "360s", "10s").Should(Equal(true))
|
|
|
|
resp, err := http.Post(
|
|
"http://127.0.0.1:9090/v1/images/generations",
|
|
"application/json",
|
|
bytes.NewBuffer([]byte(`{
|
|
"prompt": "floating hair, portrait, ((loli)), ((one girl)), cute face, hidden hands, asymmetrical bangs, beautiful detailed eyes, eye shadow, hair ornament, ribbons, bowties, buttons, pleated skirt, (((masterpiece))), ((best quality)), colorful|((part of the head)), ((((mutated hands and fingers)))), deformed, blurry, bad anatomy, disfigured, poorly drawn face, mutation, mutated, extra limb, ugly, poorly drawn hands, missing limb, blurry, floating limbs, disconnected limbs, malformed hands, blur, out of focus, long neck, long body, Octane renderer, lowres, bad anatomy, bad hands, text",
|
|
"mode": 2, "seed":9000,
|
|
"size": "256x256", "n":2}`)))
|
|
// The response should contain an URL
|
|
Expect(err).ToNot(HaveOccurred(), fmt.Sprint(resp))
|
|
dat, err := io.ReadAll(resp.Body)
|
|
Expect(err).ToNot(HaveOccurred(), "error reading /image/generations response")
|
|
|
|
imgUrlResp := &schema.OpenAIResponse{}
|
|
err = json.Unmarshal(dat, imgUrlResp)
|
|
Expect(imgUrlResp.Data).ToNot(Or(BeNil(), BeZero()))
|
|
imgUrl := imgUrlResp.Data[0].URL
|
|
Expect(imgUrl).To(ContainSubstring("http://127.0.0.1:9090/"), imgUrl)
|
|
Expect(imgUrl).To(ContainSubstring(".png"), imgUrl)
|
|
|
|
imgResp, err := http.Get(imgUrl)
|
|
Expect(err).To(BeNil())
|
|
Expect(imgResp).ToNot(BeNil())
|
|
Expect(imgResp.StatusCode).To(Equal(200))
|
|
Expect(imgResp.ContentLength).To(BeNumerically(">", 0))
|
|
imgData := make([]byte, 512)
|
|
count, err := io.ReadFull(imgResp.Body, imgData)
|
|
Expect(err).To(Or(BeNil(), MatchError(io.EOF)))
|
|
Expect(count).To(BeNumerically(">", 0))
|
|
Expect(count).To(BeNumerically("<=", 512))
|
|
Expect(http.DetectContentType(imgData)).To(Equal("image/png"))
|
|
})
|
|
})
|
|
|
|
Context("API query", func() {
|
|
BeforeEach(func() {
|
|
modelPath := os.Getenv("MODELS_PATH")
|
|
c, cancel = context.WithCancel(context.Background())
|
|
|
|
var err error
|
|
|
|
bcl, ml, applicationConfig, err = startup.Startup(
|
|
append(commonOpts,
|
|
config.WithExternalBackend("huggingface", os.Getenv("HUGGINGFACE_GRPC")),
|
|
config.WithContext(c),
|
|
config.WithModelPath(modelPath),
|
|
)...)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
app, err = App(bcl, ml, applicationConfig)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
go app.Listen("127.0.0.1:9090")
|
|
|
|
defaultConfig := openai.DefaultConfig("")
|
|
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
|
|
|
client2 = openaigo.NewClient("")
|
|
client2.BaseURL = defaultConfig.BaseURL
|
|
|
|
// Wait for API to be ready
|
|
client = openai.NewClientWithConfig(defaultConfig)
|
|
Eventually(func() error {
|
|
_, err := client.ListModels(context.TODO())
|
|
return err
|
|
}, "2m").ShouldNot(HaveOccurred())
|
|
})
|
|
AfterEach(func() {
|
|
cancel()
|
|
if app != nil {
|
|
err := app.Shutdown()
|
|
Expect(err).ToNot(HaveOccurred())
|
|
}
|
|
})
|
|
It("returns the models list", func() {
|
|
models, err := client.ListModels(context.TODO())
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(models.Models)).To(Equal(6)) // If "config.yaml" should be included, this should be 8?
|
|
})
|
|
It("can generate completions via ggml", func() {
|
|
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "testmodel.ggml", Prompt: testPrompt})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
|
})
|
|
|
|
It("can generate chat completions via ggml", func() {
|
|
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "testmodel.ggml", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
|
})
|
|
|
|
It("can generate completions from model configs", func() {
|
|
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "gpt4all", Prompt: testPrompt})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
|
})
|
|
|
|
It("can generate chat completions from model configs", func() {
|
|
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "gpt4all-2", Messages: []openai.ChatCompletionMessage{openai.ChatCompletionMessage{Role: "user", Content: testPrompt}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
|
})
|
|
|
|
It("returns errors", func() {
|
|
_, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "foomodel", Prompt: testPrompt})
|
|
Expect(err).To(HaveOccurred())
|
|
Expect(err.Error()).To(ContainSubstring("error, status code: 500, message: could not load model - all backends returned error:"))
|
|
})
|
|
|
|
It("transcribes audio", func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
resp, err := client.CreateTranscription(
|
|
context.Background(),
|
|
openai.AudioRequest{
|
|
Model: openai.Whisper1,
|
|
FilePath: filepath.Join(os.Getenv("TEST_DIR"), "audio.wav"),
|
|
},
|
|
)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(resp.Text).To(ContainSubstring("This is the Micro Machine Man presenting"))
|
|
})
|
|
|
|
It("calculate embeddings", func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
resp, err := client.CreateEmbeddings(
|
|
context.Background(),
|
|
openai.EmbeddingRequest{
|
|
Model: openai.AdaEmbeddingV2,
|
|
Input: []string{"sun", "cat"},
|
|
},
|
|
)
|
|
Expect(err).ToNot(HaveOccurred(), err)
|
|
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
|
|
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
|
|
|
|
sunEmbedding := resp.Data[0].Embedding
|
|
resp2, err := client.CreateEmbeddings(
|
|
context.Background(),
|
|
openai.EmbeddingRequest{
|
|
Model: openai.AdaEmbeddingV2,
|
|
Input: []string{"sun"},
|
|
},
|
|
)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
|
|
})
|
|
|
|
Context("External gRPC calls", func() {
|
|
It("calculate embeddings with sentencetransformers", func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
resp, err := client.CreateEmbeddings(
|
|
context.Background(),
|
|
openai.EmbeddingRequest{
|
|
Model: openai.AdaCodeSearchCode,
|
|
Input: []string{"sun", "cat"},
|
|
},
|
|
)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Data[0].Embedding)).To(BeNumerically("==", 384))
|
|
Expect(len(resp.Data[1].Embedding)).To(BeNumerically("==", 384))
|
|
|
|
sunEmbedding := resp.Data[0].Embedding
|
|
resp2, err := client.CreateEmbeddings(
|
|
context.Background(),
|
|
openai.EmbeddingRequest{
|
|
Model: openai.AdaCodeSearchCode,
|
|
Input: []string{"sun"},
|
|
},
|
|
)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(resp2.Data[0].Embedding).To(Equal(sunEmbedding))
|
|
Expect(resp2.Data[0].Embedding).ToNot(Equal(resp.Data[1].Embedding))
|
|
})
|
|
})
|
|
|
|
Context("backends", func() {
|
|
It("runs rwkv completion", func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
resp, err := client.CreateCompletion(context.TODO(), openai.CompletionRequest{Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,"})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices) > 0).To(BeTrue())
|
|
Expect(resp.Choices[0].Text).To(ContainSubstring("five"))
|
|
|
|
stream, err := client.CreateCompletionStream(context.TODO(), openai.CompletionRequest{
|
|
Model: "rwkv_test", Prompt: "Count up to five: one, two, three, four,", Stream: true,
|
|
})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
defer stream.Close()
|
|
|
|
tokens := 0
|
|
text := ""
|
|
for {
|
|
response, err := stream.Recv()
|
|
if errors.Is(err, io.EOF) {
|
|
break
|
|
}
|
|
|
|
Expect(err).ToNot(HaveOccurred())
|
|
text += response.Choices[0].Text
|
|
tokens++
|
|
}
|
|
Expect(text).ToNot(BeEmpty())
|
|
Expect(text).To(ContainSubstring("five"))
|
|
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
|
|
})
|
|
It("runs rwkv chat completion", func() {
|
|
if runtime.GOOS != "linux" {
|
|
Skip("test supported only on linux")
|
|
}
|
|
resp, err := client.CreateChatCompletion(context.TODO(),
|
|
openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices) > 0).To(BeTrue())
|
|
Expect(resp.Choices[0].Message.Content).To(Or(ContainSubstring("Sure"), ContainSubstring("five")))
|
|
|
|
stream, err := client.CreateChatCompletionStream(context.TODO(), openai.ChatCompletionRequest{Model: "rwkv_test", Messages: []openai.ChatCompletionMessage{{Content: "Can you count up to five?", Role: "user"}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
defer stream.Close()
|
|
|
|
tokens := 0
|
|
text := ""
|
|
for {
|
|
response, err := stream.Recv()
|
|
if errors.Is(err, io.EOF) {
|
|
break
|
|
}
|
|
|
|
Expect(err).ToNot(HaveOccurred())
|
|
text += response.Choices[0].Delta.Content
|
|
tokens++
|
|
}
|
|
Expect(text).ToNot(BeEmpty())
|
|
Expect(text).To(Or(ContainSubstring("Sure"), ContainSubstring("five")))
|
|
|
|
Expect(tokens).ToNot(Or(Equal(1), Equal(0)))
|
|
})
|
|
})
|
|
|
|
// See tests/integration/stores_test
|
|
Context("Stores", Label("stores"), func() {
|
|
|
|
It("sets, gets, finds and deletes entries", func() {
|
|
ks := [][]float32{
|
|
{0.1, 0.2, 0.3},
|
|
{0.4, 0.5, 0.6},
|
|
{0.7, 0.8, 0.9},
|
|
}
|
|
vs := []string{
|
|
"test1",
|
|
"test2",
|
|
"test3",
|
|
}
|
|
setBody := schema.StoresSet{
|
|
Keys: ks,
|
|
Values: vs,
|
|
}
|
|
|
|
url := "http://127.0.0.1:9090/stores/"
|
|
err := postRequestJSON(url+"set", &setBody)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
getBody := schema.StoresGet{
|
|
Keys: ks,
|
|
}
|
|
var getRespBody schema.StoresGetResponse
|
|
err = postRequestResponseJSON(url+"get", &getBody, &getRespBody)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(getRespBody.Keys)).To(Equal(len(ks)))
|
|
|
|
for i, v := range getRespBody.Keys {
|
|
if v[0] == 0.1 {
|
|
Expect(getRespBody.Values[i]).To(Equal("test1"))
|
|
} else if v[0] == 0.4 {
|
|
Expect(getRespBody.Values[i]).To(Equal("test2"))
|
|
} else {
|
|
Expect(getRespBody.Values[i]).To(Equal("test3"))
|
|
}
|
|
}
|
|
|
|
deleteBody := schema.StoresDelete{
|
|
Keys: [][]float32{
|
|
{0.1, 0.2, 0.3},
|
|
},
|
|
}
|
|
err = postRequestJSON(url+"delete", &deleteBody)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
findBody := schema.StoresFind{
|
|
Key: []float32{0.1, 0.3, 0.7},
|
|
Topk: 10,
|
|
}
|
|
|
|
var findRespBody schema.StoresFindResponse
|
|
err = postRequestResponseJSON(url+"find", &findBody, &findRespBody)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(findRespBody.Keys)).To(Equal(2))
|
|
|
|
for i, v := range findRespBody.Keys {
|
|
if v[0] == 0.4 {
|
|
Expect(findRespBody.Values[i]).To(Equal("test2"))
|
|
} else {
|
|
Expect(findRespBody.Values[i]).To(Equal("test3"))
|
|
}
|
|
|
|
Expect(findRespBody.Similarities[i]).To(BeNumerically(">=", -1))
|
|
Expect(findRespBody.Similarities[i]).To(BeNumerically("<=", 1))
|
|
}
|
|
})
|
|
})
|
|
})
|
|
|
|
Context("Config file", func() {
|
|
BeforeEach(func() {
|
|
modelPath := os.Getenv("MODELS_PATH")
|
|
c, cancel = context.WithCancel(context.Background())
|
|
|
|
var err error
|
|
bcl, ml, applicationConfig, err = startup.Startup(
|
|
append(commonOpts,
|
|
config.WithContext(c),
|
|
config.WithModelPath(modelPath),
|
|
config.WithConfigFile(os.Getenv("CONFIG_FILE")))...,
|
|
)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
app, err = App(bcl, ml, applicationConfig)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
|
|
go app.Listen("127.0.0.1:9090")
|
|
|
|
defaultConfig := openai.DefaultConfig("")
|
|
defaultConfig.BaseURL = "http://127.0.0.1:9090/v1"
|
|
client2 = openaigo.NewClient("")
|
|
client2.BaseURL = defaultConfig.BaseURL
|
|
// Wait for API to be ready
|
|
client = openai.NewClientWithConfig(defaultConfig)
|
|
Eventually(func() error {
|
|
_, err := client.ListModels(context.TODO())
|
|
return err
|
|
}, "2m").ShouldNot(HaveOccurred())
|
|
})
|
|
AfterEach(func() {
|
|
cancel()
|
|
if app != nil {
|
|
err := app.Shutdown()
|
|
Expect(err).ToNot(HaveOccurred())
|
|
}
|
|
})
|
|
It("can generate chat completions from config file (list1)", func() {
|
|
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list1", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
|
})
|
|
It("can generate chat completions from config file (list2)", func() {
|
|
resp, err := client.CreateChatCompletion(context.TODO(), openai.ChatCompletionRequest{Model: "list2", Messages: []openai.ChatCompletionMessage{{Role: "user", Content: testPrompt}}})
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Message.Content).ToNot(BeEmpty())
|
|
})
|
|
It("can generate edit completions from config file", func() {
|
|
request := openaigo.EditCreateRequestBody{
|
|
Model: "list2",
|
|
Instruction: "foo",
|
|
Input: "bar",
|
|
}
|
|
resp, err := client2.CreateEdit(context.Background(), request)
|
|
Expect(err).ToNot(HaveOccurred())
|
|
Expect(len(resp.Choices)).To(Equal(1))
|
|
Expect(resp.Choices[0].Text).ToNot(BeEmpty())
|
|
})
|
|
|
|
})
|
|
})
|